
Set 9:  Planning
Classical Planning Systems

ICS 271 Fall 2013



Outline: Planning

• Classical Planning:
– Situation calculus 

– PDDL: Planning domain definition language

• STRIPS Planning

• Planning graphs

• Readings: Russel and Norvig chapter 10



The Situation Calculus

• A goal can be described by a  sentence:                                     
if we want to have a block on B

• Planning: finding a set of actions to  achieve a goal 
sentence.

• Situation Calculus (McCarthy, Hayes, 1969, Green 1969)

– A Predicate Calculus formalization of states, actions, and 
their effects.

– So state in the figure  can be described by:

we reify the state and 
include them as arguments

),()( BxOnx

)()(),(),(),( FlclearBClearFlCOnCAOnABOn 



The Situation Calculus (continued)

• The atoms denotes relations over states called fluents.

• We can also have.

• Knowledge about state and actions = predicate calculus theory.
• Inference  can be  used to answer:

– Is there a state satisfying a goal?
– How can the present state be transformed into that state by actions? 

The answer is a plan

)],()(),,()[,,( syClearFlysyxOnsyx 

)
0

,()
0

,,()
0

,,()
0

,,( SBclearSFlCnOSCAnOSABnO 

),()( sFlClears



Representing Actions

• Reify the actions: denote  an action by a symbol

• actions are functions

• move(B,A,Fl):  move block A from block B to Fl

• move (x,y,z) - action schema

• do: A function constant, do denotes a function that maps 
actions and states into states

– 1),(  do

action
state



Representing Actions (continued)

• Express the effects of actions.

– Example: (on, move) (expresses the effect of move on “On”)

– Positive effect axiom:

– Negative effect axiom:

))]),,,((,,()(),(),(),,([ szyxmovedozxOnzxszClearsxClearsyxOn 

))]),,,((,,()(),(),(),,([ szyxmovedoyxOnzxszClearsxClearsyxOn 

 Positive: describes how action makes a fluent true

 Negative : describes how action makes a fluent false

 Antecedent: pre-condition for actions

 Consequent: how the fluent is changed



Frame Axioms

• Not everything true can be inferred
On(C,Fl) remains true but cannot be inferred

• Actions have local effect

– We need frame axioms for each action and each fluent that does 
not change as a result of the action

– example: frame axioms for (move, on)

– If a block is on another block and move is not relevant, it will stay 
the same.

• Positive:

• negative 

))),,,((,,()](),,([ szvumovedoyxOnuxsyxOn 

)),,,((,,()])()[(),,(( szvumovedoyxOnzyuxsyxOn 





• Situational Calculus

– Use FOL

• Initial state

• Goal state

• Actions

• Special symbol – situation

– Use resolution for inference

• Issues

– Representation – frame problem 

• Frame axioms

– #actions X #predicates X #timeslots – positive/negative effects

– Performance

• Resolution

• Not widely used

Summary so far



STRIPS Planning systems
PDDL: Planning Domain Definition 

Language



STRIPS: describing goals and state

• On(B,A)

• On(A,C)

• On(C,Fl)

• Clear(B)

• Clear(Fl)

• The formula describes a set of world states

• Planning search for a formula satisfying a goal description

• State descriptions: conjunctions of ground literals.

• Given a goal wff, the search algorithm looks for a sequence of actions

That transform into a state description that entails the goal wff.

Factored representation of states



STRIPS Description of Operators

• A STRIPS operator has 3 parts:
– A set PC, of ground literals (preconditions) 
– A set D, of ground literals called the delete list
– A set A, of ground literals called the add list

• Usually described by Schema:  Move(x,y,z)
– PC: On(x,y) and  Clear(x) and Clear(z)
– D:  Clear(z) , On(x,y)
– A:  On(x,z), Clear(y), Clear(Fl)

• A state Si+1 is created applying operator O by 
adding A and deleting D to/from Si.





Example: the move operator



PDDL
• A language that yields a search problem

• A state is a set of ground literals

• Closed world assumption: fluents that are not mentioned are false.

• Action schema: 

Action(Fly(p,from,to),

Precondition: At(p,from) & Plane(p) & Airport(from) & Airport(to)

Effect: not At(p,from) & At(p,to)

• The schema consists of precondition and effect lists

• PDDL is very close to STRIP language

• A set of action schemas is a definition of a planning domain.

