Set 7:

Predicate logic
Chapter 8 R&N



Outline

New ontology

— objects, relations, properties, functions
New Syntax

— Constants, predicates, properties, functions
New semantics

— meaning of new syntax

Inference rules for Predicate Logic (FOL)
— Unification

— Resolution

— Forward-chaining, Backward-chaining

Readings: Russel and Norvig Chapter 8 & 9



Pros and cons of propositional logic

=

Propositional logic allows partial /disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is declarative: pieces of syntax correspond to facts

..

Propositional logic is compositional:
meaning of B ; A P, 5 is derived from meaning of B, ; and of P, 5

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

@ Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square
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Propositional logic is not expressive

* Needs to refer to objects in the world,

* Needs to express general rules
— On(x,y) =2 — clear(y)

— All men are mortal; Socrates is a man, therefore
mortal

— Everyone who passed the age of 21 can drink
— One student in this class got perfect score
— Etc....

* First order logic, also called Predicate calculus
allows more expressiveness



Propositional logic is not expressive, cont.

 Combinatorial explosion when trying to
express general rules :

— Exactly one student in the class got perfect score

* Propositional logic
—P,vP,v.. VP,
— Foralli,j: —=P; v =P,
* First order logic
— IX[P(x) A =3y[xzy A P(y)]]
* Q: exactly two students have perfect score?



Logics in general

Language

Ontological Commitment
(What exists in the world)

Epistemological Commitment
(What an agent believes about facts)

Propositional logic
First-order logic
Temporal logic
Probability theory
Fuzzy logic

facts

facts, objects, relations

facts, objects, relations, times
facts

facts with degree of truth € [0, 1]

true/false/unknown
true/false/unknown
true/false/unknown
degree of belief € [0, 1]
known interval value
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First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

e Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . ..

e Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, ...

e Functions: father of, best friend, third inning of, one more than, beginning
of ...
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Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB,. ..
Predicates Brother, >, ...
Functions  Sqrt, LeftLegOf,...
Variables =z, v, a, b,...
Connectives A V = = &
Equality =

Quantifiers V¥ 4
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Atomic sentences

Atomic sentence = predicate(termy, ..., term,)
or term; = terms

Term = function(termy,...,termy,)
or constant or variable

E.g., Brother(KingJohn, RichardT heLionheart)
> (Length(LeftLegO f(Richard)), Length(Left LegO f(KingJohn)))
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Complex sentences

Complex sentences are made from atomic sentences using connectives
_'S, Sl f\Sg, Sl \% Sf,_}, S] = SQ} S] = S-g

E.g. Sibling(KingJohn, Richard) = Sibling(Richard, KingJohn)
>(1,2) v <(1,2)
>(1,2) A =>(1,2)
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1.

4,

5.

FOL : syntax

Terms — refer to objects

Constants : a, b, c, ...

Variables : x, y, ...
. Can be free or bound

Functions (over terms) : f, g, ...

Ground term : constants + fully instantiated functions (no variables) : f(a)
Predicates

E.g. P(a), Q(x), ...

Unary = property, arity>1 = relation between objects

Atomic sentences

Evaluate to true/false

Special relation ‘=’

Logical connectives : = A Vv —>

Quantifiers : 4 V

Typically want sentences wo free variables (fully quantified)
Function vs Predicate

FatherOf(John) vs Father(X,Y) [Father(FatherOf(John),John)]

Q : BrotherOf(John) vs Brothers(X,Y)?



Semantics: Worlds

* The world consists of objects that have properties.
— There are relations and functions between these objects

— Objects in the world, individuals: people, houses,
numbers, colors, baseball games, wars, centuries

* Clock A, John, 7, the-house in the corner, Los Angeles, ...

— Functions on individuals:
* father-of, best friend, third inning of, one more than

— Relations:

* brother-of, bigger than, inside, part-of, has color, occurred after
— Properties (a relation of arity 1):

* red, round, bogus, prime, multistoried, beautiful

— Note : FOL possible world has no variables! Just
objects/functions/relations.



