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\A basic classifier

» Training data D={x{ yi} Classifier f(x ; D)

— Discrete feature vector x
— f(x; D) is a contingency table
* Ex: credit rating prediction (bad/good)
— X, =income (low/med/high)
— How can we make the most # of correct predictions?

Features | sbad | #good
X=0 42 15

X=1 338 287
X=2 3 5
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— Predict more likely outcome
for each possible observation
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\A basic classifier

* Training data D={x!,y}, Classifier f(x ; D)
— Discrete feature vector x
— f(x; D) is a contingency table
* Ex: credit rating prediction (bad/good)
— X, =income (low/med/high)
— How can we make the most # of correct predictions?

— Predict more likely outcome
for each possible observation

e v

7368 2632
p(y=good | X=c) X=1 5408 4592

— Can normalize into probability:

— How to generalize? X=2 3750 6250



|Bayes Rule
|

 Two events: headache, flu

« p(H) = 1/10
« p(F) = 1/40
« p(HIF) = 1/2

- You wake up with a headache — what is the chance that you
have the flu?

Example from Andrew
Moore’ s slides



\Bayes Rule

Two events: headache, flu
« p(H) =1/10
- p(F) =1/40
* p(H|F) =1/2

- PH&F)="?

. P(FIH) =2

Example from Andrew
Moore’ s slides



|Bayes rule
|

Two events: headache, flu
p(H) = 1/10

p(F) = 1/40

pP(H|F) = 1/2

P(H & F) = p(F) p(H|F)
= (1/2) * (1/40) = 1/80
P(F|H) = ?

Example from Andrew
Moore’ s slides



|Bayes rule
|

Two events: headache, flu
p(H) = 1/10

p(F) = 1/40

pP(H|F) = 1/2

P(H & F) = p(F) p(H|F)
= (1/2) * (1/40) = 1/80
P(F|H) = p(H & F) / p(H)
= (1/80) / (1/10) = 1/8

Example from Andrew
Moore’ s slides



\Classﬁlcatlon and probability

« Suppose we want to model the data

Prior probability of each class, p(y)
— E.g., fraction of applicants that have good credit

Distribution of features given the class, p(x | y=c)
— How likely are we to see “x” in users with good credit?

- Joint distribution plylz)p(z) = p(z,y) = p(z|y)p(y)
Posterior = ( Likelihood * Prior ) / Evidence
+ Bayes Rule: = plylz) = p(aly)p(y)/p(x)
p(x|y)p(y)

(Use the rule of total probability .
to calculate the denominator!) -> z p(w\y c)p( )

(c) Alexander Ihler



| Bayes classifiers

I 14 =, . ”
Learn “class conditional”™ models

— Estimate a probability model for each class

Training data

— Split by class

o DC:{X(DZy(D:C}

Estimate p(x | y=c) using D,

For a discrete X, this recalculates the same table...

eatures | #bad | #good
X=0 42 15 V‘o) V 1) 7368 2632
X=1 338 287 3;32/ 15/307 =7 5408 4592
X=2 3 5 3750 6250

338 /383 287/307
3/383 5/307

p(y) 383/690 | 307/690




| Bayes classifiers

. Learn “class conditional” models
— Estimate a probability model for each class
 Training data
— Split by class
_ DC:{X(J):y(J):C}
- Estimate p(x | y=c) using D,

* For continuous X, can use any density estimate we like
— Histogram
— Gaussian

(c) Alexander Ihler



| Gaussian models
|

- Estimate parameters of the Gaussians from the data

Feature X, ! (c) Alexander Ihler



| Multivariate Gaussian models
I

* Similar to univariate case

Gl e {05 e )

1 =length-d column vector
§ =d xd matrix

Nz ; p,%) =

| § | = matrix determinant

; ’///‘ %% \\\\\
| /W"t@o‘*““:‘\‘::\%\&\i\{
m AN
£ NN
77755 NN
V. ,,!/(":“:‘:::‘:“‘\\\“\\MP

7
U

i
AN

Maximum likelihood estimate:

1 .
I&:_E :Q(J)
m -

2 (c) Rlexander Ihl@r



| Example: Gaussian Bayes for Iris Data
|

* Fit Gaussian distribution to each class {0,1,2}

p(y) = Discrete(s, 3, 5)

p(x1, 22y = 0) = N(x; po, o)
p(x, 220y =1) = N(x; p1, 1)
p(x1, 22y =2) = N(x; o, 3o2)

