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|Supervised learning
|

* Notation
— Features X
— Targets y
— Predictions y

— Parameters 6 Learning algorithm

Change 6

Program (“Learner”)
Improve performance

Characterized by
some “parameters” @

Procedure (using 6)
eatures that outputs a predictior

Feedback /
Target values




| Linear regression
|

“Predictor”:
40r .
Evaluate line:
- r = 90 + 91331
s
(eb]
([@)]
S return r
|_
2 -

0 1'0 2IO
Feature X

» Define form of function f(x) explicitly
* Find a good f(x) within that family

(c) Alexander Ihler



| Notation
|

@(33) = 0o + 0121 + O + . ..

Define “feature” X, =1 (constant)
Then

Q(SU)ZQ.ZCT Q:[Qow--agn]

L = [173317---93771]

(c) Alexander Ihler



Ng error

| Measuri
|

Observation Yy

Prediction ?/j

Error or “residual”

J
20



|Mean squared error
I

- How can we quantify the error?
1 . |
MSE, J(0) = — > (¥ — §(z")))?

m “—
]
1 . |
= — Z(y(J) — 9. £(J)T)2
J

« Could choose something else, of course...
— Computationally convenient (more later)
— Measures the variance of the residuals
— Corresponds to likelihood under Gaussian model of “noise”

1 1
N(ya M?O-Q): WGXP{—E(?/—M)Q}



| MSE cost function
|

MSE, J(0) = — 3 (49 — j(a))?

m =
]
1 . .
_ Z(y(J) — -T2
m -
J
Rewrite using matrix form i :Egn . x%l) i
Q:[907'°'797’L] . X: : . :
y= [y NI
1
JO) = —(" - 0X") - (" -9 x)"

# Python / NumPy:
e =Y — X.dot( theta.T);
J=eTdot(e)/m #=np.mean(e **2)
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| Finding good parameters
|

- Want to find parameters which minimize our error...

- Think of a cost “surface”: error residual for that p...

0o
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| Gradient descent
|

* How to change U to
improve J(6)?
"« Choose a direction in
which J(6) is decreasing

(c) Alexander Ihler



| Gradient descent
|

o0 ~° Howto change p to

o6 improve J(6)?
J(Q) » Choose a direction in
which J(6) Is decreasing

 Derivative 0.J(0)
00

* Positive => increasing
* Negative => decreasing



| Gradient descent in more dimensions
I

* Gradient vector
90 VJ(0) — o0J(¢) 90J(0)

= 06y 061
—VJ(8)

* |Indicates direction of
steepest ascent

6 (negative = steepest
descent)

(c) Alexander Ihler



| Gradient descent
I

+ Initialization Initialize 0
- Step size Do {
— Can change as a function of iteration O— 0-q v, J(O)
- Gradient direction }while (a||VI||>¢€)

Stopping condition

J(@) 00

(c) Alexander lhler



| Gradient for the MSE
|

1 : .
.« MSE J(@B) = —> (9 —g.20")

m =
J
. VJ=? fj(Q)
1 . : . '
f) = — ) _ 9o _ g, ) )2
J(—) m ;(y 0L 129 )
00, o 90p m ;( €j<9) ) 3_6’(363(0) — Qoyj — 8—0090960 — 06’1331 — ...
1 0 _ ) 0 0
=22 g le®) ;

J (c) Alexander Ihler



| Gradient for the MSE
|

° 1 . ,
MSE J(B) = — Z(y(J) 9. z(J)T)2

m

j
vVi=? fj(Q)
70) =~ S 09D — oz — 012 )2
A% m (y 0Ly 1Lq . )
j
0J 0.J
o= | <L aJ
VJ(_) 890 691 }




| Gradient descent

I o
* Initialization

- Step size Initialize @
— Can change as a function of iteration Do {
- Gradient direction 0— 60-aV,I0
. - ] 0
* Stopping condition }while (|| VJ||>¢)

1 . .
J(0) = — Z( @) 9. x(J)T)2

— _—Z (3) —0- x(j)T) [x(j)a:gj)...]

"

Error magnitude & Sensitivity to
direction for datum j each @,

(c) Alexander Ihler



| Derivative of MSE
|

VIO ==

, T : .

