Machine Learning and Data Mining

Linear classification

Kalev Kask

T A %)

BREN:(ICS UNIVERSITY of CALIFORNIA {) IRVINE

INFORMATION AND COMPUTER SCIENCES

|Supervised learning
|

* Notation

— Features x

— Targets y

— Predictions y =1(x;)

— Parameters 6 L earning algorithm
HgiE (e, Fr:]]grg\?e%erformance
Characterized by
some “parameters” @

“train”
;rgtcgg’?prﬁtéu; I:r?e(? ction

“predict”

Feedback /
Target values

| Linear regression
|

“Predictor”:
40r .
Evaluate line:

= g + G1a1

return r

., Tlarget y

0 1'0 2IO
Feature X

« Contrast with classification

— Classify: predict discrete-valued target y
— Initially: “classic” binary { -1, +1} classes; generalize later

\ Perceptron Classifier (2 features)

| .
Classifier f {x:; #) T
Xl 01 f \ ‘_ rr
Xo \; “linear response”
7 —] T "
i r=0,x+60,%+80, *f(:L,E)) {-1, +1}
Threshold or, {0, 1}
1 { : : _ output Y
Qvelghted sum of the inputs Function / _ class decision
r = X.dot(theta.T); # compute linear response
Yhat = (r > 0) # predict class 1 vs 0
Yhat = 2*(r > 0)-1 # or ’sign”: predict +1 /-1

Note: typically convert classes to ’canonical” values 0,1, ...
then convert back (“learner.classes[c]”) after prediction

Visualizing for one feature “x”:

T(f)

(c) Alexander Ihler X

| Perceptrons
|

* Perceptron = a linear classifier

— The parameters 8 are sometimes called weights (“w”)
* real-valued constants (can be positive or negative)

— Input features x;...x,,; define an additional constant input “1”

* A perceptron calculates 2 quantities:
— 1. Aweighted sum of the input features
— 2. This sum is then thresholded by the T(.) function

* Perceptron: a simple artificial model of human neurons
— weights = “synapses”
— threshold = “neuron firing”

| Perceptron Decision Boundary

« The perceptron is defined by the decision algorithm:
+1 if6-2” >0

—1 otherwise

fla;8) =

* The perceptron represents a hyperplane decision surface in d-
dimensional space
— Aline in 2D, a plane in 3D, etc.

« The equation of the hyperplane is given by
Q. XT =0

This defines the set of points that are on the boundary.

|Example, Linear Decision Boundary
|

6 =(6, 6,,0,)
=(1, .5, -.5)

From P. Smyth

|[Example, Linear Decision Boundary
|

6 =(6, 6,,0,)
=(, .5 -5)
s 0.x'=0
X, 7
)\ /‘/ =>1+.5X%X;-.5%X,=0
7
7 =>-5x%,=-5x%,-1
7
7
/7
4
7
7 O
7 X1

From P. Smyth

|[Example, Linear Decision Boundary
|

0 =(0, 6, 0),)
=1, .5, -5)
P 0.x'=0
0.x <0 X2 o
7
=>x, +2< X, A
(this is the // \ 9 xT>0
equation for J B
decision => X, +2> X,
region -1) P 7 (decision
region +1
b g)
7
7 @
7 X1
Ve

From P. Smyth

| Separability
|

- Adata set is separable by a learner if

— There is some instance of that learner that correctly predicts all the data
points

- Linearly separable data

— Can separate the two classes using a straight line in feature space
— In 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data

Feature 2, X,
Feature 2, X,

Decisiont boundary

Feature 1, x
Feature 1, x P 1
cature L, x (c) Alexander Ihler

| Class overlap R
. Classes may not be well-separated j .' S -
- Same observation values possible |, """ e
under both classes) ot
— High vs low risk; features {age, income} | . o
! 0 1 2 3

— Benign/malignant cells look similar

- Common In practice

* May not be able to perfectly distinguish between classes
— Maybe with more features?
— Maybe with more complex classifier?

