Set 9: Planning
Classical Planning Systems



Outline: Planning

Classical Planning:
— Situation calculus
— PDDL: Planning domain definition language

STRIPS Planning
Planning graphs

Readings: Russel and Norvig chapter 10



The Situation Calculus

* A goal can be described by a sentence:
if we want to have a block on B (3x)On(x, B)

* Planning: finding a set of actions to achieve a goal
sentence.

e Situation Calculus mccarthy, Hayes, 1969, Green 1969)

— A Predicate Calculus formalization of states, actions, and
their effects.

— S, state in the figure can be described by:

On(B, A) AOn(A,C) AOn(C, FI) A Clear(B) A clear (FI)

On(B,A)
we reify the state and On (A, C)
include them as arguments On (C,F1)

Clear (F1l)

B
A Clear (B)
C




The Situation Calculus (continued)

The atoms denotes relations over states called fluents.
On (B, A, SO) A Op (A,C, SO) A Op (C, FI, SO) A Clear (B, SO)

We can also have.

(WX, V,s)[On(x,Y,s) A—=(y = FI) > —Clear(y,s)]
(Vs)Clear(Fl,s)

Knowledge about state and actions = predicate calculus theory.
Inference can be used to answer:
— |s there a state satisfying a goal?

— How can the present state be transformed into that state by actions?
The answer is a plan



Representing Actions

Reify the actions: denote an action by a symbol
actions are functions

move(B,A,Fl): move block A from block B to Fl
move (X,y,z) - action schema

do: A function constant, do denotes a function that maps
actions and states into states

—  do(e,0) > o

/!
action
State



Representing Actions (continued)

* Express the effects of actions.
— Example: (on, move) (expresses the effect of move on “On”)
— Positive effect axiom:

[On(X, Y, s) A Clear(x,s) A Clear(z,s) A (x # z) — On(x, z, do(move(X, Y, z2),s))]

— Negative effect axiom:

[On(X, Y, s) A Clear(x,s) A Clear(z,s) A (x # z) - —=0On(x, y, do(move(x, Y, z),s))]

» Positive: describes how action makes a fluent true

= Negative : describes how action makes a fluent false
= Antecedent: pre-condition for actions

= Consequent: how the fluent is changed



Frame Axioms

* Not everything true can be inferred
On(C,Fl) remains true but cannot be inferred

e Actions have local effect

— We need frame axioms for each action and each fluent that does
not change as a result of the action

— example: frame axioms for (move, on)

— If a block is on another block and move is not relevant, it will stay
the same.

* Positive:
[On(X, y,s) A (X =u)] > On(x,y,do(move(u,v, z),s))
* negative
(—=On(x,y,s) Al(x#u) v (y =2)]) > —0On(x,y,do(move(u,v, z),s)



Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

Talk to Parrot

=0 To Pet Store E!.|_|'_.r- a D.;:.g

50 To School Go To Class
g -

Start

Go To Supermarket

] Buy Tuna Fish
- d -

Buy Arugula

\GD To Sleep
Jir-

Read A Book

Sit in Chair Sit Some More
- -

Etc. Etc. ... o “Read A Book
]

After-the-fact heuristic/goal test inadequate

-

Finish

Chapter 11

3



Summary so far

e Situational Calculus
— Use FOL
* Initial state
* Goal state
* Actions
e Special symbol —situation
— Use resolution for inference
* Issues
— Representation — frame problem
* Frame axioms
— #actions X #predicates X #timeslots — positive/negative effects
— Performance
* Resolution
* Not widely used



STRIPS Planning systems
PDDL: Planning Domain Definition
Language



STRIPS: describing goals and state

Factored representation of states

e On(B,A)
e On(A,Q)
« On(C,Fl)
* Clear(B)
e Clear(Fl)

B

A

C

e The formula describes a set of world states

* Planning search for a formula satisfying a goal description
e State descriptions: conjunctions of ground literals.

On (B, A)
On (A, C)
Oon(C,F1)
Clear (B)
Clear (F1)

* Given a goal wff, the search algorithm looks for a sequence of actions

That transform into a state description that entails the goal wff.