—’

Error magnitude & Sensitivity to
direction for datum j each 6
* Rewrite using matrix form - () (1) 7
_ T, ce. I
Q:__@O,...,gn] . X: : . :
y=|yM ... 7y(m)} ORI )
2
VJ(0) = —E(QT ~-0X"). X

e =Y — X.dot( theta.T); # error residual
DJ = - e.dot(X) * 2.0/m # compute the gradient
theta -= alpha * DJ # take a step

(c) Alexander Ihler



|Gradient descent on cost function
I

(c) Alexander Ihler



| Comments on gradient descent
I

* Very general algorithm
— we’ Il see it many times

* Local minima
— Sensitive to starting point

(c) Alexander Ihler



| Comments on gradient descent
I

* Very general algorithm
— we’ Il see it many times

* Local minima
— Sensitive to starting point
- Step size
— Too large? Too small? Automatic ways to choose?

— May want step size to decrease with iteration

— Common choices:
* Fixed
* Linear: C/(iteration)
» Line search / backoff (Armijo, etc.)
+ Newton’ s method

E ; (c) Alexander h(\/



|Newton’s method

* Want to find the roots of f(x)
— “Root”: value of x for which f(x)=0

* Initialize to some point x
* Compute the tangent at x & compute where it crosses x-axis

Viz)= —Oz_’f(zZ) = 2=z V]E]SZ)

* Optimization: find roots of VJ(6)
0— VJ(@) , VJ(@) (“Step size” , = 1/VVJ ; inverse curvature)
0) = 0 =0— ————
VVIO) = === = vV J(9)

— Does not always converge; sometimes unstable

— If converges, usually very fast
— Works well for smooth, non-pathological functions, locally quadratic
— For n large, may be computationally hard: O(n?) storage, O(n3) time

(Multivariate:
VJ(u) = gradient vector
VV2 J(u) = matrix of 2"d derivatives
a/b = a b1, matrix inverse)




| Stochastic / Online gradient descent

I
- MSE

10 =S50, SO =Y 20T

« Gradient

1 | T o
VJ(0) = — Zij(Q) VJ(0) = (yD — 920" ). [:L.(()J)xgj) .
j

« Stochastic (or “online”) gradient descent:
— Use updates based on individual datum j, chosen at random

— At optima, E[ij(g)] =VJG) =0
(average over the data)



|Online gradient descent

- Update based on each datum at a time

— Find residual and the gradient of its part of
the error & update

20

Initialize 6@
Do {
for j=1:m
0— 6-aV,J(0
}while (not done)

1 15¢

7 101

1 15t

: -10\

! ! ! ! -20 ! I
1 15 2 25 3 0 2 4

| | |
-1 -0.5 0 0.5
01 (c) Alexander Ihler



|Online gradient descent

- Update based on each datum at a time

— Find residual and the gradient of its part of
the error & update

20

Initialize 6@
Do {
for j=1:m
0— 6-aV,J(0
}while (not done)

1 15¢

7 101

4 -10}

1 15t

! ! ! ! -20 ! I
1 15 2 25 3 0 2 4

| | |
-1 -0.5 0 0.5
01 (c) Alexander Ihler
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|Online gradient descent

- Update based on each datum at a time

— Find residual and the gradient of its part of
the error & update

20

Initialize 6@
Do {
for j=1:m
0— 6-aV,J(0
}while (not done)

1 15¢

7 101

4 -10}

1 15t

! ! ! ! -20 ! I
1 15 2 25 3 0 2 4

| | |
-1 -0.5 0 0.5
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|Online gradient descent

- Update based on each datum at a time

— Find residual and the gradient of its part of
the error & update

20

Initialize 6@
Do {
for j=1:m
0— 6-aV,J(0
}while (not done)

(c) Alexander Ihler
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|Online gradient descent

- Update based on each datum at a time

— Find residual and the gradient of its part of
the error & update

20

Initialize 6@
Do {
for j=1:m
0— 6-aV,J(0
}while (not done)

(c) Alexander Ihler
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|Online gradient descent

- Update based on each datum at a time

— Find residual and the gradient of its part of
the error & update

20

Initialize 6@
Do {
for j=1:m
0— 6-aV,J(0
}while (not done)

1 15¢

7 101

)

4 -10}

1 15t

! ! ! ! -20 ! I
1 15 2 25 3 0 2 4

| | |
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|Online gradient descent
|

Initialize 6

. AT Do {
J;(0) = (y(J) By a©) )2 for =1:m
VJ(0) = —2yD — -2 @D ] 0« 6-aV,J(6)

}while (not converged)

* Benefits
— Lots of data = many more updates per pass
— Computationally faster

* Drawbacks
— No longer strictly “descent”
— Stopping conditions may be harder to evaluate
(Can use “running estimates” of J(.), etc.)