(c) Alexander lhler 14



\Bayes classifiers

* Estimate p(y) = [ p(y=0) , p(y=1) ...]
- Estimate p(x | y=c) for each class c

« Calculate p(y=c | x) using Bayes rule
* Choose the most likely class ¢

* For a discrete x, can represent as a contingency table...
— What about if we have more discrete features?

eatures | #bad | #good
X=0 42 15 V‘o) ) 7368 2632
X=1 338 287 3;32/ 15/307 =7 5408 4592
X=2 3 5 3750 6250

338 /383 287/307
3/383 5/307

p(y) 383/690 | 307/690




[ Joint distributions
|

 Make a truth table of all
combinations of values

HOHOHOHOE



[ Joint distributions
|

- Make a truth table of alll ‘AlB|C |pABC|y=1) |
0 O
0 O
0 1
0 1
1 0
1 0
1 1
1 1

combinations of values 0.50

0
1 0.05
0 0.01
» For each combination of values, 1 0.0
0 0.04
1
0
1

determine how probable it is 015

0.05

- Total probability must sum to one 010

- How many values did we specify?



\Overflttmg & density estimation

- Estimate probabilities from the data un-

— E.g., how many times (what fraction) 0 4/10
did each outcome occur? LN O R

0 1 0 0/10

0 1 1 0/10

- Mdata << 2”"N parameters? 10 0 1/10
1 0 1 2/10

1 1 0 1/10

- What about the zeros? 11 1 1/10

— We learn that certain combinations are impossible?
— What if we see these later in test data?

+ Qverfitting!



| Overfitting & density estimation
| w0 | pinociiy

4/10
1/10
0/10
0/10
1/10
2/10
1/10
1/10

Estimate probabilities from the data
— E.g., how many times (what fraction)
did each outcome occur?

M data << 2”N parameters?

R B R B O O O
R B O O Rk KL, O
b O B O »r O » o

What about the zeros?
— We learn that certain combinations are impossible?
— What if we see these later in test data?

One option: regularize  p(a, b, c) x (Mgpe + @)
Normalize to make sure values sum to one...



\Overflttmg & density estimation

- Another option: reduce the model complexity
— E.g., assume that features are independent of one another

Independence:
p(a,b) = p(a) p(b)

P(Xys Xo, - Xy | Y=1) = p(xy | Y=1) p(xx | y=1) ... p(xn | ¥Y=1)
Only need to estimate each individually

A4*7*1
4*7*9
4*3*1

T(A) B | p(Bly=1)
y=1 0 7 0o 1

1 9

1 .6

Alslc lpianclyn
0 O
0 O
0 1
0 1
1 O
1 O
1 1
1 1

0
1
0
1
0
1
0
1



|Example: Naive Bayes
|

Observed Data: ﬁ(y _ 1) — % — (1 — ﬁ(y — ()))

x|y

1 1 o
Lo o e, mly = 0) = plasly = 0) plraly = 0)
1 0 1

0 |o |o A )
S o= ly=0=3  pe=1y=1)=]
1 0 1

Prediction given some observation x?

ply=1px=11y=1) = Py = 0)p(x = 11|y = 0)
2 1 4 3 2
%szz s X 17X1

Decide class O

V



|Example: Naive Bayes
|

Observed Data:

El
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0
1
0
1
0
1
1

ply=1lxz1 =1,202 = 1)

o

(c) Alexander Ihler

L= (-bly=0)
= 0) p(z2|y = 0)
4 2 1
g X 171
3 2 4 2 1 4
1 X1 X 5 T 1X71 X3

23



|Example: Joint Bayes
|

Observed Data:

PRFATR ply=1) =5 =(1-ply=0))

1 1 0
I p(x1,22ly =0) = plxy, o)y =1) =
— e [ | pixly=0) e L Lplxly=D)
| U |0 | 0 0 1/4
PEE— 0 1 0/4 0 1 1/4
0 0 1 1 0 1/4 1 0 2/4
i |w | L |1 | 2e 1 1 0/

4

s X 0

ply=1llzy =120 =1) =

ININ
X
00|~
+
-
X

=0

00|~



\Nalve Bayes Models

Variable y to predict, e.g. "auto accident in next year?”

- We have *many* co-observed vars x=[X;...X.]
— Age, income, education, zip code, ...

- Want to learn p(y | X,...X,), to predict y
— Arbitrary distribution: O(d") values!