STRIPS Description of Operators

* A STRIPS operator has 3 parts:
— A set PC, of ground literals (preconditions)
— A set D, of ground literals called the delete list
— A set A, of ground literals called the add list

* Usually described by Schema: Move(x,y,z)
— PC: On(x,y) and Clear(x) and Clear(z)
— D: Clear(z), On(x,y)
— A: On(x,z), Clear(y), Clear(Fl)

* Astate S, is created applying operator O by
adding A and deleting D to/from S..




STRIPS operators

Tidily arranged actions descriptions, restricted language

ACTION: Buy(z)
PRECONDITION: At(p), Sells(p, z) At(p) Sells(p,x)

EFFECT: Have(zx) Buy(x)

. i I . I
[Note: this abstracts away many important details!] Have(x)

Restricted language =- efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

Chapter 11



Example: the move operator

move (B,A,F1)

B >
A A
C B C
Precondition:
On(B,A)
Clear (B)
Clear (F1l)
Delete list
On (B, F1l)
On(B,A) |7 Add list—1 Clear (A7)
Clear (F1l) Clear (F1)
On (A, C) Unchanged On (A, C)
on(C,F1) » On (C,F1l)
Clear (B) Clear (B)




PDDL

A language that yields a search problem
A state is a set of ground literals
Closed world assumption: fluents that are not mentioned are false.
Action schema:
Action(Fly(p,from,to),
Precondition: At(p,from) & Plane(p) & Airport(from) & Airport(to)
Effect: not At(p,from) & At(p,to)
The schema consists of precondition and effect lists
PDDL is very close to STRIP language

A set of action schemas is a definition of a planning domain.

A specific problem is defined by an initial state (a set of ground literals) and a goal:
conjunction of literals, some not grounded (At(p,SFO), Plane(p))

Both feasible and optimal plan finding is decidable, but in PSPACE



The block world

=

e

AlB|cC C

Trt{ Onf A, Table) A Ond B, Toble) A On{C, Tuable)
M Block{A) A Block{B) A EBlock{C)
A Clenr{A) A Clear{B) A Clear{C)
Goal{ Onld, BY A OnfB, O)
Aetionf Movell, =, y),
PRECOMND: O b, ) A Clene{B) A Clear{y) A Block{E) A
(b£a) AEy) Alw# )
EFFECT: Ol o) A Cleor{s) A — Ondb e A - Clear{y)
Actionf MoveTo Toblell, ),
PRECOND: Ol b ) A Clene(B) A Block{B) A {E £ =),
EFFECT: Onlb, Toble) A Clear{s) A - Ondb, o))

Figure 11.4 A planning problem in the blocles world: building a three-blocls tower, One
solution is the sequence [Movel B, Toble, ), Movel{d, Toble, B1).




A STRIP/PDDL description of an aircargo

transportation problem
Problem: flying cargo in planes from one location to another

Tmat{ At{ Ty, SFOY A At{ Oy, JFEY A APy, SFO) A APy, JFE)
M Corgo{ T ) A Corgel C) A Planel PL) A Plone{ Py
M Airport {IFED A dirpert{SFO)
Gond{ At{Ty, JFE) A At{Ty, SFOY)
Aetiond Lond{e, », a),
PRECOND: difs a) A Adifp, a) A Corgele) A Flonel{p) A dirpert{a)
EFFECT: — dt{e, a) A Infe, 2))
Aetionf Unlead{e, », a),
PRECOND: Infe, p) A Atlp, a) A Cargele) A Flanelp) A Adirport{a)
EFFECT: At{e, a) A - Infe, 2))
Aetion{ Flylp, from, to),
PRECOND: dt{p, from) A Flanelp) A dirport! from) A dirpori{tc)
EFFECT: - dt{p, from) A Ai{p, to))

Figure 11.2 A STRIPE problem rrolving transportation of air cargo between airports.