Truth in first-order logic

* World contains objects (domain elements) and relations/functions among them

* Interpretation specifies referents for

constant symbols - objects
predicate symbols - relations
function symbols - functions

* Sentences are true with respect to a world and an interpretation

* An atomic sentence predicate(term,,...,term ) is true
iff the objects referred to by term,,...,term,,
are in the relation referred to by predicate



Semantics: Interpretation

* An interpretation of a sentence (wff) is defined wrt a world
that has a set of constants, functions, relations
* An interpretation of a sentence (wff) is a structure that maps
— Constant symbols of the language to constants in the worlds,

— n-ary function symbols of the language to n-ary functions in the
world,

— n-ary predicate symbols of the language to n-ary relations in the
world

* Given an interpretation, an atom has the value “true” if it
denotes a relation that holds for those individuals denoted in
the terms. Otherwise it has the value “false”

— Example: Block world: B
* A, B, C, Floor, On, Clear

A

— World: C

* On(A,B) is false, Clear(B) is true, On(C,F) is true...
Floor



Example of Models (Blocks World)

* The formulas:
— On(A,F) = Clear(B)
— Clear(B) and Clear(C) = On(A,F)
— Clear(B) or Clear(A)
— Clear(B)
— Clear(C)
Possible interpretations where the KB is true:

* Checking truth value of Clear(B)
— Map B (sentence) to B’ (interpretation)
— Map Clear (sentence) to Clear’ (interpretation)
— Clear(B) is true iff B’ is in Clear’

B C
A C A B C A B
Floor Floor Floor
On = {<B,A>,<A,F>,<C,F>} On = {<A,F>, <B,F>,<C,F>} On = {<C,A>,<A,F>,<B,F>}
Clear = {<C>,<B>} Clear = {<A>,<B>,<C>} Clear = {<C>,<B>}



Semantics : PL vs FOL

Language

Possible worlds (interpretations)

KB : CNF over
prop symbols

Semantics: an
Interpretation maps
prop symbols to
{true,false}

KB : CNF over
predicates over terms (fn
+ var + const)
Note :

const, fn, pred symbols

Semantics: an interpretation
has obj’s and maps :
const symbols to const’s,
fn symbols to fn’s,
pred symbols to pred’s
Note :
const’s, fn’s, pred’s
Note : var’s not mapped!



Semantics: Models

An interpretation satisfies a sentence if the sentence
has the value “true” under the interpretation.

Model: An interpretation that satisfies a sentence is a
model of that sentence

Validity: Any sentence that has the value “true” under
all interpretations is valid

Any sentence that does not have a model is
inconsistent or unsatisfiable

If a sentence w has a value true under all the models
of a set of sentences KB then KB logically entails w

Note :

— In FOL a set of possible worlds is infinite
— Cannot use model checking!!!



Models for FOL: Example

brq{ber

= o,

“brother™

person

person
King




Quantification

* Universal and existential quantifiers allow expressing general rules
with variables

* Universal quantification
— Syntax: if w is a sentence (wff) then Vx w is a wff.

— All cats are mammals _, ~_. (x) — Mammal (x)

— Itis equivalent to the conjunction of all the sentences obtained
by substitution the name of an object for the variable x.

Cat(Spot) > Mammal(Spot) A
Cat(Rebbeka) > Mammal(Rebbeka) A
Cat(Felix) > Mammal(Felix) A



Universal quantification

V (variables) (sentence)

Everyone at Berkeley is smart:
Va At(xz, Berkeley) = Smart(x)

Va P s true in a model m iff P with = holding for
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn, Berkeley) = Smart(KingJohn)
A At(Richard, Berkeley) = Smart(Richard)
N At(Berkeley, Berkeley) = Smart(Berkeley)
A
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A common mistake to avoid

Typically, = is the main connective with ¥

Common mistake: using /A as the main connective with V:
Vax At(z, Berkeley) A Smart(z)

means “Everyone is at Berkeley and everyone is smart”
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Quantification: Existential

* Existential quantification : 3 an existentially
quantified sentence is true if it is true for

some object IxSister(x, Spot) A Cat(x)

* Equivalent to disjunction:
Sister(Spat, Spot) A Cat(Spot)v
Sister(Rebkecca,Spot)A Cat(Rebeca@) v
Sister(Felix,Spot) A Cat(Felix)v
Sister(Richard,Spot)A Cat(Richard)...

e We can mix existential and universal
qguantification.