• A specific problem is defined by an initial state (a set of ground literals) and a goal: 
conjunction of literals, some not grounded (At(p,SFO), Plane(p))

• Both feasible and optimal plan finding is decidable, but in PSPACE



The block world



A STRIP/PDDL description of an aircargo 
transportation problem

In(c,p)- cargo c is inside plane p

At(x,a) – object x is at airport a

Problem: flying cargo in planes from one location to another



STRIP for spare tire problem
Problem: Changing a flat tire



Algorithms for Planning as State-space Search

• Forward (progression) state-space search

• Backward (regression) state-space search

• Heuristic search

– Relaxed models

– Goal decomposition

– Planning graphs



Planning forward and backwards



Forward Search Methods:
can use A* with some h and g

But, we need good heuristics



Backward: Recursive STRIPS

• Forward search with islands:
– Achieve one subgoal at  a time. Achieve a new 

conjunct without ever violating already achieved 
conjuncts or maybe temporarily violating previous 
subgoals.

• General Problem Solver (GPS) by Newell Shaw 
and Simon (1959) uses Means-Ends analysis.

• Each subgoal is achieved via a matched rule, then 
its preconditions are subgoals and so on. This 
leads to a planner called STRIPS(gamma) when 
gamma is a goal formula.



Recursive STRIPS algorithm

• Given a goal stack:

• 1. Consider the top goal

• 2. Find a sequence of actions satisfying the goal from 
the current state and apply them.

• 3. The next goal is considered from the new state.

• 4. Temination: stack empty

• 5. Check goals again.



The Sussman anomaly

• RSTRIPS cannot achieve shortest plan

• Two possible orderings of subgoals: 

– [On(A,B) and On(B,C)] or [On(B,C) and On(A,B)]



Backward search methods

• Regressing a ground operator



Regressing  an ungrounded operator
Move(x,y,z)

PC: On(x,y), Clear(x), Clear(z)

EL:  Clear(z), On(x,y),  

On(x,z), Clear(y), Clear(Fl)

Unify : On(x,z) and On(A,B)

Move(A,y,B)

PC: On(A,y), Clear(A), Clear(B)

EL:  Clear(B), On(A,y),  

On(A,B), Clear(y), Clear(Fl)

Check EL does not interfere with goal

Replace On(A,B) with PC list











Example of Backward Search



Heuristics for planning

• Use relax problem idea to get lower bounds on least 
number of actions to the goal.
– Remove all or some preconditions

• Sub-goal independence: the cost of solving a set of 
subgoals equals the sum cost of solving each one 
independently, or max cost
– Can be pessimistic (interacting sub-plans) – not admissible, 

but can still be useful
– Can be optimistic (negative effects)

• Simple: number of unsatisfied sub-goals.
• Various ideas related to removing negative effects or  

positive effects.



More on heuristic generation

• Ignore pre-conditions

– Still NP-hard for optimal solution

• Ignore delete list: allow making monotone progress 
toward the goal.

– Still NP-hard for optimal solution, but hill-climbing 
algorithms using an approximate solution that is 
polynomial. (example, 15 puzzle)

• Abstraction: Combines many states into a single one: 
Pattern databases

• FF : Fast-forward planner (Hoffman 2005), a forward 
state-space planner with delete-list based heuristic



Partial order planning

• Least commitment planning
• Nonlinear planning
• Search in the space of partial plans
• A state is a partial incomplete partially ordered plan
• Operators transform plans to other plans by:

– Adding steps
– Reordering
– Grounding variables

• SNLP: Systematic Nonlinear Planning (McAllester and 
Rosenblitt 1991)

• NONLIN (Tate 1977)



A partial order plan for putting shoes and socks



Planning Graphs

• A planning graph consists of a sequence of levels 
that correspond to time-steps in the plan

• Level 0 is the initial state.
• Each level contains a set of literals and a set of 

actions
• Literals are those that could be true at the time 

step.
• Actions are those that their preconditions could 

be satisfied at the time step.
• Works only for propositional planning.



Example: have cake and eat it too



The Planning graphs for “have/eat cake” 

• Persistence actions: Represent “inactions” by boxes: frame axiom

• Mutual exclusions (mutex) are represented between literals and actions.

• Si represents multiple states

• Continue until two levels are identical. The graph levels off.

• The graph records the impossibility of certain choices using mutex links.

• Complexity of graph generation: polynomial in number of literals.