In(c,p)- cargo c is inside plane p
At(x,a) — object x is at airport a




STRIP for spare tire problem

Problem: Changing a flat tire

ot { Atf Flot, dwle) A At Spore, Trunk))
Goolf At Spare, dule))
Action Removel Spore, Trank),

PRECOND: Aif Spare, Trunk)

EFFECT: = At{ Tpare, Trunk) A At Spare, Ground))
Aetion] Removel Flot, dwle),

PRECOND: At{ Flat, dele)

EFFECT: — At Flat, dele) A At] Flot, Grownd))
Aetion] PidOnf Spare, dule),

PRECOMD: At{ Jpare, Ground) A — At Flot, dwle)

EFFECT: — At Spare, Grownd) A At Spore, dwle))
Aetionf Leaveluerright,

PEECOMND:

EFFECT: — At{ Spore, Grownd) A - A Spore, dale) A — At Spare, Trunk)

Moo A Flot, Grownd) A — At Flat, dade))

Figure 11.3  The simpls spare tire probleam,




Algorithms for Planning as State-space Search

* Forward (progression) state-space search
* Backward (regression) state-space search
 Heuristic search

— Relaxed models
— Goal decomposition
— Planning graphs



Planning forward and backwards

AfLFy, B
Fiviey, 4, B) APy, A)
AllF, A)
()
AllPa, A
FlviPs, 4, 8) ARy, Al
AP, O)
AllPy, A)
AflFa, B) FlyiRy, A 5
APy, B
©) (£, B
Af( P, B)
AfE,, B Flyiry, A 5)
AllPs, A)
Figure11.5 Two approaches to searching for a plan. (a) Forward (progression) state-space
search, starting inthe initial state and wsing the problem®s actions to search forward for the
goal state. (b) Bacloward (regression) state-space search: a belisf-state search (see pages 24)
starting at the goal state(s) and wsing the verse of the actions to search bacloward for the
initial atate,




Forward Search Methods:
can use A* withsome hand g

move (A, C,F1l)

oOn (C,F1)
Clear (B)
Clear (A)
Oon (B, TA)
Oon (A, C)

Cleaxr (F1l)

move (A, C,B)

move (B,A,F1l)

On (C,F1) B

Clear (B) :

On (A, C) A A

on (B, A) -
Clear (Fl) C‘ C‘ B

But, we need good heuristics



Backward: Recursive STRIPS

 Forward search with islands:

— Achieve one subgoal at a time. Achieve a new
conjunct without ever violating already achieved
conjuncts or maybe temporarily violating previous

subgoals.
* General Problem Solver (GPS) by Newell Shaw
and Simon (1959) uses Means-Ends analysis.

* Each subgoal is achieved via a matched rule, then
its preconditions are subgoals and so on. This

leads to a planner called STRIPS(gamma) when
gamma is a goal formula.



Recursive STRIPS algorithm

Given a goal stack:
1. Consider the top goal

2. Find a sequence of actions satisfying the goal from
the current state and apply them.

3. The next goal is considered from the new state.
4. Temination: stack empty
5. Check goals again.



The Sussman anomaly

* RSTRIPS cannot achieve shortest plan

* Two possible orderings of subgoals:
— [On(A,B) and On(B,C)] or [On(B,C) and On(A,B)]

C
A

P

EIE




Backward search methods

Q= |»>

* Regressing a ground operator

Goal

move (B, F1, C)

move (A, F1l, B)

On (C,Fl)
On (B, C)

Clear (B)
Clear (A)
On (A, Fl)

Subgoal—the regression of
On(C,Fl) AOn(B,C) AOn(A,B)
through move (A, F1,B)

Continue until a subgoal is produced
that 1s satisfied by current world state



Regressing an ungrounded operator

Move(X,Y,z)
PC: On(x,y), Clear(x), Clear(z)
EL: —Clear(z), —On(x,y),
On(x,z), Clear(y), Clear(FI)

Goal

Move(B,y,C)