- Otherwise, may have to accept some errors

(c) Alexander Ihler

|Another example
|

(c) Alexander Ihler

|Non-linear decision boundary
|

(c) Alexander Ihler

Representational Power of Perceptrons

. What mappings can a perceptron represent perfectly?
— A perceptron is a linear classifier
— thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)
— but not Boolean functions like XOR (on right)

CCANDQ, i) CGXORQQ L) - \
I - T

x| x |y x| % v .

o 0 -1 o o0 1 |

o 1 -1 o 1 -1 :

1 0 -1 1 0 -

a |4 |a O . R T v ¢
o} .

-0z 0 P 1 i O 1 LE

| Adding features
|

* Linear classifier can’t learn some functions

1D example:

L N e 00 0 o ®
S —
Not linearly separable

Add quadratic features ®

Linearly separable in new features...

| Adding features
|

* Linear classifier can’t learn some functions

1D example:

L N e 00 0 o ®
S —
Not linearly separable

Quadratic features, visualized in original feature space:
y=T(ax?+bx+c)

More complex decision boundary: ax?+bx+c =0

Representational Power of Perceptrons

. What mappings can a perceptron represent perfectly?
— A perceptron is a linear classifier
— thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)
— but not Boolean functions like XOR (on right)

“AND”

izl ' “XOR” =S '
s L & i »
y ne- y OE-
o 0 -1 o 0 1 st

-1 -1

m B O

1 0 1
0 -1 1 0o -1
1 1 T . 1 1 1

-0z 0 P 1 i O 1

What kinds of functions would we need to learn the data on the right?

Representational Power of Perceptrons

“AND”

0
0
1
1

66XOR99
0 0 0 |
1 o 1 -1 "y
0 -1 1 0 -1
1 1 ¢ . 1 1 1 i
0L 0

. What mappings can a perceptron represent perfectly?

A perceptron is a linear classifier

thus it can represent any mapping that is linearly separable
some Boolean functions like AND (on left)

but not Boolean functions like XOR (on right)

-0z 0 P 1 i O 1

What kinds of functions would we need to learn the data on the right?
Ellipsiodal decision boundary: ax;?+bx;+cx,2+dx,+exx,+f=0

| Feature representations
I

* Features are used in a linear way
* Learner is dependent on representation

« EX: discrete features
— Mushroom surface: {fibrous, grooves, scaly, smooth}
— Probably not useful to use x ={1, 2, 3, 4}
— Better: 1-of-K, x ={[1000], [0100], [0010], [0001] }
— Introduces more parameters, but a more flexible relationship

| Effect of dimensionality

- Data are increasingly separable in high dimension — is this a good thing?

° “Good”
— Separation is easier in higher dimensions (for fixed # of data m)

— Increase the number of features, and even a linear classifier will eventually be able to
separate all the training examples!

° “Bad”
— Remember training vs. test error? Remember overfitting?

— Increasingly complex decision boundaries can eventually get all the training data right,
but it doesn’ t necessarily bode well for test data...

Predictive
Error | | Error on Test.Data

Error on Training Data

A

- R i > Complexity
Underfitting Overfitting

Ideal Range

|Summary

. Linear classifier < perceptron

 Linear decision boundary
— Computing and visualizing

« Separability

— Limits of the representational power of a perceptron

* Adding features
— Interpretations
— Effect on separability
— Potential for overfitting

(c) Alexander Ihler

Machine Learning and Data Mining

Linear classification: Learning

Kalev Kask

T A %)

BREN:(ICS UNIVERSITY of CALIFORNIA {) IRVINE

INFORMATION AND COMPUTER SCIENCES

| Learning the Classifier Parameters

I . .
- Learning from Training Data:
— training data = labeled feature vectors

— Find parameter values that predict well (low error)
* error is estimated on the training data
« “true” error will be on future test data

* Define a loss function J(6) :
— Classifier error rate (for a given set of weights ¢ and labeled data)

* Minimize this loss function (or, maximize accuracy)
— An optimization or search problem over the vector (6, 6,, 6,)

\Trammg a linear classifier

How should we measure error?

