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Supervised learning
• Notation

– Features      x

– Targets        y

– Predictions  ŷ

– Parameters q

Program  (“Learner”)

Characterized by 
some “parameters” q

Procedure (using q) 
that outputs a prediction

Training data 
(examples)

Features

Learning algorithm

Change q
Improve performance

Feedback / 

Target values Score performance
(“cost function”)



Linear regression

• Define form of function f(x) explicitly

• Find a good f(x) within that family

(c) Alexander Ihler
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Notation
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Define  “feature”  x0 = 1  (constant)

Then



Measuring error
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0

Error or “residual”

Prediction
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Mean squared error
• How can we quantify the error?

• Could choose something else, of course…

– Computationally convenient (more later)

– Measures the variance of the residuals

– Corresponds to likelihood under Gaussian model of “noise”
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MSE cost function

• Rewrite using matrix form
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# Python / NumPy:
e = Y – X.dot( theta.T );
J = e.T.dot( e ) / m  # = np.mean( e ** 2 )



Visualizing the cost function
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Finding good parameters

• Want to find parameters which minimize our error…

• Think of a cost “surface”: error residual for that µ…
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Gradient descent
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?

• How to change µ to 

improve J(q)?

• Choose a direction in 

which J(q) is decreasing



Gradient descent
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• How to change µ to 

improve J(q)?

• Choose a direction in 

which J(q) is decreasing

• Derivative

• Positive => increasing

• Negative => decreasing



Gradient descent in more dimensions
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• Gradient vector

• Indicates direction of 

steepest ascent

(negative = steepest 

descent)



Gradient descent

• Initialization

• Step size

– Can change as a function of iteration

• Gradient direction

• Stopping condition

(c) Alexander Ihler

Initialize q

Do {

q ← q - α ∇q J(q)

} while (α || ∇J|| > ε )



Gradient for the MSE

• MSE

• ∇ J = ?
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0 0



Gradient for the MSE

• MSE

• ∇ J = ?
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Gradient descent
• Initialization

• Step size

– Can change as a function of iteration

• Gradient direction

• Stopping condition
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{

Error magnitude &

direction for datum j 
{

Sensitivity to

each q i

Initialize q

Do {

q ← q - α ∇q J(q)

} while (α || ∇J|| > ε )



Derivative of MSE

• Rewrite using matrix form
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{

Error magnitude &

direction for datum j 

{

Sensitivity to

each q i

e = Y – X.dot( theta.T ); # error residual
DJ = - e.dot(X) * 2.0/m  # compute the gradient 
theta -= alpha * DJ   # take a step
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Comments on gradient descent
• Very general algorithm

– we’ll see it many times

• Local minima

– Sensitive to starting point
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Comments on gradient descent
• Very general algorithm

– we’ll see it many times

• Local minima

– Sensitive to starting point

• Step size

– Too large? Too small? Automatic ways to choose?

– May want step size to decrease with iteration

– Common choices:

• Fixed

• Linear: C/(iteration)

• Line search / backoff (Armijo, etc.)

• Newton’s method
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Newton’s method
• Want to find the roots of f(x)

– “Root”: value of x for which f(x)=0

• Initialize to some point x

• Compute the tangent at x & compute where it crosses x-axis

• Optimization: find roots of ∇J(q)

– Does not always converge; sometimes unstable

– If converges, usually very fast

– Works well for smooth, non-pathological functions, locally quadratic

– For n large, may be computationally hard: O(n2) storage, O(n3) time

(Multivariate:

∇J(µ) = gradient vector

∇∇2 J(µ) = matrix of 2nd derivatives

a/b = a b-1, matrix inverse)

(“Step size” ¸ = 1/∇∇J ; inverse curvature)



• MSE

• Gradient

• Stochastic (or “online”) gradient descent:

– Use updates based on individual datum j, chosen at random

– At optima,

(average over the data) 
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Stochastic / Online gradient descent



-1 -0.5 0 0.5 1 1.5 2 2.5 3
-40

-30

-20

-10

0

10

20

30

40

Online gradient descent
• Update based on each datum at a time

– Find residual and the gradient of its part of 

the error & update
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Initialize q

Do {

for j=1:m

q ← q - α ∇q Jj(q)

} while (not done)
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• Update based on each datum at a time

– Find residual and the gradient of its part of 

the error & update

Initialize q

Do {

for j=1:m

q ← q - α ∇q Jj(q)

} while (not done)
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• Update based on each datum at a time

– Find residual and the gradient of its part of 

the error & update

Initialize q

Do {

for j=1:m

q ← q - α ∇q Jj(q)

} while (not done)
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• Update based on each datum at a time

– Find residual and the gradient of its part of 

the error & update

Online gradient descent
Initialize q

Do {

for j=1:m

q ← q - α ∇q Jj(q)

} while (not done)
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• Update based on each datum at a time