U
Unify : On(x,z) and On(A,B)
Move(A.v.B) U
On(C,Fl) Move(A,y,B)
On(B,C) _ PC: On(A)y), Clear(A), Clear(B)
Clear (B) ?ecause we i"e m‘;““g ‘; EL: —Clear(B), —On(A)y),
Clear(n) | Ifom somewhere eiseto On(A,B), Clear(y), Clear(Fl)
OH(A:Y) o -
—(x = B)—] U
— {X = A) . .
—(x = Q) Check EL does not interfere with goal
/ Hﬁ-ah“m U

Because 4 cannot Because On(B,C) and On (2, C)

be on itself cannot both be true Replace On(A,B) with PC list



Example of Backward Search

on{C,Fl)

on (B, C)

(:::} move (B, =z, C)

move (B, v, C)

Clear (B)
onilA,C)
oniB,A)

This goal is satisfied by
current state description

on{C,Fl)
Clear(B)
Clear (A)
oniA,Fl)
on(B,Fl)

B move (B, A, F1) Clear (A)
Oon (A, C)
A on(C,Fl) Oon{B,Fl)

on (&, B)

move (A,x,B)

On(C,F1l)
oni(B,C)
Clear (B)
Clear (A)
On (A, x)

/

move (A, C,F1)

on{C,Fl)
Clear (B)




Heuristics for planning

Use relax problem idea to get lower bounds on least
number of actions to the goal.

— Remove all or some preconditions
Sub-goal independence: the cost of solving a set of

subgoals equals the sum cost of solving each one
independently, or max cost

— Can be pessimistic (interacting sub-plans) — not admissible,
but can still be useful

— Can be optimistic (negative effects)
Simple: number of unsatisfied sub-goals.

Various ideas related to removing negative effects or
positive effects.



More on heuristic generation

lgnore pre-conditions

— Still NP-hard for optimal solution

lgnore delete list: allow making monotone progress
toward the goal.

— Still NP-hard for optimal solution, but hill-climbing
algorithms using an approximate solution that is
polynomial. (example, 15 puzzle)

Abstraction: Combines many states into a single one:
Pattern databases

FF : Fast-forward planner (Hoffman 2005), a forward
state-space planner with delete-list based heuristic



Partial order planning

Least commitment planning

Nonlinear planning

Search in the space of partial plans

A state is a partial incomplete partially ordered plan

Operators transform plans to other plans by:
— Adding steps

— Reordering

— Grounding variables

SNLP: Systematic Nonlinear Planning (McAllester and
Rosenblitt 1991)

NONLIN (Tate 1977)



A partial order plan for putting shoes and socks

Partial-Order Plan:

AN

Left Rlight
Dok Dok
Lerfzookon Righi ZockOn
Left Right
Shoe Shoe

\ /

Lertzhoaln, RighizhoaCn

Finish

Total-Crder Plans:

Start Start Start Start Start Start
' ' ' ' ' y
Fight Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Y i i Y Y Y
Left Left Right Flight Right Left
Bock Bock Bock Dok =hoe Shoe
Y 1 1 ' ' '
Right Left Right Left Left Right
Shoa Shoe Shoe Shoe Sock Sock
Y Y Y ! y {
Left Fight L eft Right Left Right
shoe shoe Shoe shoe Shoe Shoe
Y ' 1 ' ' '
Finish Finish Finish Finish Finish Finish

Figure11l.6 A partial-order plan for putting onchoes and soclze, and the six corresponding
lingarizations into total-order planes.




Planning Graphs

A planning graph consists of a sequence of levels
that correspond to time-steps in the plan

Level O is the initial state.

Each level contains a set of literals and a set of
actions

Literals are those that could be true at the time
step.

Actions are those that their preconditions could
be satisfied at the time step.

Works only for propositional planning.



Example: have cake and eat it too

It Hove{ Coke))
Goolf Hovel Coke) A Eotend Coke))
Aetiond Bot{ Cale)

PRECOND: Havel Coke)

EFFECT: = Hove{ Cake) A Eotend Coke))
Aetiond Boke{ Cale)

PRECOND: - Hove{ Cake)

EFFECT: Hawel Cuke)

Figure 11.11  Ths “hawe cale and sat calse too™ problem,




The Planning graphs for “have/eat cake”

* Persistence actions: Represent “inactions” by boxes: frame axiom

*  Mutual exclusions (mutex) are represented between literals and actions.
e S represents multiple states

e Continue until two levels are identical. The graph levels off.