— Natural measure = “fraction we get wrong” (error rate)

1

[

err(f) = — Z]l[y(x’:) £ Flz\; B where 1|y £ g| = {

1
0

Yhat = np.sign(X.dot(theta.T));
err =np.mean(Y !=Yhat)

predict class (+1/-1)
count errors: empirical error rate

But, hard to train via gradient descent

— Not continuous

— As decision boundary moves, errors change abruptly

1D example: o o—o

- - o0 o

T =-1if f<0
T =+1 if £>0

(c) Alexander Ihler

y# Y

O.W.

| Linear regression?
|

* Simple option: set dusing linear regression

* In practice, this often doesn’t work so well...
— Consider adding a distant but “easy” point
— MSE distorts the solution

(c) Alexander Ihler

| Perceptron algorithm
|

* Perceptron algorithm: an SGD-like algorithm
while — done:
for each data point j:
f_f;'{j} = 5ig11(9 ' m('jJ) (predict output for point j)
0« 6+ &.(y(-j} _ :gr(j));{;(j) (“gradient-like” step)

« Compare to linear regression + MSE cost
— ldentical update to SGD for MSE except error uses
thresholded y(j) instead of linear response €X' so:

— (1) For correct predictions, y(j)-y(j) =0
— (2) For incorrect predictions, y(j) - y(j) = £ 2

“adaptive” linear regression: correct predictions stop contributing

(c) Alexander Ihler

\Perceptron algorithm

* Perceptron algorithm: an SGD-like algorithm

while — done:
for each data point j:
f_f;'{j} = 5ig11(9 ' m('jJ) (predict output for point j)
0« 6+ &.(y(-j} _ :gr(j));{;(j) (“gradient-like” step)

y()
predicted
incorrectly:
update
weights

(c) Alexander Ihler

\Perceptron algorithm

* Perceptron algorithm: an SGD-like algorithm

while — done:

for each data point j:

f_f){j} = Sig11(9 : ﬂﬁ(j)) (predict output for point))
0+ 0+ oy — N z@) (‘gradient-like” step)

y({)
predicted
correctly:

no update

>

(c) Alexander Ihler

\Perceptron algorithm

* Perceptron algorithm: an SGD-like algorithm

while — done:
for each data point j:
f_f;'{j} = 5ig11(9 ' m('jJ) (predict output for point j)

0« 6+ &.(y(-j} _ :gr(j));{;(j) (“gradient-like” step)
(Converges if data are linearly separable)

y({)
predicted o
correctly:

no update

>

(c) Alexander Ihler

Machine Learning and Data Mining

Linear classification: Other Linear classifiers

Kalev Kask

T A %)

BREN:(CS UNIVERSITY of CALIFORNIA {) IRVINE

INFORMATION AND COMPUTER SCIENCES

| Surrogate loss functions

I = (11 144
* Another solution: use a "smooth” loss
— e.g., approximate the threshold function — T(f)

[
»

r(x)

— Usually some smooth function of distance
- Example: logistic “sigmoid”, looks like an “S”

/—G(r)

— Now, measure e.g. MSE T)

_1 DYy o)
18 m2<”(r(”’)=y Class y = {0, 1} ...

N
— Far from the decision boundary: |r(x)| large, small error
— Nearby the boundary: [r(x)| near 1/2, larger error

1D example: ° ® ® ’/"'—_'
‘ /
O —o—o-/o/o O

Classification error = 2/9 MSE = (0% + 12 + .22 + .25% + .05% + ...)/9

| Beyond misclassification rate

I . . o . 11 77
- Which decision boundary is “better”?

— Both have zero training error (perfect training accuracy)
— But, one of them seems intuitively better...

