Set 7:

Predicate logic
Chapter 8 R&N



Outline

New ontology

— objects, relations, properties, functions
New Syntax

— Constants, predicates, properties, functions
New semantics

— meaning of new syntax

Inference rules for Predicate Logic (FOL)
— Unification

— Resolution

— Forward-chaining, Backward-chaining

Readings: Russel and Norvig Chapter 8 & 9



Pros and cons of propositional logic

=

Propositional logic allows partial /disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is declarative: pieces of syntax correspond to facts

..

Propositional logic is compositional:
meaning of B ; A P, 5 is derived from meaning of B, ; and of P, 5

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

@ Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square
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Propositional logic is not expressive

* Needs to refer to objects in the world,

* Needs to express general rules
— On(x,y) =2 — clear(y)
— All men are mortal
— Everyone who passed the age of 21 can drink
— One student in this class got perfect score
— Etc....

* First order logic, also called Predicate calculus
allows more expressiveness



Logics in general

Language

Ontological Commitment
(What exists in the world)

Epistemological Commitment
(What an agent believes about facts)

Propositional logic
First-order logic
Temporal logic
Probability theory
Fuzzy logic

facts

facts, objects, relations

facts, objects, relations, times
facts

facts with degree of truth € [0, 1]

true/false/unknown
true/false/unknown
true/false/unknown
degree of belief € [0, 1]
known interval value
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First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

e Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . ..

e Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, ...

e Functions: father of, best friend, third inning of, one more than, beginning
of ...
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Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB,. ..
Predicates Brother, >, ...
Functions  Sqrt, LeftLegOf,...
Variables =z, v, a, b,...
Connectives A V = = &
Equality =

Quantifiers V¥ 4
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Atomic sentences

Atomic sentence = predicate(termy, ..., term,)
or term; = terms

Term = function(termy,...,termy,)
or constant or variable

E.g., Brother(KingJohn, RichardT heLionheart)
> (Length(LeftLegO f(Richard)), Length(Left LegO f(KingJohn)))
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Complex sentences

Complex sentences are made from atomic sentences using connectives
_'S, Sl f\Sg, Sl \% Sf,_}, S] = SQ} S] = S-g

E.g. Sibling(KingJohn, Richard) = Sibling(Richard, KingJohn)
>(1,2) v <(1,2)
>(1,2) A =>(1,2)
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Limitations of propositional logic

* KB needs to express general rules (and specific
cases)

— All men are mortal; Socrates is a man, therefore mortal

 Combinatorial explosion

— Exactly one student in the class got perfect score
* Propositional logic
— P, vP,v..VvP,
— Foralli,j: =P;v =P,
* First order logic
— Ix[P(x) A —3ylxzy A P(y)]]
* Q: exactly two students have perfect score?



1.

4,

5.

FOL : syntax

Terms — refer to objects

Constants : a, b, c, ...

Variables : x, y, ...
. Can be free or bound

Functions (over terms) : f, g, ...

Ground term : constants + fully instantiated functions (no variables) : f(a)
Predicates

E.g. P(a), Q(x), ...

Unary = property, arity>1 = relation between objects

Atomic sentences

Evaluate to true/false

Special relation ‘=’

Logical connectives : = A Vv —>

Quantifiers : 4 V

Typically want sentences wo free variables (fully quantified)
Function vs Predicate

FatherOf(John) vs Father(X,Y) [Father(FatherOf(John),John)]

Q : BrotherOf(John) vs Brothers(X,Y)?



Semantics: Worlds

 The world consists of objects that have properties.
— There are relations and functions between these objects

— Objects in the world, individuals: people, houses,
numbers, colors, baseball games, wars, centuries
* Clock A, John, 7, the-house in the corner, Tel-Aviv
— Functions on individuals:
» father-of, best friend, third inning of, one more than
— Relations:
* brother-of, bigger than, inside, part-of, has color, occurred after
— Properties (a relation of arity 1):
* red, round, bogus, prime, multistoried, beautiful



Truth in first-order logic

* World contains objects (domain elements) and relations/functions among them

* Interpretation specifies referents for

constant symbols - objects
predicate symbols - relations
function symbols - functions

