Set 5: Constraint Satisfaction Problems

ICS 271 Fall 2013
Kalev Kask

ICS-271:Notes 5: 1

Outline

The constraint network model
— Variables, domains, constraints, constraint graph, solutions
Examples:

— graph-coloring, 8-queen, cryptarithmetic, crossword puzzles, vision
problems,scheduling, design

The search space and naive backtracking,
The constraint graph
Consistency enforcing algorithms
— arc-consistency, AC-1,AC-3
Backtracking strategies
— Forward-checking, dynamic variable orderings
Special case: solving tree problems
Local search for CSPs

ICS-271:Notes 5: 2

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box”—any old data structure
that supports goal test, eval, successor

CSP:
state is defined by variables X; with values from domain D;

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Sections 3.7 and 4.4, Chapter 5 of AIMAZe

-

1CS-271:Notes 5: 3

Constraint Satisfaction

Example: map coloring
Variables - countries (A,B,C,etc.)
Values - colors (e.g., red, green, yellow)
Constraints:

A B

red green
red yellow
green red
green yellow
yellow green
yellow red

A#D, D#E, etc.

ICS-271:Notes 5: 4

Example: Map-Coloring

Northern
| Territory
Western | Queensland
Australia |
| |
| South ——
Australia - ™

| | New South Wales

N

] Victoria |
\,

Tasmania

Variables WA, NT, Q, NSW,V, SA, T

Domains D; = {red, green, blue}

Constraints: adjacent regions must have different colors
e.g., WA #£ NT (if the language allows this), or

(WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), .

Seclions 5.7 and 4.4, Chapler 5 of AIMAZe

ICS-271:Notes 5: 5

Example: Map-Coloring contd.

q

|
l

Tasm.ia

Solutions are assignments satisfying all constraints, e.g.,
{(WA=red, NT = green,Q =red, NSW = green,V =red, SA=blue, T = green}

Sections 3.7 and 4.4, Chapter 5 of AIMAZe

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

O
@

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Sections 3.7 and 4.4, Chapler 5 of AIMARe

Sudoku

214 6
8 6 5|1 2
1 816 9
9 4 3
4 7 1
5 8 6 3
2l 6|9
9 5 1
3 219

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

ICS-271:Notes 5: 8

Constraint
propagation

Sudoku

214 6

8 6 5|1 2
| 816 |9

9 8

4 7 |
58 (3)
ONGE 2
9 5 81

3 2|9

eVariables: 81 slots

eDomains =
{1l213l41516l7l819}

eConstraints:
*27 not-equal

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

ICS-271:Notes 5: 9

Varieties of CSPs

Discrete variables
finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
¢ e.g., job scheduling, variables are start/end days for each job
¢ need a constraint language, e.g., StartJob, + 5 < StartJob;
{> linear constraints solvable, nonlinear undecidable

Continuous variables
{» e.g., start/end times for Hubble Telescope observations
¢ linear constraints solvable in poly time by LP methods

Sections 3.7 and 4.4, Chapler 5 of AIMARe

Varieties of constraints

« Unary constraints involve a single variable,
— e.g., SA # green

« Binary constraints involve pairs of variables,
— e.g., SA#WA

« Higher-order constraints involve 3 or more variables,
— e.g., cryptarithmetic column constraints

ICS-271:Notes 5: 11

Example: Cryptarithmetic

W
W
U

o|— -
A0 O

|+

Variables: T U W R O X X9 X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints

alldiff F, T, U, W, R, O)

O+0 =R+10- X4, etc.

Sections 3.7 and 4.4, Chapler 5 of AIMARe 4

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Sections 3.7 and 4.4, Chapter 5 of AlMAZe

10

A network of binary constraints

Variables

~ XX

Domains

— of discrete values: D,....,D,
Binary constraints:

— Rij which represent the list of allowed pairs of values, Rij is a subset
of the Cartesian product: D;xD; .