* Related: mini-batch updates, etc.
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| MSE Minimum
|

« Consider a simple problem
— One feature, two data points

— Two unknowns: 6, 6,
— Two equations:

y = 0o + 012
y(z) — 90 + 91$(2)

» Can solve this system directly:
yT =0X7 = 0=y (X"

- However, most of the time, m >n
— There may be no linear function that hits all the data exactly
— Instead, solve directly for minimum of MSE function



| MSE Minimum
|

2

VI)=-=@"-0X").- X = 0

Y m 2

* Reordering, we have

@
y'X-0X"-X = 0
y' X =0X" X
0 = y XxX"X)"

« X (XT X)1is called the “pseudo-inverse”

- If X7 is square and independent, this is the inverse
* If m>n: overdetermined, gives minimum MSE fit



| Python MSE
|

* This is easy to solve in Python / NumPy...

Q _ QTX(XTX)_l
# y = np.matrix( [[yl], .. , [ym]] )
# X = np.matrix( [[x1 0 .. x1 n], [x2 0 .. x2 n], ..] )

# Solution 1: “manual”
th = y.T * X * np.linalg.inv(X.T * X);

# Solution 2: “least squares solve’
th = np.linalg.1lstsq(X, YY),

(c) Alexander Ihler



| Normal equations
|

VI =0 = (g -6x")-X = 0

* Interpretation:

— (y- 0X)=(y—y") Isthe vector of errors in each example

— X are the features we have to work with for each example
— Dot product = 0: orthogonal

J_1 QT _ [y(l) N .y(m)]
g z; =[xy 2™

t e




| Normal equations
|

VJ@) =0 = @ —-6x")-X = 0

* Interpretation:
— (y- 0X)=(y—y") Isthe vector of errors in each example

— X are the features we have to work with for each example
— Dot product = 0: orthogonal

- Example:
y=[13 37
zo=[1 11"  9g—11.00 057
O O L1 = [1 2 4]T
e=(y—9)=[-0.57 0.85 —0.28]"




| Effects of MSE choice
|

« Sensitivity to outliers

18

16 2 cost for this one datum

Heavy penalty for large errors

-10

(c) Alexander Ihler



L1 error
|

18

(c) Alexander Ihler

L2 (MSE), original datz
L1, original data

L1, outlier data



| Cost functions for regression
I

Something else entirely...

¢ —log(exp(—(y — 9)°) + ¢)

(22?)

“Arbitrary” functions can’ t be —(y—17) —
solved in closed form...
- use gradient descent

(c) Alexander Ihler
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?

iImensions

|More d

(c) Alexander Ihler



| Nonlinear functions

I . .
- What if our hypotheses are not lines?
— EX: higher-order polynomials

Order 1 polynomial Order 3 polynomial
T T 18 C C C

18

r r r r r r r r
0 2 4 6 8 10 12 14 16 18 20

(c) Alexander Ihler



| Nonlinear functions

. Single feature X, predict target y:

D:{(:L‘(j),y(j))} ?)(I):90+91£€+92x2—|—93:€3

\U, Add features: \U,

D = {([x(j)v (x(j))27 (w(j))g]ay(j))} y(x) = Oy + 0121 + o2 + 0323

Linear regression in new features

« Sometimes useful to think of “feature transform”

O(z)=[1,2,2%, 2°,...] y(x) =0 - ¢(x)

(c) Alexander Ihler



|Higher-order polynomials

Order 1 polynomial

I .
* Fitin the same way T

 More “features” y

10

3 3 3 3 3 T

r r r r r r

Order 2 polynomial

orer 3 p&l9nomié12 14 16 18 20

18 3 3 3 3 T T 3 3 3 18 T T 3

3 3 3 3 3 T




| Features
|

* In general, can use any features we think are useful

+ Other information about the problem
— Sq. footage, location, age, ...