Existential quantification

3 (variables) (sentence)

Someone at Stanford is smart:
dz At(z, Stanford) N Smart(z)

dx P isis true in a model m iff P with = holding for
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn, Stanford) A Smart(KingJohn)
V' At(Richard, Stanford) A Smart(Richard)
vV At(Stanford, Stanford) A Smart(Stan ford)
VoL
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Another common mistake to avoid

Typically, A is the main connective with 4
Common mistake: using => as the main connective with 3:
dz At(z,Stanford) = Smart(x)

is true if there is anyone who is not at Stanford!
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Properties of quantifiers

Vx Vy is the same as Vy Vx
dx dy is the same as Jy dx
dx Yy is not the same as Vy 3Jx

— dx Yy Loves(x,y)
* “Thereis a person who loves everyone in the world”

— Vy 3dx Loves(x,y)

* “Everyone in the world is loved by at least one person”

—Vx Likes(x,IceCream) dx — Likes(x,IceCream)
— “not true that P(X) holds for all X” = “exists X for which P(X) is false”

—3x Likes(x, Broccoli) Vx — Likes(x, Broccoli)
Quantifier duality : each can be expressed using the other
Vx Likes(x,IceCream) —3x — Likes(x,lceCream)

dx Likes(x,Broccoli) —V'x — Likes(x,Broccoli)



Fun with sentences

Brothers are siblings
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Fun with sentences

Brothers are siblings
Vax,y Brother(zx,y)

“Sibling” is symmetric

= Sibling(x,y).
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Fun with sentences

Brothers are siblings

Vax,y Brother(xz,y) = Sibling(x,y).
“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One's mother is one’s female parent
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Fun with sentences

Brothers are siblings

Vax,y Brother(xz,y) = Sibling(x,y).
“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One's mother is one’s female parent

Va,y Mother(z,y) < (Female(x) N Parent(x,y)).

A first cousin is a child of a parent’s sibling

Chapter T
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Fun with sentences

Brothers are siblings

Vax,y Brother(xz,y) = Sibling(x,y).

“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One's mother is one’s female parent

Va,y Mother(z,y) < (Female(x) N Parent(x,y)).
A first cousin is a child of a parent’s sibling

Vz,y FirstCousin(z,y) < dp,ps Parent(p,xz) N Sibling(ps,p) N
Parent(ps,y)
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Equality

e term,=term,is true under a given interpretation if and only if term, and term, refer
to the same object

* E.g., definition of Sibling in terms of Parent:

Vx,y Sibling(x,y) < [—(x =y) A dm,f = (m =f) A Parent(m,x) A Parent(f,x) A Parent(m,y) A Parent(f,y)]



Using FOL
The kinship domain:

— Objects are people

— Properties include gender and they are related by relations such as parenthood,
brotherhood, marriage

— predicates: Male, Female (unary) Parent, Sibling, Daughter, Son...
— Function: Mother Father

Brothers are siblings

Vx,y Brother(x,y) = Sibling(x,y)
One's mother is one's female parent

V'm,c Mother(c) = m < (Female(m) A Parent(m,c))
“Sibling” is symmetric

Vx,y Sibling(x,y) < Sibling(y,x)



Knowledge engineering in FOL

Identify the task

Assemble the relevant knowledge; identify important concepts
Decide on a vocabulary of predicates, functions, and constants
Encode general knowledge about the domain

Encode a description of the specific problem instance

Pose queries to the inference procedure and get answers

Debug the knowledge base



The electronic circuits domain

One-bit full adder

¥

C1

g




The electronic circuits domain

1. Identify the task

Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge
— Composed of 1/0 terminals, connections and gates; Types of gates (AND, OR, XOR, NOT)
— Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

— Alternatives :

Type(X;) = XOR
Type(X,, XOR)
XOR(X,)