Feature 2, X,
o 3
L ;
7
o. o
Feature 2, X,

Feature 1, Xx;

Feature 1, x;

- Side benefit of many “smoothed” error functions
— Encourages data to be far from the decision boundary

— See more examples of this principle later...

(c) Alexander Ihler

| Training the Classifier
|

- Once we have a smooth measure of quality, we can find the
“best” settings for the parameters of

r(Xy,X,) = a*x; + b*x, + ¢

- Example: 2D feature space <& parameter space

J=19

(c) Alexander Ihler

| Training the Classifier
|

- Once we have a smooth measure of quality, we can find the
“best” settings for the parameters of

r(Xy,X,) = a*x; + b*x, + ¢

- Example: 2D feature space <& parameter space

o
e % & @ J=04

(c) Alexander Ihler

| Training the Classifier
|

- Once we have a smooth measure of quality, we can find the
“best” settings for the parameters of

r(Xy,X,) = a*x; + b*x, + ¢

- Example: 2D feature space <& parameter space

Best Poirrl:
(minimum MSE)

Q&

(c) Alexander Ihler

|Finding the Best MSE
|

* As in linear regression, this is now just optimization

 Methods:

— Gradient descent

- Improve loss by small Gradient Descent

changes in parameters
(“small” = learning rate)

— Or, substitute your favorite
optimization algorithm...

* Coordinate descent

» Stochastic search
- Genetic algorithms \

(c) Alexander Ihler

| Gradient Equations

3 MSE (note, depends on function o(.))

(8 = la,b,c]) = z(g(m Dbl)y)2

- What's the derivative Wlth respect to one of the parameters?
— Recall the chain rule of calculus:

J . J, !
o, Flathla))) = [{glhla))) ¢'(ha)) I{a)
flo)=(g)* - f'(g) = 2(g)
glh) =olh) —y = g'{h) =d'(h)
h(a) = axi” + bl + — B(a) =2l w.rt. b,c : similar;
replace x;
a7 with x, or 1
T Z 4(o (6 - m(i)) = y(i)* a6 - :1:.(*":)) :Izg_?’)
Y Error between class Sensitivity of prediction to
and prediction changes in parameter “a”

(c) Alexander Ihler

| Saturating Functions

B Many possible “saturating” functions

- “Logistic” sigmoid (scaled for range [0,1]) is
c(z)=1/(1+ exp(-2))

(z = linear response, x'0)

- Derivative (slope of the function at a point z) is
0o(z) = o(z) (1-0(2))

(to predict:
threshold z at 0 or
- Python Implementation: threshold o (z) at %2)
def sig(z): # logistic sigmoid
return 1.0/ (1.0 + np.exp(-z)) # in [0,1] For range [-1, +1]:
def dsig(z): # its derivative at z p(z) =20(z)-1
return Slg(Z) * (1'S|g(2)) ap(Z) — 2 G(Z) (1'6(2))

Predict: threshold zorp at 0

(c) Alexander Ihler

Machine Learning and Data Mining

Linear classification: Logistic Regression

Kalev Kask

T A %)

BREN:(CS UNIVERSITY of CALIFORNIA {) IRVINE

INFORMATION AND COMPUTER SCIENCES

| Logistic regression

. Interpret c(@ X") as a probability thaty =1
+ Use a negative log-likelihood loss function
— If y=1, costis -log Pr[y=1] -log o(6xT)

— If y=0, costis -log Pr[y=0] -log (1 - c(6x"))

« Can write this succinctly:

J(0) = ——(Zy@ 10g (63D)+(1—y @) log(l—a(e-m@))))
moN s] |]

| I
Nonzero only if y=1 Nonzero only if y=0

(c) Alexander Ihler

| Logistic regression

. Interpret c(@ X") as a probability thaty =1
+ Use a negative log-likelihood loss function
— If y=1, costis -log Pr[y=1] -log o(6xT)

— If y=0, costis -log Pr[y=0] -log (1 - o(6x"))

« Can write this succinctly:

1©) =~ (X4 109 o6+ (15 D) 10g(1-o(6:c)))

* Convex! Otherwise similar: optimize J(6) via ...