* Polynomial functions
— Features [1, x, x2, x3, ...]

« QOther functions
— 1/x, sqrt(x), X; * X, ...

“Linear regression” = linear in the parameters
— Features we can make as complex as we want!



|Higher-order polynomials
| I

* Are more features better?

- “Nested” hypotheses
— 2" order more general than 1%,
— 3 order “ “than2nd, ...

* Fits the observed data better

0.57

1_

0.5

0.5

0.5




\Overflttmg and complexity

* More complex models will always fit the training data better

- But they may “overfit” the training data, learning complex
relationships that are not really present

Simple model omplex model

(c) Alexander Ihler \/



| Test data
|

- After training the model

- Go out and get more data from the world
— New observations (X,Y)

» How well does our model perform?

0.5]

0 0.5 1 (c) Alexander Ihler 0

0.5




| Training versus test error

Plot MSE as a function of

model complexity
— Polynomial order

Decreases

— More complex function fits
training data better

What about new data?

Ot to 1st order
— Error decreases
— Underfitting
Higher order
— Error increases
— Overfitting

25%

10|

Mean squared error

0 | | | |

Training data

o

0.5 1 15 2

Polynomial order

(c) Alexander Ihler
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\Inductlve bias

«  The assumptions needed to predict examples we haven't seen
*  Makes us “prefer” one model over another
» Polynomial functions; smooth functions; etc

- Some bias is necessary for learning!

Simple model Complex model




|Bias & variance
|

“The world”

Data we observe

Three different possi
12 . . .

ble dat

a sets:

12
10r

L ] ol

E.

10

15 20 D

(c) Alexander Ihler
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|Bias & variance

“The world”

Data we observe

Three different possi
12 . . .

ble dat

a sets:

Each would give
different
predictors for any
polynomial degree:

12

10r

» ] ol

=3

Poly Order 0

15 20 %

10 15 20

Poly Order 1

12

10r

15 200

(c) Alexander Ihler

12

10r

10 15

Poly Order 3

20

12

10r

10 15

20



| Detecting overfitting
|

« Overfitting effect
— Do better on training data than on future data
— Need to choose the “right” complexity

«  One solution: “Hold-out” data

« Separate our data into two sets
— Training
— Test

« Learn only on training data

« Use test data to estimate generalization quality
— Model selection

« All good competitions use this formulation
— Often multiple splits: one by judges, then another by you



| What to do about under/overfitting?
|

* Ways to increase complexity?
— Add features (e.g. higher polynomial), parameters

— We’'ll see more...

* Ways to decrease complexity?
— Remove features (“feature selection”) (e.g. lower polynomial)

— “Fail to fully memorize data”

- Partial training
* Regularization

A

Error on Test Data

Predictive
Error

Error on Training Data

»

Model Complexity
+—>

Ideal Range
for Model Complexity

&

(c) Alexander Ihler Underfitting Overfitting

v
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| Linear regression
|

Linear model, two data

Quadratic model, two data?
— Infinitely many settings with zero error
— How to choose among them?

Higher order coefficents = 0?
— Uses knowledge of where features came from...

Could choose e.g. minimum magnitude:
min 897 s.t. J(@) =0

A type of bias: tells us which models to prefer




| Regularization

I . . 11 b4
- Can modify our cost function J to add “preference” for

certain parameter values

1
JO)==y—0X") - (y—0X")" +abs”
2= B L, penalty:
“Ridge regression”

* New solution (derive the same way)
0 = yXX'X+al)!

— Problem is now well-posed for any degree

* Notes:
— “Shrinks” the parameters toward zero
— Alpha large: we prefer small theta to small MSE

— Regularization term is independent of the data: paying more
attention reduces our model variance

(c) Alexander Ihler



| Regularization
|

- Compare between unreg. & reg. results

a=0

(Unregularized) qst

a=1

0.9]

o e /Av
d
® e
» 0.57 /t/ 1 0.5t
*l '7&
Or Or
0.5 1 0 05 1 .
. 1r / 1 1r / 1
Y] . .
0 & ™ ™
. .
. 0.5r 1 0.57
Sug __,.;-/.d '-'J-’(.
Or Or
0.5 1 0 0.5 1 0 0.5 1




| Different regularization functions
|

» More generally, for the L, regularizer:  ( Z 6|7 )%

N D)