Constraint graph:
— A node for each variable and an arc for each constraint
Solution:

— An assignment of a value from its domain to each variable such that
no constraint is violated.

A network of constraints represents the relation of all solutions.
sol ={(X,,....%,) | (X;, X;) € Ry, % € D, x; € D}

ICS-271:Notes 5: 15

Example 1: The 4-queen problem

Place 4 Queens on a chess board of

4x4 such that no two queens reside in

the same row, column or diagonal.

Q

Q

Q

Q

Q

Q

Q

Q

- Domains: D :{1,2,3,‘4}.

- Constraints: There are (‘21) = 6 constraints involved:

R, =113)1.4)(24)(E) (41D 4.2)}

R, ={1.2)AL.4)(21)(2,3)(3.2)(3,4)(41)(4.3)}

R, =1(1.2)1.3)(21)(2,3)(24)(31)(3,2)(3:4)(4.2)(4.3) }
Ry ={(L.3)L.4)(24)3BD(4.1)(4.2)}

R, ={(1.2)1,4)(21)(2,3)(3,2)(34)(4.1)(4.3) }

Ry, =1(1.3)L.4)(24)3BD(4.1)(4.2)}

e Variables:

(SN

w

><><N><><

o

Standard CSP formulation of the problem:

each row Is a variable.

1

2 3 4

Q

Q

Q
Q

 Constraint Graph :

ICS-271:Notes 5: 16

Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
¢ Initial state: the empty assignment, { }

> Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

¢ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
=> use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b=(n — £)d at depth ¢, hence n!d" leaves!!!!

Sections 3.7 and 4.4, Chapter 5 of AlMAZe

Backtracking search

Variable assignments are commutative, i.e.,
[WA=redthen NT = green] sameas [NT = greenthen WA =red]

Only need to consider assignments to a single variable at each node
= b = d and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n =~ 25

Sectioms 3.7 and 4.4, Chapter 5 of AIMAZe 12

The search space

« Definition: given an ordering of the variables)(1,....,)(n
— a state:
* is an assignment to a subset of variables that is consistent.
— Operators:
« add an assignment to the next variable that does not violate any
constraint.
— Goal state:

« a consistent assignment to all the variables.

ICS-271:Notes 5: 19

Backtracking example

LI
| J:_T

Sections 3.7 and 4.4, Chapter 5 of AlMAZe 14

Backtracking example

LI
| J:-T
‘/1\-

o L

1, Chapler 5 of AIM A2

Backtracking example

0
4/—1\-
o ¢ ¢

‘/\

¢

Backtracking example

LI
~o
— |
ST SR 5§
‘/\
| = ‘%1:5

The effect of variable ordering

Root z divides x,y and t

ICS-271:Notes 5: 25

Backtracking

procedure BACKTRACKING
Input: A constraint network P = (X, D, ().

i1 {initialize variable counter)
D — D {eopy domain)
whilel <i<n

instantiate ¢; + SELECTVALUE

if x; is null {no value was returned)
ie—i—1 (backtrack)
else
i—i+1 {step forward)
oy — 0
end while
ifi=10
return “inconsistent”
else
return instantiated values of {x1,... ,2n}

end procedure

subprocedure SELECTVALUE (return a value in I){ consistent with &@;_;)

while I is not empty
select an arbitrary element a £ I, and remove a from)
if CONSISTENT(8i—1, T = @)
return a
end while
return null {no consistent value)
end procedure

Output: Either a solution, or notifieation that the network is ineonsistent.

Figure 5.4: The backtracking algorithm.

. Complexity of extending a partial solution:

Complexity of consistent: O(e log t), t bounds #tuples, e bounds #constraints

Complexity of selectvalue: O(e k log t), k bounds domain size

ICS-271:Notes 5: 26

A coloring problem

red, green, teal

blue, green

Figure 5.3: A coloring problem with variables (xy,2q9.... ,27). The domain of each vari-
able is written inside the corresponding node. Each arc represents the constraint that the
two variables it connects must be assipned different eolors.