1D example: ° ® ® ’/"'—_'
‘ /
O —o—o-/o/o O

Classification error = MSE = 2/9 NLL = - (log(.99) +log(.97) +...)/9

| Gradient Equations

. Logistic neg-log likelihood loss:
_ 1 (i) (i) (4) (i)
J(Q)——;(Zy l0g o(6-20)+(1—yP) log(1—0 (9.2)))

- What's the derivative with respect to one of the parameters?

87 1 @ 1 el (Y (0)

_ _i(zy@)(l —o(6-2®)) 2 + (1 -y)

i ;

| Surrogate loss functions

I | |
- Replace 0/1loss A;(#) = 1[T(92)) # y'V]
with something easier:

0/1Loss
* Logistic MSE
Ji(8) = 4(0(9:1’:“:’)) — y(i))g
 Logistic Neg Log Likelihood \
(i) |
(0) = -2 () \
J;(8) 0g 2 loga(8-x2\") 4+ ...

(c) Alexander Ihler

|Summary

. Linear classifier < perceptron

« Measuring quality of a decision boundary
— Error rate (0/1 loss)
— Logistic sigmoid + MSE criterion
— Logistic Regression

» Learning the weights of a linear classifer from data
— Reduces to an optimization problem
— Perceptron algorithm
— For MSE or Logistic NLL, we can do gradient descent
— Gradient equations & update rules

| Multi-class linear models
|

* What about multiple classes? One option:

— Define one linear response per class " Boo ... Bon
— Choose class with the largest response g—1 .
T H(VR HE’ S

f{a;0) = argmax 0. - x i
i

— Boundary between two classes, c vs. ¢’?
) {c if 0,27 > 0027 & (8, —0.)2T >0

¢ otherwise

* Linear boundary: (6_.-6_.)x"=0

(c) Alexander Ihler

| Multiclass linear models
|

* More generally, can define a generic linear classifier by
f(x:0) = argmax 0 ®(x,y)
Y

* Example: y={-1, +1}

O(xy)=y [l xz2x® ..]

+1 -Naz?..)l>—-0-[1Lzz?...
N e
—1 o.w.

(Standard perceptron rule)

(c) Alexander Ihler

| Multiclass linear models
|

* More generally, can define a generic linear classifier by
f(x:0) = argmax 0 ®(x,y)
Y

* Example: y={0,1,2,...}
Olr,y)=[1Lly=0]lxz? ...] 1ly=1[Lza*..]..]
=1 [Boo Bo1 fo2...] [B10 G117 Gh2...] ...

(parameters for each class c)

fla:0) =argmax 0. - [1 x 2 ..]
C

(predict class with largest linear response)

(c) Alexander Ihler

| Multiclass perceptron algorithm
|

* Perceptron algorithm:
* Make prediction f(x)
* Increase linear response of true target y; decrease for prediction f

While (~done)
For each data point j:
f0) = arg max (6. * x0) . predict output for data point |
O; — O; - ®x0 . decrease response of class f0) to x0)
0,0, + ®x0 . increase response of true class y0)

— More general form update:

f{z:8) = argmax €- ¢(x,y)
Y

¢ — 0+ a ((I)(;'I:, y) — ®(x, fx)))

| Multilogit regression
|

* Define the probability of each class:
exp(6, -z’
> .exp(l, - x1)

* Then, the NLL loss function is:
1 N 1 . _
J(8) = T Z log P(y(i)@(ﬂ)) — —;Z [Sy(.,-_)-m(l)—log ZE){D(QG.:E(E))}

plY =y[X =)=

(Y binary = logistic regression)

— P: “confidence” of each class

* Soft decision value

— Decision: predict most probable

* Linear decision boundary

— Convex loss function