Isosurfaces: ||@]|, = constant

p=0.5 p=1 p=2 p=4
Lasso Quadratic

L, =limitas p->0: “number of nonzero weights”, a natural notion of complexity
Lo =limit as p -> «~ : “maximum parameter value”

(r) Dlaxardar [hisr



|Regularization: L1 vs L2
|

- Estimate balances data term & regularization term

Minimizes data term

Minimizes combination

91 —
Minimizes regularization

(c) Alexander Ihler
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|Regularization: L1 vs L2

- Estimate balances data term & regularization term
 Lasso tends to generate sparser solutions than a quadratic regularizer.

.

Data term only:
all 8, non-zero

Regularized estimate:
some 6; may be zero

<>

?
)
¢ N

(c) Alexander Ihler
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| Model selection

Which of these models fits the data best?
— p=0 (constant); p=1 (linear); p=3 (cubic); ...
Or, should we use KNN? Other methods?

Model selection problem
— Can’t use training data to decide (esp. if models are nested!)

Want to estimate E,, ,\[J(y, (z; D))]

p='0

0.5[

0.5

J = loss function (MSE)
D = training data set

p='3




|Hold-out method
|

* Validation data

— “Hold out” some data for evaluation (e.g., 70/30 split)

— Train only on the remainder

* Some problems, if we have few data:
— Few data in hold-out: noisy estimate of the error
— More hold-out data leaves less for training!

MSE = 331.8

EREIT

88

. 32
Training

data 27
68

7
20
53
17
87

Validation
data

79
-2
30
73
-16
43
77
16
94



| Cross-validation method

K-fold cross-validation
— Divide data into K disjoint sets

— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Split 1:
MSE =331.8

Training

data
Split 2: Validation
MSE = 361.2 data
3-Fold X-Val MSE

Split 3: » =464.1
MSE = 669.8

(c) Alexander Ihler
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| Cross-validation method

K-fold cross-validation
— Divide data into K disjoint sets

— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Split 1:

MSE = 280.5
Training

data
Split 2: Validation
MSE = 3081.3 data
e,
° 3-Fold X-Val MSE
7 o 1 Split 3: » =1667.3
. | MSE =1640.1

(c) Alexander Ihler
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| Cross-validation
|

* Advantages:
— Lets us use more (M) validation data
(= less noisy estimate of test performance)

* Disadvantages:

— More work
* Trains K models instead of just one
— Doesn’t evaluate any particular predictor
* Evaluates K different models & averages
* Scores hyperparameters / procedure, not an actual, specific predictor!

* Also: still estimating error for M’ < M data...

(c) Alexander Ihler



| Learning curves

. Plot performance as a function of training size

— Assess impact of fewer data on performance
Ex: MSEO - MSE (regression)
or 1-Err (classification)

*  Few data
— More data significantly
improve performance

*  “Enough” data
— Performance saturates

Error

Adding more training instances
is very unlikely to help here.

v

The two curves have
already converged.

Training set size

Error

The validation curve could converge
toward the training curve if more
training instances were added.

N\

Adding more training instances
is very likely to help here.

_—

Training set size

* If slope is high, decreasing m (for validation / cross-validation) might have a big

impact...

(c) Alexander Ihler



| Leave-one-out cross-validation

I
* When K=M (# of data), we get

— Train on all data except one
— Evaluate on the left-out data
— Repeat M times (each data point held out once) and average

Loy
MSE = ... - 83 79
rainin
datag > :
o 27 30
Validation - -
MSE = ... data . 16
20 43
»LOO_X—VaI MSE 3 -
17 16
87 94

(c) Alexander Ihler



| Cross-validation Issues

* Need to balance:
— Computational burden (multiple trainings)
— Accuracy of estimated performance / error

Single hold-out set:
— Estimates performance with M’ < M data (important? learning curve?)
— Need enough data to trust performance estimate
— Estimates performance of a particular, trained learner

K-fold XVal

— K times as much work, computationally
— Better estimates, still of performance with M’ < M data

LOO XVal
— M times as much work, computationally
— M’ =M, but overall error estimate may have high variance