* The graph records the impossibility of certain choices using mutex links.
*  Complexity of graph generation: polynomial in number of literals.

54 Ay 5 A S5
Bakel(Cake) n\\
Havelake) (] Havelake) {1 Havelake)
— HavelCake) {1 — HavelCake)
Eat{Cake) < Eat{Cake) <
Ezten(Cake) ] Eaten(Cake)
— Eaten[Cake) 1 — Eaten(Cake) ] — Eaten(Cake)

Figure 11.12  The planning graph for the “hawe calee and sat calte too™ problam up to lewsl
&y, Bectangles indicate actions (small squares indicate persistence actions) and straight lines
indicate preconditions and effects. Mutex lirls are shown as curved gray lines.




Defining Mutex relations

e A mutex relation holds between two actions on the
same level iff any of the following holds:

Inconsistency effect: One action negates the effect of another.
Example “eat cake and persistence of have cake”

Interference: One of the effect of one action is the negation of
the precondition of the other. Example: eat cake and
persistence of Have cake

Competing needs: one of the preconditions of one action is
mutually exclusive with a precondition of another.
Example: Bake(cake) and Eat(Cake).

A mutex relation holds between 2 literals at the same level iff one is
the negation of the other or if each possible pair of actions
that can achieve the 2 literals is mutually exclusive.



Properties of planning graphs;

termination
Literals increase monotonically
— Once a literal is in a level it will persist to the next level

Actions increase monotonically

— Since the precondition of an action was satisfied at a level and
literals persist the action’s precond will be satisfied from now on

Mutexes decrease monotonically:

— If two actions are mutex at level S, they will be mutex at all
previous levels at which they both appear

Because literals increase and mutex decrease it is

guaranteed that at some point planning graph will “level
off”

If a set of goals does not appear conflict-free, no valid plan
exists

Can be built in polynomial time



Planning graphs for heuristic estimation

Estimate the cost of achieving a goal by the level in the
planning graph where it appears.

To estimate the cost of a conjunction of goals use one of
the following:

Max-level: take the maximum level of any goal (admissible)
Sum-cost: Take the sum of levels (inadmissible)

Set-level: find the level where they all appear without
Mutex (admissible). Dominates max-level

Graph plans are relaxation of the problem. Representing
more than pair-wise mutex is not cost-effective



The GraphPlan algorithm

function GRAPHPLAN( probien) returns solution or failors

grapk +— INITIAL-PLANNING-GRAPH problem)
qoils +— T0OALS[ problem]
loop do
if goals all non-mutex in last level of grophk then do
sebutici — BEXTRACT-S0LUTION graph, goals, LENMGTH graphl)
if sohdion # foilure then return scldion
else 1f NO-S0LUTION-FOSSIBLE(graph) then retarn foilwre
gropk +— EXPAND-GRAPH( graph, probies)

Figure 11.13  The GRAPHPLAN algorithrn, GRAPHPLAMN alternates between a solution
extraction step and a graph expansion step. EXTRACT-S0LUTION loolts for whether a plan
car be found, starting at the end and searching baclowards, EXPAND-GRAPH addsthe actions
for the currert lewel and the state literals for the nesxt lewel,




Planning graph for spare tire
goal: at(spare,axle)

e S2 has all goals and no mutex so we can try to extract solutions
e Use either CSP algorithm with actions as variables
e Orsearch backwards

M Spare, Trunk) 1 Ao ane, Trunk) -
\ \ Rermomes Spane Tnk)
Remnce Spans, Trurk) 4 e ane, Trounk)

o Rernover A kil

AdFlst Axde) d'/

L} AR Axla )
[ Leasvecwemight 1 AH R Axla ]
I Lemweswemight
— S pare, dxla) — S ane Axla) 1
PU KRR SRR e
— A Flad, Ginoond) — 4l Groond)