The electronic circuits domain

4, Encode general knowledge of the domain
- Vt,,t, Connected(t,, t,) = Signal(t,) = Signal(t,)
— YVt Signal(t) = 1 v Signal(t) =0
— 120
- Vt,,t, Connected(t,, t,) = Connected(t,, t,)
— Vg Type(g) = OR = Signal(Out(1,g)) = 1 < In Signal(In(n,g)) = 1
— Vg Type(g) = AND = Signal(Out(1,g)) = 0 << 3In Signal(In(n,g)) =0
— Vg Type(g) = XOR = Signal(Out(1,g)) = 1 < Signal(In(1,g)) # Signal(In(2,g))

— Vg Type(g) = NOT = Signal(Out(1,g)) # Signal(In(1,g))



The electronic circuits domain

5. Encode the specific problem instance

Type(X;) = XOR Type(X,) = XOR
Type(A;) = AND Type(A,) = AND

Type(O,) = OR

Connected(Out(1,X,),In(1,X,))
Connected(Out(1,X,),In(2,A,))
Connected(Out(1,A,),In(1,0,))
Connected(Out(1,A,),In(2,0,))
Connected(Out(1,X,),0ut(1,C,))
Connected(Out(1,0,),0ut(2,C,))

-

Connected(In(1,C,),In(1,X,))
Connected(In(1,C,),In(1,A,))
Connected(In(2,C,),In(2,X,))
Connected(In(2,C,),In(2,A,))
Connected(In(3,C,),In(2,X,))

1)

Connected(In(3,C,),In(1,A,))

c1
\]
,,D—‘ﬁD o

A2
" ° —?




The electronic circuits domain

6. Pose queries to the inference procedure

What are the possible sets of values of all the terminals
for the adder circuit?

di,,i,,i3,0,,0, Signal(In(1,C_1)) =i; A Signal(In(2,C,)) =i, A Signal(In(3,C,)) =i A
Signal(Out(1,C,)) = o, A Signal(Out(2,C,)) = o,

7. Debug the knowledge base
May have omitted assertions like 1 #0



Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢ = 5:

Tell(K B, Percept(|Smell, Breeze, Nonel, 5))
Ask(KB,3a Action(a,5))

|.e., does the KB entail any particular actions at £ = 57

Answer: Yes, {a/Shoot} ¢ substitution (binding list)

Ask(K B, S) returns some/all o such that KB |= So

Given a sentence S and a substitution o,

So denotes the result of plugging o into S; e.g.,
S = Smarter(x,y)

o ={z/Hillary,y/Bill}

So = Smarter(Hillary, Bill)

Chapter T
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Knowledge base for the wumpus world

“Perception”
Vb,g,t Percept([Smell,b,g|,t) = Smelt(t)
Vs,b,t Percept(|s,b, Glitter|,t) = AtGold(t)

Reflex: V1 AtGold(t) = Action(Grab,t)

Reflex with internal state: do we have the gold already?
Vit AtGold(t) AN ~Holding(Gold,t) = Action(Grab,t)

Holding(Gold,t) cannot be observed
= keeping track of change is essential

Chapter T
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Deducing hidden properties

Properties of locations:
Va,t At(Agent,z,t) A Smelt(t) = Smelly(z)
Va,t At(Agent,z,t) N\ Breeze(t) = Breezy(z)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezy(y) = dz Pit(x) A Adjacent(z,y)

Causal rule—infer effect from cause
Va,y Pit(z) N Adjacent(z,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Yy Breezyly) < [z Pit(x) AN Adjacent(z,y)]
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Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s
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Describing actions I

“Effect” axiom—describe changes due to action
Vs AlGold(s) = Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action
Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . ..

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, ...
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Yale Shooting Problem

Fred, Gun

— alive(0)

— not loaded(0)

Load

— loaded(1)

Shoot

— loaded(2) - not alive(3)

Cannot show

— Fred not alive at (3) since “loaded(2)” not entailed
— alive(1), since in “not alive(1)” has a model



Describing actions II

Successor-state axioms solve the representational frame problem
Each axiom is “about” a predicate (not an action per se):

P true afterwards <> [an action made P true
VP true already and no action made P false|

For holding the gold:
Va,s Holding(Gold, Result(a,s)) <
(a=Grab A AtGold(s))
V (Holding(Gold, s) A a # Release)



Summary

* First-order logic:
— objects and relations are semantic primitives

— syntax: constants, functions, predicates, equality,
guantifiers

* Increased expressive power: sufficient to define
wumpus world



