
Machine Learning and Data Mining

Support Vector Machines

Kalev Kask

+

• Which decision boundary is “better”?

– Both have zero training error (perfect training accuracy)

– But, one of them seems intuitively better…

• How can we quantify “better”,

and learn the “best” parameter settings?

Feature 1, x1

F
ea

tu
re

 2
,
 x

2

Decision boundary

Feature 1, x1

F
ea

tu
re

 2
,
 x

2

Decision boundary

Linear classifiers

• Separable data

– Linear (hard margin) SVM

– Hard margin

• Nearly separable data

– Linear (soft margin) SVM

– Soft margin

• Non-separable data

– Non-linear SVM

– Kernel SVM

– Hard/Soft margin

Overview

margin M

Math tech pt #1

X+

q . x+T ≥ 0

q . x+T = C

↓

q . x+T = 1

• Vector w=[w1 w2 …] is perpendicular to the boundaries (why?)

• w x + b = 0 & w x’ + b = 0 => w (x’-x) = 0 : orthogonal

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

margin M

x

x’

Math tech pt #2 Notation change!

U ∙ V = |U| ∙ |V| ∙ cos(a)

• Maybe we want to maximize our “margin”

• To optimize, relate to model parameters

• Remove “scale invariance”

– Define class +1 in some region, class –1 in another

– Make those regions as far apart as possible

Region -1

Region +1
We could define such a function:

f(x) = w*x’ + b

f(x) > +1 in region +1

f(x) < –1 in region –1

Passes through zero in center…

“Support vectors” – data points on margin

f(x)=0 f(x) = +1

f(x) = -1

Notation change!Separable SVM

• Vector w=[w1 w2 …] is perpendicular to the boundaries

• Choose x– st f(x–) = -1; let x+ be the closest point with f(x+) = +1

– x+ = x– + r * w (why?)

• Closest two points on the margin also satisfy

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

margin M

x–

x+

rw

Computing the margin width

w ∙ x- + b = -1 w ∙ x+ + b = +1

• Vector w=[w1 w2 …] is perpendicular to the boundaries

• Choose x– st f(x–) = -1; let x+ be the closest point with f(x+) = +1

– x+ = x– + r * w

• Closest two points on the margin also satisfy

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

margin M

Computing the margin width

w ∙ x- + b = -1 w ∙ x+ + b = +1

x–

x+

rw

• Constrained optimization

– Get all data points correct

– Maximize the margin

such that “all data on the

correct side of the margin”

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

margin M

This is an example of a quadratic program:

quadratic cost function, linear constraints

(m constraints)

s.t.

Primal problem:

Maximum margin classifier

(m constraints)

s.t.

• Constrained optimization

– Get all data points correct

– Maximize the margin

such that “all data on the

correct side of the margin”

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

margin M

This is an example of a quadratic program:

quadratic cost function, linear constraints

Primal problem:

Maximum margin classifier

A 1D Example
• Suppose we have three data points

x = -3, y = -1

x = -1, y = -1

x = 2, y = 1

• Many separating perceptrons, T[ax+b]
– Anything with ax+b = 0 between -1 and 2

• We can write the margin constraints
a (-3) + b < -1 => b < 3a - 1

a (-1) + b < -1 => b < a - 1

a (2) + b > +1 => b > -2a + 1

x

b

a

-3 -1 2

A 1D Example
• Suppose we have three data points

x = -3, y = -1

x = -1, y = -1

x = 2, y = 1

• Many separating perceptrons, T[ax+b]
– Anything with ax+b = 0 between -1 and 2

• We can write the margin constraints
a (-3) + b < -1 => b < 3a - 1

a (-1) + b < -1 => b < a - 1

a (2) + b > +1 => b > -2a + 1

• Ex: a = 1, b = 0

x-3 -1 2

b

a

A 1D Example
• Suppose we have three data points

x = -3, y = -1

x = -1, y = -1

x = 2, y = 1

• Many separating perceptrons, T[ax+b]
– Anything with ax+b = 0 between -1 and 2

• We can write the margin constraints
a (-3) + b < -1 => b < 3a - 1

a (-1) + b < -1 => b < a - 1

a (2) + b > +1 => b > -2a + 1

• Ex: a = 1, b = 0

• Minimize ||a|| => a = .66, b = -.33
– Two data on the margin; constraints “tight”

x-3 -1 2

b

a

Machine Learning and Data Mining

Support Vector Machines:

Lagrangian and Dual

Kalev Kask

+

Lagrangian optimization
• Want to optimize constrained system:

• Introduce Lagrange multipliers α (one per constraint)

– Can optimize θ, αi jointly, with a simple constraint set

– Then:

– Any optimum of the original problem is a saddle point of the new problem

– KKT complementary slackness:

s.t.

f(θ) gi (θ) ≤ 0

θ = (w,b)

• Use Lagrange multipliers

– Enforce inequality constraints

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

margin M

Stationary conditions wrt w:

and since any support vector has y = wx + b,

Alphas > 0 only on the margin:

“support vectors”

Optimization

∇wL= w – ∑ αi y(j) x(i) ∂L/∂b = - ∑ αi y(j)

• Use Lagrange multipliers

– Enforce inequality constraints

– Use solution w* to write solely in terms of alphas:

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

margin M

s.t.