* Nalive Bayes:

= plyIX)= p(xly) p(y) / p(x) ; p(xly) =TI, p(xily)
— Covariates are independent given “cause”

* Note: may not be a good model of the data
— Doesn’t capture correlations in X' s
— Can’t capture some dependencies

* But in practice it often does quite well!



| Naive Bayes Models for Spam
|

y 2 {spam, not spam}
X = observed words in email

— Ex: [“the” ... “probabilistic” ... “lottery”...]
— “17 if word appears; “0” if not

1000’s of possible words: 21%00s parameters?
# of atoms in the universe: » 2270 .

Model words given email type as independent
Some words more likely for spam (“lottery™)
Some more likely for real (“probabilistic™)
Only 1000’s of parameters now...



| Naive Bayes Gaussian Models
|

1 1 1 1
p(z1) = EGXP {—@(xl — Ml)Q} P($2) — ZGXP{—P(@ — M2)2}
1 2

penplen) = 5o {5 WS e |

po= g1 p2]
2= dlag(a% g O-g)

Again, reduces the number of parameters of the model:
Bayes: n?/2 Naive Bayes: n

(c) Alexander Ihler



| You should know...
|

* Bayes rule; p(y | x) = p(xly)p(y)/p(x)
- Bayes classifiers
— Learnp(x|y=C), p(y=C)

* Maximum likelihood (empirical) estimators for
— Discrete variables
— Gaussian variables
— Overfitting; simplifying assumptions or regularization

- Naive Bayes classifiers
— Assume features are independent given class:

p(Xx[y=C) = p(x|y=C)p(x,|y=C) ...



| A Bayes Classifier
|

* Given training data, compute p( y=c| x) and choose largest
* What’s the (training) error rate of this method?

Features | sbad | #good
X=0 42 15

X=1 338 287
X=2 3 5



| A Bayes classifier
|

* Given training data, compute p( y=c| x) and choose largest
* What’s the (training) error rate of this method?

m / Gets these examples wrong:
X=0 42

Pr[ error ] = (15 + 287 + 3) / (690)

X=1 338
X=2 (empirically on training data:

better to use test data)

(c) Alexander Ihler 31



\Bayes Error Rate

* Suppose that we knew the true probabilities:

plx,y) = ply) plely=0), pzly =1)
— Observeanyx: — p(y:O‘gj) (at any x)

p(y = 1|x)

— Optimal decision at that particular x is:
§ = fz) = argmax p(y = cfz)

— Error rate is:
Eryly # 9] =E;z[1 —maxp(y = c|x)] =“Bayes error rate”
C

* This is the best that any classifier can do!
* Measures fundamental hardness of separating y-values given only features x

* Note: conceptual only!
— Probabilities p(x,y) must be estimated from data
— Form of p(x,y) is not known and may be very complex

(c) Alexander Ihler 32



\A Bayes classifier

- Bayes classification decision rule compares probabilities:
ply =0lz) S ply=1|z)

<
>

« Can visualize this nicely if x is a scalar:

p(x,y=0)

Decision boundary
P(x,¥=1) shape: p(x | y=1)
Area: p(y=1)

Shape: p(x | y=0)
Area: p(y=0)

Feature X, ! (c) Alexdnder Ihler



\A Bayes classifier

Add multiplier alpha:

o ply=0,2) °

- Not all errors are created equally...
* Risk associated with each outcome?

Decision boundary

p(x,y=0) p(x,y=1)

—’

Type 2 errors: false negatives

Type 1 errors: false positives

False positive rate: (# y=0, y=1)/ (#y=0)
False negative rate: (# y=1, y=0)/ (#y=1)

(c) Alexander Ihler



\A Bayes classifier

Add multiplier alpha:

ap(y=0,z) °

* Increase alpha: prefer class O
* Spam detection

Decision boundary

Plx, v=0) p(x, y=1)

et

Type 2 errors: false negatives

Type 1 errors: false positives

False positive rate: (# y=0, y=1)/ (#y=0)
False negative rate: (# y=1, y=0)/ (#y=1)

(c) Alexander Ihler



\A Bayes classifier

Add multiplier alpha:

ap(y=0,z) °

- Decrease alpha: prefer class 1
- Cancer detection

Decision boundary

Plx, v=0) p(x, y=1)

|

Type 1 errors: false positives

Type 2 errors: false negatives

False positive rate: (# y=0, y=1)/ (#y=0)
False negative rate: (# y=1, y=0)/ (#y=1)

(c) Alexander Ihler



\I\/Ieasurmg errors

* Confusion matrix

« Can extend to more classes - Predict0 | Predict 1

Y=0 380 5
Y=1 338 3

- True positive rate:  #(y=1, y=1)/#(y=1) --“sensitivity”
- False negative rate: #(y=1, y=0)/#(y=1)
- False positive rate: #(y=0, 9—1)/#(y—0)
- True negative rate. #(y=0, y=0)/#(y=0) -- “specificity”



|[ROC Curves
|

* Characterize performance as we vary the decision threshold?