* Sentences are true with respect to a world and an interpretation

* An atomic sentence predicate(term,,...,term ) is true
iff the objects referred to by term,,...,term,,
are in the relation referred to by predicate



Semantics: Interpretation

* An interpretation of a sentence (wff) is wrt world that has a set
of constants, functions, relations

* An interpretation of a sentence (wff) is a structure that maps
— Constant symbols of the language to constants in the worlds,

— n-ary function symbols of the language to n-ary functions in the
world,

— n-ary predicate symbols of the language to n-ary relations in the
world

* Given an interpretation, an atom has the value “true” if it
denotes a relation that holds for those individuals denoted in
the terms. Otherwise it has the value “false”

— Example: Block world: B
* A, B, C, Floor, On, Clear

A

— World: C

* On(A,B) is false, Clear(B) is true, On(C,F) is true...
Floor



Example of Models (Blocks World)

* The formulas:
— On(A,F) = Clear(B)
— Clear(B) and Clear(C) = On(A,F)
— Clear(B) or Clear(A)
— Clear(B)
— Clear(C)
Possible interpretations where the KB is true:

* Checking truth value of Clear(B)
— Map B (sentence) to B’ (interpretation)
— Map Clear (sentence) to Clear’ (interpretation)
— Clear(B) is true iff B’ is in Clear’

B C
A C A B C A B
Floor Floor Floor
On = {<B,A>,<A,F>,<C,F>} On = {<A,F>, <B,F>,<C,F>} On = {<C,A>,<A,F>,<B,F>}
Clear = {<C>,<B>} Clear = {<A>,<B>,<C>} Clear = {<C>,<B>}



Semantics : PL vs FOL

Language

Possible worlds (interpretations)

KB : CNF over
prop symbols

Semantics: an
Interpretation maps
prop symbols to
{true,false}

KB : CNF over
predicates over terms (fn
+ var + const)
Note :

const, fn, pred symbols

Semantics: an interpretation
has obj’s and maps :
const symbols to const’s,
fn symbols to fn’s,
pred symbols to pred’s
Note :
const’s, fn’s, pred’s
Note : var’s not mapped!



Semantics: Models

An interpretation satisfies a sentence if the sentence
has the value “true” under the interpretation.

Model: An interpretation that satisfies a sentence is a
model of that sentence

Validity: Any sentence that has the value “true” under
all interpretations is valid

Any sentence that does not have a model is
inconsistent or unsatisfiable

If a sentence w has a value true under all the models
of a set of sentences KB then KB logically entails w

Note :

— In FOL a set of possible worlds is infinite
— Cannot use model checking!!!



Models for FOL: Example

brq{ber

= o,

“brother™

person

person
King




Quantification

* Universal and existential quantifiers allow expressing general rules
with variables

* Universal quantification
— Syntax: if w is a sentence (wff) then Vx w is a wff.

— All cats are mammals _, ~_. (x) — Mammal (x)

— Itis equivalent to the conjunction of all the sentences obtained
by substitution the name of an object for the variable x.

Cat(Spot) > Mammal(Spot) A
Cat(Rebbeka) > Mammal(Rebbeka) A
Cat(Felix) > Mammal(Felix) A



Universal quantification

V (variables) (sentence)

Everyone at Berkeley is smart:
Va At(xz, Berkeley) = Smart(x)

Va P s true in a model m iff P with = holding for
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn, Berkeley) = Smart(KingJohn)
A At(Richard, Berkeley) = Smart(Richard)
N At(Berkeley, Berkeley) = Smart(Berkeley)
A
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A common mistake to avoid

Typically, = is the main connective with ¥

Common mistake: using /A as the main connective with V:
Vax At(z, Berkeley) A Smart(z)

means “Everyone is at Berkeley and everyone is smart”
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Quantification: Existential

* Existential quantification : 3 an existentially
quantified sentence is true if it is true for

some object IxSister(x, Spot) A Cat(x)

* Equivalent to disjunction:
Sister(Spat, Spot) A Cat(Spot)v
Sister(Rebkecca,Spot)A Cat(Rebeca@) v
Sister(Felix,Spot) A Cat(Felix)v
Sister(Richard,Spot)A Cat(Richard)...

e We can mix existential and universal
qguantification.