ICS-271:Notes 5: 27

Backtracking Search for a Solution

h g

e OB IOMY, IO b g g b g g

N) W £)N) W 90 W 7 NN N0 NP) W 7) N A W
OO OO0 10 T

X7 f® e D

blue.green

(b)

ICS-271:Notes 5: 28

Backtracking Search for a Solution

b g

X r () b @ & b b

X5 g @ b @ g @ g b g g b g g
Xy I f g I I, AT I g rd i Lt 1 I g rdf I I I I
50 OO0 10
X+ - <D
®

blue.green

(b)

ICS-271:Notes 5: 29

blue.green

Backtracking Search for All Solutions

X r @ b

Xs g @ b @ fed @g

g b r r TA

:ﬁ’j ©0 000 Jo]

®

(b)

>
h g
b b
b b
g g

ICS-271:Notes 5: 30

Class scheduling/Timetabling

® Teacheré, Subjects, Classrooms, Time-slots.

e Constraints: - A teacher teaches a subset of
subjects,

- Subjects are taught at certain classrooms,

- A teacher prefers teaching in the morning.

e Task: Assign a teacher and a subject to each
class at each time slot, s.t. teachers’ happmess
is maximized.

‘ - ke
Tj; - teacher at class C; at time t; D (1:3) S)(“.za L4

Sulped

S..

j - subject taught at class C; at time {

Damn& .

ICS-271:Notes 5: 32

The Minimal network:
Example: the 4-queen problem

Q

— two solutions —

Q

2 3 4

1

—~—
—
(4]
¥
g
—— .
(2]
~Z —— F o N R e Naan Ve Ware
p—— — N TN N N N N
o) < o o ————— = 0N -)
- o~ - « s e s -
FE £ Joo SESEES
—~ —— N~~~
- — o H o= D H N
-~ -~ - e T
P EE L FE N SRR e)
AT AN TN T T o Syt Nyt N N Nt N
O H o~ N H N - o~
sl RO o nonan
R A ST —
— NP = N e T B BN
11111 SN———
« o5 o F e F S2IS===
R i i T S S
e N e D — ~ ~ -
A NN AN Q
N
e I I T) m
NN NN NN = G
A T L L e R u o’
PN A A e~ — oy
e s e S o
e g M N h
AT T A~ -
MmN NN ™ il
1’ 1\. LL. -lﬂ, L
R T T L QU
e s e e M

111111

R AR

ICS-271:Notes 5: 33

Approximation algorithms

Arc-consistency (Waltz, 1972)

Path-consistency (Montanari 1974, Mackworth 1977)
I-consistency (Freuder 1982)

Transform the network into smaller and smaller networks.

ICS-271:Notes 5: 34

Arc-consistency

X Y
Qz)——@zd
1<X,Y,Z, T<L3

X<Y
Y=/ N -
T<”Z

- @@
<
T Z

ICS-271:Notes 5: 35

Arc-consistency

X Y
CO——CGD
1<X,Y,Z, T<L3
A _

X<Y
Y=/
T<”Z

OO
<
T Z

Incorporated into backtracking search

Constraint programming languages powerful
approach for modeling and solving combinatorial
optimization problems. SN otee 5 26

Arc-consistency algorithm

domain of x domain of y

Arc (X;,X;) Is arc-consistent if for any value of X; there exist a matching value of X

Algorithm Revise (X;,X ;) makes an arc consistent
Begin

1. For each a in D; if there is no value b in D; that is consistent with a then delete a
from the D;.

End.

Revise is O(k*) , k is the number of values in each domain.