Another quadratic program:

optimize m vars with 1+m (simple) constraints

cost function has m2 dot products

(since derivative wrt b = 0)

Dual form

Nearly separable SVM
• What if the data are not linearly separable?

– Want a large “margin”: Want low error:

– “Soft margin” : introduce slack variables for violated constraints

s.t.

Assigns “cost” R proportional to distance from margin

Another quadratic program!

(violate margin by ²)

Soft margin SVM
• Large margin vs. Slack variables

• R large = hard margin

• R smaller
– A few wrong predictions; boundary farther from rest

R = R0 R = 10-2 R0 R = 10-4 R0

s.t.

• Soft margin optimization:

– For any weights w,

we can choose ε to satisfy constraints

– Write ε* as a function of w (call this J) and optimize directly

• J = distance from the “correct” place

J=0

+1

(hinge loss)

(L2 regularization on the weights)

Maximum margin classifier

• Soft margin dual:

Region -1

Region +1

f(x)=0

f(x) = +1
f(x) = -1

s.t.

Support vectors now data on or past margin…

Kij measures “similarity”

of xi and xj (their dot product)

Prediction:

More complicated; can solve

e.g. using any ® 2 (0,R)

Dual form

K = Gram matrix

Machine Learning and Data Mining

Support Vector Machines:

The Kernel Trick

Kalev Kask

+

Linear SVMs
• So far, looked at linear SVMs:

– Expressible as linear weights “w”

– Linear decision boundary

• Dual optimization for a linear SVM:

• Depend on pairwise dot products:
– Kij measures “similarity”, e.g., 0 if orthogonal

s.t.

Region -1

Region +1
f(x)=0 f(x) = +1

f(x) = -1

w

• Linear classifier can’t learn some functions

1D example:

Add quadratic features

Not linearly separable

Linearly separable in new features…
x2 = (x1)2

x1

x1

Adding features

• Recall: feature function Phi(x)

– Predict using some transformation of original features

• Dual form of SVM optimization is:

• For example, quadratic (polynomial) features:

– Ignore root-2 scaling for now…

– Expands “x” to length O(n2)

s.t.

Adding features

• Need

Can evaluate dot product in
only O(n) computations!

Implicit features

Mercer Kernels
• If K(x,x’) satisfies Mercer’s condition:

• Then, for some

• Notably, Phi may be hard to calculate

– May even be infinite dimensional!

– Only matters that K(x,x’) is easy to compute:

– Computation always stays O(m2)

For all datasets X:

• Some commonly used kernel functions & their shape:

• Polynomial

0 x=1

K(x,x’)

Common kernel functions

• Some commonly used kernel functions & their shape:

• Polynomial

• Radial Basis Functions

0 x=1

K(x,x’)
¾ = 1

Common kernel functions

• Some commonly used kernel functions & their shape:

• Polynomial

• Radial Basis Functions

• Saturating, sigmoid-like:

0 x=1

K(x,x’)
c=1, h=0

Common kernel functions

Common kernel functions
• Some commonly used kernel functions & their shape:

• Polynomial

• Radial Basis Functions

• Saturating, sigmoid-like:

• Many for special data types:

– String similarity for text, genetics

• In practice, may not even be Mercer kernels…

Kernel SVMs
• Linear SVMs

– Can represent classifier using (w,b) = n+1 parameters

– Or, represent using support vectors, x(i)

• Kernelized?
– K(x,x’) may correspond to high (infinite?) dimensional Phi(x)

– Typically more efficient to remember the SVs

– “Instance based” – save data, rather than parameters

• Contrast:
– Linear SVM: identify features with linear relationship to target

– Kernel SVM: identify similarity measure between data

(Sometimes one may be easier; sometimes the other!)

Kernel Least-squares Linear Regression
• Recall L2-regularized linear regression:

Define:

Rearranging,

Linear prediction:

Rearrange & solve for r:

Gram matrix: m x m,

Now just replace K(x,x’) with your desired kernel function!

Example: Kernel Linear Regression
• K: MxM

Linear kernel: Gaussian (RBF) kernel:

Summary
• Support vector machines

• “Large margin” for separable data
– Primal QP: maximize margin subject to linear constraints

– Lagrangian optimization simplifies constraints

– Dual QP: m variables; involves m2 dot product

• “Soft margin” for non-separable data
– Primal form: regularized hinge loss

– Dual form: m-dimensional QP

• Kernels
– Dual form involves only pairwise similarity

– Mercer kernels: dot products in implicit high-dimensional space