Existential quantification

3 (variables) (sentence)

Someone at Stanford is smart:
dz At(z, Stanford) N Smart(z)

dx P isis true in a model m iff P with = holding for
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn, Stanford) A Smart(KingJohn)
V' At(Richard, Stanford) A Smart(Richard)
vV At(Stanford, Stanford) A Smart(Stan ford)
VoL

Chapter T



Another common mistake to avoid

Typically, A is the main connective with 4
Common mistake: using => as the main connective with 3:
dz At(z,Stanford) = Smart(x)

is true if there is anyone who is not at Stanford!
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Properties of quantifiers

Vx Vy is the same as Vy Vx
dx dy is the same as Jy dx
dx Yy is not the same as Vy 3Jx

— dx Yy Loves(x,y)
* “Thereis a person who loves everyone in the world”

— Vy 3dx Loves(x,y)

* “Everyone in the world is loved by at least one person”

—Vx Likes(x,IceCream) dx — Likes(x,IceCream)
— “not true that P(X) holds for all X” = “exists X for which P(X) is false”

—3x Likes(x, Broccoli) Vx — Likes(x, Broccoli)
Quantifier duality : each can be expressed using the other
Vx Likes(x,IceCream) —3x — Likes(x,lceCream)

dx Likes(x,Broccoli) —V'x — Likes(x,Broccoli)



Fun with sentences

Brothers are siblings
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Fun with sentences

Brothers are siblings
Vax,y Brother(zx,y)

“Sibling” is symmetric

= Sibling(x,y).
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Fun with sentences

Brothers are siblings

Vax,y Brother(xz,y) = Sibling(x,y).
“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One's mother is one’s female parent

Chapter T



Fun with sentences

Brothers are siblings

Vax,y Brother(xz,y) = Sibling(x,y).
“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One's mother is one’s female parent

Va,y Mother(z,y) < (Female(x) N Parent(x,y)).

A first cousin is a child of a parent’s sibling

Chapter T
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Fun with sentences

Brothers are siblings

Vax,y Brother(xz,y) = Sibling(x,y).

“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One's mother is one’s female parent

Va,y Mother(z,y) < (Female(x) N Parent(x,y)).
A first cousin is a child of a parent’s sibling

Vz,y FirstCousin(z,y) < dp,ps Parent(p,xz) N Sibling(ps,p) N
Parent(ps,y)

Chapter T 21




Equality

e term,=term,is true under a given interpretation if and only if term, and term, refer
to the same object

* E.g., definition of Sibling in terms of Parent:

Vx,y Sibling(x,y) < [—(x =y) A dm,f = (m =f) A Parent(m,x) A Parent(f,x) A Parent(m,y) A Parent(f,y)]



Using FOL
The kinship domain:

— Objects are people

— Properties include gender and they are related by relations such as parenthood,
brotherhood, marriage

— predicates: Male, Female (unary) Parent, Sibling, Daughter, Son...
— Function: Mother Father

Brothers are siblings

Vx,y Brother(x,y) = Sibling(x,y)
One's mother is one's female parent

V'm,c Mother(c) = m < (Female(m) A Parent(m,c))
“Sibling” is symmetric

Vx,y Sibling(x,y) < Sibling(y,x)



Knowledge engineering in FOL

Identify the task

Assemble the relevant knowledge; identify important concepts
Decide on a vocabulary of predicates, functions, and constants
Encode general knowledge about the domain

Encode a description of the specific problem instance

Pose queries to the inference procedure and get answers

Debug the knowledge base



The electronic circuits domain

One-bit full adder

¥

C1

g




The electronic circuits domain

1. Identify the task

Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge
— Composed of 1/0 terminals, connections and gates; Types of gates (AND, OR, XOR, NOT)
— Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

— Alternatives :

Type(X;) = XOR
Type(X,, XOR)
XOR(X,)