ICS-271:Notes 5: 37

Algorithm AC-3

« Begin
— 1. Q <--- put all arcs in the queue in both directions
— 2. While Q is not empty do,
— 3. Select and delete an arc (X;,X;)from the queue Q
* 4. Revise (X;,X;)
« 5. If Revise causes a change then add to the queue all arcs that
touch X; (namely (X;, X)) and (X,X))).
— 6. end-while
« End
« Complexity:
— Processing an arc requires O(k"2) steps
— The number of times each arc can be processed is 2-k
— Total complexity is O(ek®)

ICS-271:Notes 5: 38

Sudoku

21 4 G *Variables: 81 slots
s 06 511 2 eDomains =
{1l213l4I516l7l819}
1 8|6 9 |
9 4|8 6 O 7 notequal
Constraint 4 7 1 9
propagation 3 8 6
ONGE 71,7
0 5 811
3 219

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

ICS-271:Notes 5: 39

Sudoku

60
28
@Gx

6 8 4 _
@ " 2 Path-cc_)n3|stency or
- - 3-consistency
9 3 5 4
3 6
3 3 4| |7 4-consistency and
8 6 4 i-consistency in geeral

Each row, column and major block must be all different

“Well posed” if it has unique solution

ICS-271:Notes 5: 40

The Effect of Consistency Level

. After arc-consistency z=5 and I=5 are
removed -

. After path-consistency !
- R _zx
- R_zy
- R_Z
— R’ _xy
- R x Y

- Ryl

K]

H /

(b)

229 D) < Tighter networks yield smaller search spaces

x ¥ i

(a)
ICS-271:Notes 5: 41

Improving Backtracking O(exp(n))

« Before search: (reducing the search space)
— Arc-consistency, path-consistency, i-consistency
— Variable ordering (fixed)

* During search:
— Look-ahead schemes:
« Value ordering/pruning (choose a least restricting value),
« Variable ordering (Choose the most constraining variable)
— Look-back schemes:
« Backjumping
« Constraint recording
» Dependency-directed backtracking

ICS-271:Notes 5: 42

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Sections 3.7 and 4.4, Chapter 5 of AlMAZe

Look-ahead: Variable and value orderings

* Intuition:

— Choose value least likely to yield a dead-end

— Choose a variable that will detect failures early

— Approach: apply propagation at each node in the search tree
« Forward-checking

— check each unassigned variable separately
 Maintaining arc-consistency (MAC)

— apply full arc-consistency

ICS-271:Notes 5: 44

Most constrained variable

Most constrained variable:
choose the variable with the fewest legal values

\1 f:_"ls [:_"‘. _"‘-.n

Sections 3.7 and 4.4, Chapter 5 of AlMAZe 19

Most constraining variable

Tie-breaker among most constrained variables

Most constraining variable:
choose the variable with the most constraints on remaining variables

R

Sections 3.7 and 4.4, Chapter 5 of AlMAZe 20

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

i]* Allows 1 value for SA
Hb _“Vﬁ: — ‘Hb <
‘i % Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Sections 3.7 and 4.4, Chapter 5 of AlMAZe n

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Ss

WA NT Q NSW \' SA T

I I I Ire i iren

Sections 3.7 and 4.4, Chapter 5 of AlMAZe 22

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSma 5SS

WA NT Q NSW \' SA T

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe

23

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

|]]: -4 [;: “‘\—Lb

WA NT Q NSW V' SA T
M I I I I I I
(] TE[ErE[ErE[ErE] TE[ErE

(]] [0 m[ErE] w[ESE

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA

‘l][: ""\1 [;: "‘\1 [f: "\—LE

NT Q NSW \' SA

T

1] I E[ErE] E[ETE

]

[—

Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn't provide early detection for all failures:

SIS~ S

WA NT Q NSW v SA T

NT and S A cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Spctions 3.7 and 4.4, Chapter 5 of AIMAZe 26