Defining Mutex relations

• A mutex relation holds between two actions on the 
same level iff any of the following holds:
– Inconsistency effect: one action negates the effect of another. 

Example “eat cake and persistence of have cake”
– Interference: One of the effect of one action is the negation of 

the precondition of the other. Example: eat cake and 
persistence of Have cake

– Competing needs: one of the preconditions of one action is 
mutually exclusive with a precondition of another. 
Example: Bake(cake) and Eat(Cake).

– A mutex relation holds between 2 literals at the same level iff one is 
the negation of the other or if each possible pair of actions 
that can achieve the 2 literals is mutually exclusive.



Properties of planning graphs; 
termination

• Literals increase monotonically
– Once a literal is in a level it will persist to the next level

• Actions increase monotonically
– Since the precondition of an action was satisfied at a level and 

literals persist the action’s precond will be satisfied from now on

• Mutexes decrease monotonically:
– If two actions are mutex at level Si, they will be mutex at all 

previous levels at which they both appear

• Because literals increase and mutex decrease it is 
guaranteed that at some point planning graph will “level 
off”

• If a set of goals does not appear conflict-free, no valid plan 
exists

• Can be built in polynomial time



Planning graphs for heuristic estimation

• Estimate the cost of achieving a goal by the level in the 
planning graph where it appears.

• To estimate the cost of a conjunction of goals use one of 
the following:

• Max-level: take the maximum level of any goal (admissible)
• Sum-cost: Take the sum of levels (inadmissible)
• Set-level: find the level where they all appear without 

Mutex (admissible). Dominates max-level

• Graph plans are relaxation of the problem. Representing 
more than pair-wise mutex is not cost-effective



The GraphPlan algorithm



Planning graph for spare tire 
goal: at(spare,axle)

• S2 has all goals and no mutex so we can try to extract solutions

• Use either CSP algorithm with actions as variables

• Or search backwards



Search planning-graph backwards with heuristics

• How to choose an action during backwards 
search:

• Use greedy algorithm based on the level cost of the 
literals.

• For any set of goals:

• 1. Pick first the literal with the highest level cost.

• 2. To achieve the literal, choose the action with 
the easiest preconditions first (based on sum or 
max level of precond literals).



Other classical planning 
approaches

• The most effective approached to planning 
currently are:

– Translating to Boolean Satisfiability

– Forward state-space search with carefully crafted 
heuristics

– Search using planning graphs (covered already)



Planning as Satisfiability
• Express planning as a set of propositions.

• Fix length of plan at T.

• A propositional variable for each propositions at each time step

– On(A,B)_0, ON(B,C)_0, etc.

• A propositional variable for each action at each time step t

– (a1t  a2t  …  ant), also (ait & ajt)

• Action axioms : 

– ait  PC(ai)t & EL(ai)t+1

• Successor-state axioms need to be expressed for each action (like in the 
situation calculus but propositional)
– If ait is true, then either it was true before (at time t-1) and nothing changed it, or 

some action caused it

• Goal conditions: the goal conjuncts at time T.

• Unknown propositions are not stated.

• Propositions known not to be true are stated negatively.



Planning with propositional logic 
(continued)

• We write the formula: 
– Initial state and succesor state axioms and goal

• We search for a model to the formula. Those 
actions that are assigned true constitute a plan.

• We can also choose to allow partial order plans 
and only write exclusions between actions that 
interfere with each other.

• Planning: start at T=0 and iteratively try to find 
longer and longer plans.



SATplan algorithm



Complexity of SATplan

• The total number of action symbols is:
– |T|x|Act|x|O|^p 

– O = number of objects, p is scope of atoms.

• Number of clauses is higher.

• Example: 10 time steps, 12 planes, 30 airports, the complete 
action exclusion axiom has 583 million clauses.



The flashlight problem
(from Steve Lavelle)

• Figure 2.18: Three operators for the flashlight 
problem. Note that an operator can be 
expressed with variable argument(s) for which 
different instances could be substituted.

• http://planning.cs.uiuc.edu/node59.html#for:
strips 

• Here is a satplan for flashlight Battery

• http://planning.cs.uiuc.edu/node68.html

http://planning.cs.uiuc.edu/node59.html#for:strips
http://planning.cs.uiuc.edu/node68.html


Summary: Planning

• STRIPS Planning

• Forward and backward planning

• Partial order planning

• Situation Calculus

• GraphPlan

• SATplan

• Readings: RN chapter 10