– Find residual and the gradient of its part of 

the error & update

Online gradient descent
Initialize q

Do {

for j=1:m

q ← q - α ∇q Jj(q)

} while (not done)
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• Update based on each datum at a time

– Find residual and the gradient of its part of 

the error & update

Online gradient descent
Initialize q

Do {

for j=1:m

q ← q - α ∇q Jj(q)

} while (not done)



• Benefits
– Lots of data = many more updates per pass

– Computationally faster

• Drawbacks
– No longer strictly “descent”

– Stopping conditions may be harder to evaluate

(Can use “running estimates” of J(.), etc. )

• Related: mini-batch updates, etc.
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Online gradient descent
Initialize q

Do {

for j=1:m

q ← q - α ∇q Jj(q)

} while (not converged)
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MSE Minimum
• Consider a simple problem

– One feature, two data points

– Two unknowns: q 0, q 1
– Two equations:
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• Can solve this system directly:

• However, most of the time,  m > n

– There may be no linear function that hits all the data exactly

– Instead, solve directly for minimum of MSE function



MSE Minimum

• Reordering, we have

(c) Alexander Ihler

• X (XT X)-1 is called the “pseudo-inverse”

• If XT is square and independent, this is the inverse

• If  m > n:  overdetermined; gives minimum MSE fit



Python MSE
• This is easy to solve in Python / NumPy…
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# y = np.matrix( [[y1], … , [ym]] )

# X = np.matrix( [[x1_0 … x1_n], [x2_0 … x2_n], …] )

# Solution 1: “manual”
th = y.T * X * np.linalg.inv(X.T * X);

# Solution 2: “least squares solve”
th = np.linalg.lstsq(X, Y);



Normal equations

• Interpretation:

– (y - q X) = (y – y^)  is the vector of errors in each example

– X are the features we have to work with for each example

– Dot product = 0:  orthogonal

(c) Alexander Ihler



Normal equations

• Interpretation:

– (y - q X) = (y – y^)  is the vector of errors in each example

– X are the features we have to work with for each example

– Dot product = 0:  orthogonal

• Example:
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• Sensitivity to outliers
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16 2 cost for this one datum

Heavy penalty for large errors

-20 -15 -10 -5 0 5
0

1

2

3

4

5



L1 error
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Cost functions for regression
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“Arbitrary” functions can’t be

solved in closed form…

- use gradient descent

(MSE)

(MAE)

Something else entirely…

(???)
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More dimensions?
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Nonlinear functions
• What if our hypotheses are not lines?

– Ex: higher-order polynomials

(c) Alexander Ihler

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
Order 1 polynom ial

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
Order 3 polynom ial



Nonlinear functions
• Single feature x, predict target y:

• Sometimes useful to think of “feature transform”

(c) Alexander Ihler

Add features:

Linear regression in new features



Higher-order polynomials
• Fit in the same way

• More “features”
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Features
• In general, can use any features we think are useful

• Other information about the problem

– Sq. footage, location, age, …

• Polynomial functions

– Features [1, x, x2, x3, …]

• Other functions

– 1/x,  sqrt(x), x1 * x2, …

• “Linear regression” = linear in the parameters

– Features we can make as complex as we want!
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Higher-order polynomials
• Are more features better?

• “Nested” hypotheses

– 2nd order more general than 1st,

– 3rd order  “ “ than 2nd, …

• Fits the observed data better



Overfitting and complexity
• More complex models will always fit the training data better

• But they may “overfit” the training data, learning complex 

relationships that are not really present

(c) Alexander Ihler
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Complex model

X
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Simple model



Test data
• After training the model

• Go out and get more data from the world

– New observations (x,y)

• How well does our model perform?

(c) Alexander Ihler
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Training versus test error
• Plot MSE as a function of 

model complexity

– Polynomial order

• Decreases

– More complex function fits 

training data better

• What about new data?
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• 0th to 1st order

– Error decreases

– Underfitting

• Higher order

– Error increases

– Overfitting
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Inductive bias
• The assumptions needed to predict examples we haven’t seen

• Makes us “prefer” one model over another

• Polynomial functions; smooth functions; etc

• Some bias is necessary for learning! 

X

Y

Complex model

X

Y

Simple model



Bias & variance
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Data we observe“The world” Three different possible data sets:



Bias & variance
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Data we observe“The world” Three different possible data sets:

Each would give 

different 

predictors for any  

polynomial degree:



Detecting overfitting
• Overfitting effect

– Do better on training data than on future data

– Need to choose the “right” complexity

• One solution: “Hold-out” data

• Separate our data into two sets

– Training

– Test

• Learn only on training data

• Use test data to estimate generalization quality

– Model selection

• All good competitions use this formulation

– Often multiple splits: one by judges, then another by you
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What to do about under/overfitting?
• Ways to increase complexity?

– Add features (e.g. higher polynomial), parameters

– We’ll see more…

• Ways to decrease complexity?