ARl Groomad)
— A e ane Gz ond ]
A Epane 5 R0 re

— AH Spare, Grrond]

Figure 11.14

The planning graph for the spare tire problem after expansion to lewel S,

g

A Eparae, Trunk)

¢S pare, Trun k)

4 {Flat e )
A{Flat dxde)

TS pare, Axla)
AHSpare dgla)

8¢ Flad, Groond)
ARl Groond)

— A S pare, Gre und)
AHEpare Greund)

Mutex links are shown as gray lines. Only some representative mutexes are shown, becanse
the graph would be too cluttered if we showed them all. The solution iz indicated by bold

Tavm =z m == ] k] 3= =




Search planning-graph backwards with heuristics

How to choose an action during backwards
search:

e Use greedy algorithm based on the level cost of the
literals.

For any set of goals:
1. Pick first the literal with the highest level cost.

2. To achieve the literal, choose the action with
the easiest preconditions first (based on sum or
max level of precond literals).



Other classical planning
approaches

* The most effective approached to planning
currently are:

— Translating to Boolean Satisfiability

— Forward state-space search with carefully crafted
heuristics

— Search using planning graphs (covered already)



Planning as Satisfiability

Express planning as a set of propositions.

Fix length of plan at T.

A propositional variable for each propositions at each time step
— On(A,B)_0, ON(B,C) 0, etc.

A propositional variable for each action at each time step t
— (A vay v..vay) also—(a; &ay)

Action axioms :
— Ay = PC(ai)t & EL(ai)t+1

Successor-state axioms need to be expressed for each action (like in the
situation calculus but propositional)

— If a, is true, then either it was true before (at time t-1) and nothing changed it, or
some action caused it

Goal conditions: the goal conjuncts at time T.
Unknown propositions are not stated.
Propositions known not to be true are stated negatively.



Planning with propositional logic
(continued)

We write the formula:
— |Initial state and succesor state axioms and goal

We search for a model to the formula. Those
actions that are assigned true constitute a plan.

We can also choose to allow partial order plans
and only write exclusions between actions that
interfere with each other.

Planning: start at T=0 and iteratively try to find
longer and longer plans.



SATplan algorithm

function SATPLAN probierm, T ... returns sohtion or failure
inputs: probiemr, a planming problem
T inaz, A0 upper limit for plan length

for F=0to T .. do
ciyf, mapping +— T RANILATE-TO-S3AT problem, T
aastgrunent +— SAT-B0LVER enf)
i assigrwnent 1 not nuall then
return EXTRACT-S0LUTION{ gasigrumest, mruapog )
return foilure

Figure 11.15  The SATPLAN algerithm. The plarning problem is translated into a CNF
sentence in which the goal 18 asserted to hold at a fixed time step T and axtiomes are incladed
for gachtime step up to T (Details of the franslation are given inthe text.) If the satisfiability
algorithm finds amodel, then aplan is extracted by locking at those proposition aymbols that
refer to actions and are assigned true inthe model. If no model exists, then the process is
repeated with the goal mowved one step later,




Complexity of SATplan

The total number of action symbols is:
— |TIx]|Act|x|O["p
— O = number of objects, p is scope of atoms.

Number of clauses is higher.

Example: 10 time steps, 12 planes, 30 airports, the complete
action exclusion axiom has 583 million clauses.



The flashlight problem
(from Steve Lavelle)

Figure 2.18: Three operators for the flashlight
problem. Note that an operator can be
expressed with variable argument(s) for which
different instances could be substituted.

http://planning.cs.uiuc.edu/node59.html#for:

strips
Here is a satplan for flashlight Battery

http://planning.cs.uiuc.edu/node68.html



http://planning.cs.uiuc.edu/node59.html#for:strips
http://planning.cs.uiuc.edu/node68.html

Summary: Planning

STRIPS Planning
Forward and backward planning

Partial order planning
Situation Calculus
GraphPlan

SATplan

Readings: RN chapter 10