Bayes classifier,
multiplier alpha

sensitivity

True positive rate

N

Guess

‘\)

Guess all 1

at random, proportion alpha

Decisio bound?ry

plx p(x, y=1

(

Guess all 0

False positive rate
=1 - specificity

(c) Alexander Ihler

39



|ROC Curves
|

* Characterize performance as we vary our confidence threshold?

Classifier B )
Guess all 1

Q
T >,
3
= at random, proportion alpha
a b
Q |l
2
I_

Ff"ie pOSi“_‘]f?_rate Reduce performance to one number?

= 1 - specificity AUC = “area under the ROC curve”

Guess all 0 05 <AUC <1

(c) Alexander Ihler 40



‘Probabilistic vs. Discriminative learning
I

| . [ ) ] Y. ?. .
L] : a® . °a .;.:: 'y e® i
'- oty 7, a
“Discriminative” learning: “Probabilistic” learning:
Output prediction y(X) Output probability p(y|x)

(expresses confidence in outcomes)
* “Probabilistic” learning
— Conditional models just explain y: p(y|x)

— Generative models also explain x: p(x,y)
* Often a component of unsupervised or semi-supervised learning

— Bayes and Naive Bayes classifiers are generative models



\Gau55|an models

- “Bayes optimal” decision
— Choose most likely class

- Decision boundary
— Places where probabilities equal

- What shape Is the boundary? ::I :

(C) Alexander lhler A



\Gausman models

- Bayes optimal decision boundary

— p(y=0[x) =p(y=1]x)
— Transition point between p(y=0|x) >/< p(y=1|x)

- Assume Gaussian models with equal covariances

Nz p,2) = (27T1)d/2|2|_1/2€xp{%(£&)Tz_l(iﬁ)}
< e Ply=0ply=0) _ ply=0)
051 “paly = 1) ply = 1) _logp(yzl)+

—5(@X e = 2 X7 @ 4 pg 27 o)
+5(xX e —2ui X e+ pul S )
= (o — 1) 271 + constants



| Gaussian example

I . .
 Spherical covariance: £ = ¢? |

- Decision rule S
= (o — p1)" X7 "« + constants

(c) Alexander Ihler



| Class posterior probabilities

. Useful to also know class probabilities

- Some notation
— p(y=0), p(y=1) — class prior probabilities
« How likely is each class in general?
— p(x | y=c) — class conditional probabilities
- How likely are observations “x” in that class?
— p(y=c | xX) — class posterior probability
* How likely is class ¢ given an observation x?



| Class posterior probabilities
I

Useful to also know class probabilities

Some notation
— p(y=0) , p(y=1) — class prior probabilities
- How likely is each class in general?
— p(x | y=c) — class conditional probabilities
- How likely are observations “x” in that class?
— p(y=c | X) — class posterior probability
* How likely is class ¢ given an observation x?

We can compute posterior using Bayes’ rule
— p(y=c | x) = p(x|y=c) p(y=c) / p(x)

Compute p(x) using sum rule / law of total prob.
— p(x) = p(xly=0) p(y=0) + p(x|ly=1)p(y=1)
- = p(y=0,x) + p(y=1,x)



| Class posterior probabilities
I

- Consider comparing two classes
— p(x]y=0)*p(y=0) vs p(x|y=1)*p(y=1)
— Write probability of each class as
— P(y=01x) = p(y=0, x) / p(x)
- =p(y=0,x) / (p(y=0.x) + p(y=1.x) )
— Divide by p(y=0, x), we get
- =1/(1 +exp(-a)) (*)
— Where
— a=log [ p(xly=0) p(y=0) / p(x]y=1) p(y=1) ]
— (**) called the logistic function, or logistic sigmoid.

(c) Alexander Ihler



| Gaussian models
|

* Return to Gaussian models with equal covariances

1
(2m)

_ 1 _
d/2 2y 12 exp {_5(2 — ) Xz - M)}

Nz p,X) =

—0 —0
0 i log plely ) Py ) = (o — ,ul)TZ_lx + constants

p(xly=1)p(y=1)
(**)

Now we also know that the probability of each class is given by:
p(y=0 | x) = Logistic( **) = Logistic( a’x+ b))

We' Il see this form again soon...