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

S SS S

WA NT Q NSW v SA T

\é/

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

S SS S

WA NT Q NSW v SA

T

L] L] (I (L I

\%/

Sectid

s 3.7 and 4.4, Chapter 5 of AIMAZe

28

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

S SS S

WA NT Q NSW SA T

I 0 B N 0] mELN

~—

If X loses a value, neighbors of X need to be rechecked

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe 29

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

S SSEA S~
L N:_. Q .Nswmv - SA:.:]. T _
{ e

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe 40

Forward-checking on Graph-coloring

X
xl X7 .,
r 4
1, /
X, 7 " green
{
P Not searched

by forward

blue,green red,green, leal

i ! checking
i)
1 ! P
blue,green \ /
i I
v 1
x4 ‘\ \‘
X6 \
FW overhead: O(ek?) o0 green
NN ~.
3 X5 1'@(?:| T~ hlue
MAC overhead: O(€ek”)

ICS-271:Notes 5: 58

Algorithm DVO (DVFC)

procedure DVFC
Input: A constraint network 'R = (X, D, ')

Output: Either a solution, or notification that the network is inconsistent.

e Diforl <di<n (copy all domains)
1—1 (initialize variable counter)
8 = Miljcjen [D] (find future var with smallest domain)
Tip1 +— T, (rearrange variables so that x, follows x;)
while 1l <<1<mn
instantiate ¥; +— SELECTVALUE-FORWARD-CHECKING

if z; i= null (no value was returned)
reset each I set to its value before x; was last instantiated
i—i—1 (backtrack)
else
ife <n
i—i+1 (step forward to z,)

8 = Milcjen [D] (find future var with smallest domain)
Tip1 +— T, (rearrange variables so that x, follows x;)
i—1i+1 (step forward to z,)
end while
ife=0
return “inconsistent”
else
return instantiated values of {x),... ,7,}
end procedure

Figure 5.12: The DVFC algorithm. It uses the SELECTVALUE-FORWARD-CHECKING sub-

procedure given in Fig. 5.8,

ICS-271:Notes 5: 59

Propositional Satisfiability
Example: party problem

If Alex goes, then Becky goes: A—B (Or’_'A Vv B)

If Chris goes, then Alex goes: C—>A (or,-CvVvA)
Query:

Is it possible that Chris goes to the party but Becky
does not?

I

Is propositional theory
QY = {_IA V B, —CvVv A, —lB, C} satisfiable?

ICS-271:Notes 5: 60

Unit Propagation
« Arc-consistency for cnfs.

* Involve a single clause and a single literal

* Example: (A -B,C)AB — (AQ)

ICS-271:Notes 5: 61

Look-ahead for SAT

(Davis-Putnam, Logeman and Laveland, 1962)

DPLL{y)
Input: A cnf theory
Output: A decision of whether is satisfiable.
1. Unit_propagate(y);
2. If the empty clause is generated, return(false);
3. Else, if all variables are assipgned, return{true);
4, Elze
5 () = some unassigned variable;
6 return(DPLL{ @A () v

DPLL(p A ())

Figure 5.13: The DPLL Procedure

ICS-271:Notes 5: 62

Look-ahead for SAT: DPLL
example: (~AVB)(~CVA)(AVBVD)(C)

(Davis-Putnam, Logeman and Laveland, 1962)

Backtracking look-ahead with
Unit propagation=
Generalized arc-consistency

Only enclosed area will be explored with unit-propagation

ICS-271:Notes 5: 63

Summary so far

Constraint Satisfaction Problems : X, D, C
CSPs as search : start with {}, instantiate X.=x; until all C satisfied
— Backtracking search (DFS)
— Ordering of variables can have big effect
Preprocessing by local consistency :
— arc(2)-consistency, k-consistency
— Derive implying information; make the problem tighter -> smaller search space
— Minimal networks
During search
— Look ahead schemes:
« Variable ordering — choose most constrained variable
« Value ordering — choose a least restricting value
— Interleaving search and inference
» Forward checking
« MAC (Maintaining Arc Consistency)
— Tradeoff btwn complexity (overnead) and benefit of inference
* Propositional Satisfiability
— Unit propagation as arc-consistency for CNFs