The electronic circuits domain

4, Encode general knowledge of the domain
- Vt,,t, Connected(t,, t,) = Signal(t,) = Signal(t,)
— YVt Signal(t) = 1 v Signal(t) =0
— 120
- Vt,,t, Connected(t,, t,) = Connected(t,, t,)
— Vg Type(g) = OR = Signal(Out(1,g)) = 1 < In Signal(In(n,g)) = 1
— Vg Type(g) = AND = Signal(Out(1,g)) = 0 << 3In Signal(In(n,g)) =0
— Vg Type(g) = XOR = Signal(Out(1,g)) = 1 < Signal(In(1,g)) # Signal(In(2,g))

— Vg Type(g) = NOT = Signal(Out(1,g)) # Signal(In(1,g))



The electronic circuits domain

5. Encode the specific problem instance

Type(X;) = XOR Type(X,) = XOR
Type(A;) = AND Type(A,) = AND

Type(O,) = OR

Connected(Out(1,X,),In(1,X,))
Connected(Out(1,X,),In(2,A,))
Connected(Out(1,A,),In(1,0,))
Connected(Out(1,A,),In(2,0,))
Connected(Out(1,X,),0ut(1,C,))
Connected(Out(1,0,),0ut(2,C,))

-

Connected(In(1,C,),In(1,X,))
Connected(In(1,C,),In(1,A,))
Connected(In(2,C,),In(2,X,))
Connected(In(2,C,),In(2,A,))
Connected(In(3,C,),In(2,X,))

1)

Connected(In(3,C,),In(1,A,))

c1
\]
,,D—‘ﬁD o

A2
" ° —?




The electronic circuits domain

6. Pose queries to the inference procedure

What are the possible sets of values of all the terminals
for the adder circuit?

di,,i,,i3,0,,0, Signal(In(1,C_1)) =i; A Signal(In(2,C,)) =i, A Signal(In(3,C,)) =i A
Signal(Out(1,C,)) = o, A Signal(Out(2,C,)) = o,

7. Debug the knowledge base
May have omitted assertions like 1 #0



Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢ = 5:

Tell(K B, Percept(|Smell, Breeze, Nonel, 5))
Ask(KB,3a Action(a,5))

|.e., does the KB entail any particular actions at { = 57

Answer: Yes, {a/Shoot} ¢ substitution (binding list)

Ask(K B, S) returns some/all o such that KB = So

Given a sentence S and a substitution o,

So denotes the result of plugging o into S; e.g.,
S = Smarter(z,y)

o ={x/Hillary,y/Bill}

So = Smarter(Hillary, Bill)

Chapter T
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Knowledge base for the wumpus world

“Perception”
Vb,g,t Percept([Smell,b,g|,t) = Smelt(t)
Vs,b,t Percept(|s,b, Glitter|,t) = AtGold(t)

Reflex: V1 AtGold(t) = Action(Grab,t)

Reflex with internal state: do we have the gold already?
Vit AtGold(t) AN ~Holding(Gold,t) = Action(Grab,t)

Holding(Gold,t) cannot be observed
= keeping track of change is essential

Chapter T
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Deducing hidden properties

Properties of locations:
Va,t At(Agent,z,t) A Smelt(t) = Smelly(z)
Va,t At(Agent,z,t) N\ Breeze(t) = Breezy(z)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezy(y) = dz Pit(x) A Adjacent(z,y)

Causal rule—infer effect from cause
Va,y Pit(z) N Adjacent(z,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Yy Breezyly) < [z Pit(x) AN Adjacent(z,y)]
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Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s
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Describing actions I

“Effect” axiom—describe changes due to action
Vs AlGold(s) = Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action
Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . ..

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, ...
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Describing actions II

Successor-state axioms solve the representational frame problem
Each axiom is “about” a predicate (not an action per se):

P true afterwards <> [an action made P true
VP true already and no action made P false|

For holding the gold:
Va,s Holding(Gold, Result(a,s)) <
(a=Grab A AtGold(s))
V (Holding(Gold, s) A a # Release)



Summary

* First-order logic:
— objects and relations are semantic primitives

— syntax: constants, functions, predicates, equality,
guantifiers

* Increased expressive power: sufficient to define
wumpus world