– Remove features (“feature selection”) (e.g. lower polynomial)

– “Fail to fully memorize data”

• Partial training

• Regularization

(c) Alexander Ihler

Predictive

Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range

for Model Complexity

OverfittingUnderfitting
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Linear regression
• Linear model, two data

• Quadratic model, two data?

– Infinitely many settings with zero error

– How to choose among them?

• Higher order coefficents = 0?

– Uses knowledge of where features came from…

• Could choose e.g. minimum magnitude:

• A type of bias: tells us which models to prefer

(c) Alexander Ihler



Regularization
• Can modify our cost function J to add “preference” for 

certain parameter values

• New solution (derive the same way)

– Problem is now well-posed for any degree

• Notes:

– “Shrinks” the parameters toward zero

– Alpha large: we prefer small theta to small MSE

– Regularization term is independent of the data:  paying more 

attention reduces our model variance
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L2 penalty:

“Ridge regression”



Regularization

• Compare between unreg. & reg. results
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α=0
(Unregularized)

α=1



Different regularization functions

• More generally, for the Lp regularizer:
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Quadratic

L0 = limit as p -> 0 :  “number of nonzero weights”, a natural notion of complexity

L∞  = limit as p -> ∞ : “maximum parameter value”

L1 = limit as p ! 1 : “maximum parameter value”

Lasso

p=0.5 p=1 p=2 p=4

Isosurfaces:   ||q ||p = constant



Regularization: L1 vs L2

• Estimate balances data term & regularization term 

(c) Alexander Ihler

Minimizes data term

Minimizes regularization

Minimizes combination



Regularization: L1 vs L2

• Estimate balances data term & regularization term 

• Lasso tends to generate sparser solutions than a quadratic regularizer. 
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Data term only:

all q i non-zero

Regularized estimate:

some q i may be zero
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Model selection
• Which of these models fits the data best?

– p=0  (constant);   p=1  (linear);   p=3  (cubic);  …

• Or, should we use KNN? Other methods?

• Model selection problem

– Can’t use training data to decide (esp. if models are nested!)

• Want to estimate 

(c) Alexander Ihler

p=0 p=1 p=3

J = loss function (MSE)
D = training data set



Hold-out method
• Validation data

– “Hold out” some data for evaluation  (e.g., 70/30 split)

– Train only on the remainder

• Some problems, if we have few data:
– Few data in hold-out: noisy estimate of the error

– More hold-out data leaves less for training!
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MSE = 331.8



Cross-validation method
• K-fold cross-validation

– Divide data into K disjoint sets

– Hold out one set (= M / K data) for evaluation

– Train on the others (= M*(K-1) / K data) 
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x(i) y(i)

88 79

32 -2

27 30

68 73

7 -16
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53 77
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Training 
data

Validation
data

Split 1:
MSE = 331.8

Split 2:
MSE = 361.2

Split 3:
MSE = 669.8
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3-Fold X-Val MSE 
= 464.1



Cross-validation method
• K-fold cross-validation

– Divide data into K disjoint sets

– Hold out one set (= M / K data) for evaluation

– Train on the others (= M*(K-1) / K data) 
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x(i) y(i)

88 79

32 -2

27 30

68 73
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Training 
data

Validation
data

Split 1:
MSE = 280.5

Split 2:
MSE = 3081.3

Split 3:
MSE = 1640.1
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3-Fold X-Val MSE 
= 1667.3



Cross-validation
• Advantages:

– Lets us use more (M) validation data

(= less noisy estimate of test performance)

• Disadvantages:
– More work

• Trains K models instead of just one

– Doesn’t evaluate any particular predictor

• Evaluates K different models & averages

• Scores hyperparameters / procedure, not an actual, specific predictor! 

• Also: still estimating error for M’ < M data…
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Learning curves
• Plot performance as a function of training size

– Assess impact of fewer data on performance
Ex:  MSE0 - MSE  (regression) 
or 1-Err   (classification)

• Few data
– More data significantly 

improve performance

• “Enough” data
– Performance saturates

• If slope is high, decreasing m (for validation / cross-validation) might have a big 
impact…
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Leave-one-out cross-validation
• When K=M (# of data), we get

– Train on all data except one

– Evaluate on the left-out data

– Repeat M times (each data point held out once) and average
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Training 
data

Validation
data

MSE = …

MSE = …

LOO X-Val MSE 
= …
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…



Cross-validation Issues
• Need to balance:

– Computational burden (multiple trainings)

– Accuracy of estimated performance / error

• Single hold-out set:

– Estimates performance with M’ < M data  (important? learning curve?)

– Need enough data to trust performance estimate

– Estimates performance of a particular, trained learner

• K-fold XVal

– K times as much work, computationally

– Better estimates, still of performance with M’ < M data

• LOO XVal

– M times as much work, computationally

– M’ ≈ M, but overall error estimate may have high variance
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