ICS-271:Notes 5: 64

o) The Effect of Consistency Level

x ¥) Root
(a)

After arc(2)-consistency z=5 and |=5 are
removed

After path(3)-consistency
- R_zx
- R_zy
- R_zl
- R _xy
- R x
- Ryl

(b)

ICS-271:Notes 5: 65

Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn't provide early detection for all failures:

SIS~ S

WA NT Q NSW v SA T

NT and S A cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Spctions 3.7 and 4.4, Chapter 5 of AIMAZe 26

|| Arc consistency |

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed y

TN

WA NT Q NSW \ SA T

=] B[xpE] XEiE
— { s—

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

ICS-271:Notes 5: 67

Look-back:

Backjumping / Learning

 Backjumping:

— In deadends, go back to the most recent culprit.
« Learning:

— constraint-recording, no-good recording.

— good-recording

ICS-271:Notes 5: 68

Backjumping

Figure 6.1: A modified coloring problem.

(X1=r,x2=b,x3=b,x4=b,x5=g,x6=r x7={r,b})
(r,b,b,b,g,r) conflict set of x7

(r,-,b,b,g,-) c.s. of x7

(r,-,b,-,-,-,-) minimal conflict-set

Leaf deadend: (r,b,b,b,g,r)

Every conflict-set is a no-good

Xy

ICS-271:Notes 5: 69

Example of Gaschnig’s backjump

xl

x2
x3

xd
x5

xfi

x7

Figure 6.2: Portion of the search space explored by Gaschnig's backjumping, on the exam-
ple network in Figure 6.1 under 1 = red. The nodes circled are explored by backtracking
but not by Gaschnig's backjumping. Notice that unlike previous examples we explicitly
display leaf dead-end variables although they are not legal states in the search space.

Example 6.2.3 Consider the problem in Figure 6.1 and the order d;. At the dead-end
for z; that results from the partial instantiation (< z;,red >, < zp, blue >, < 3, blue >
< Ty, blue >, < x5, green >, < xg, red >), latest; = 3, because z; = red was ruled out
by < zi,red >, z7 = blue was ruled out by < z3,blue >, and no later variable had to
be examined. On returning to zz, the algorithm finds no further values to try (D5 = 0).
Since latest; = 2, the next variable examined will be £3. Thus we see the algorithm’s
ability to backjump at leaf dead-ends. On subsequent dead-ends, as in x3, it goes back to
its preceding variable only. An example of the algorithm’s practice of pruning the search

space is given in Figure 6.2.
ICS-271:Notes 5: 71

Problem structure

O
@

Tasmania and mainland are independent subproblems

|dentifiable as connected components of constraint graph

Sectiona 3.7 and 4.4, Chapler 5 of ATV AZe 42

Problem structure contd.

Suppose each subproblem has ¢ variables out of n total

Worst-case solution cost is n/c - d°, linear in n

E.g., n=280,d=2 ¢=20
250 = 4 billion years at 10 million nodes/sec
4 - 220 = 0.4 seconds at 10 million nodes/sec

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d?) time

Compare to general CSPs, where worst-case time is O(d")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe 34

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

I."f;&\'-l #/E\

AL >))]
Ve[(A~BLCcNDLENF

/_\/\-- —~ \ /N N/

':\ /I (F

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)

3. For j from 1 to n, assign X; consistently with Parent(X;)

4. Arc-consistency in tree-structured CSPs makes search backtrack-free

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe 45

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
O—5 O—@
c P NG
O O
Q. @

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d®- (n — c)d?), very fast for small ¢

Spctions 3.7 and 4.4, Chapter 5 of AIMAZe

kL]

The cycle-cutset method

An instantiation can be viewed as blocking cycles in the graph

Given an instantiation to a set of variables that cut all cycles (a
cycle-cutset) the rest of the problem can be solved in linear time by
a tree algorithm.

Complexity (n number of variables, k the domain size and C the
cycle-cutset size):

O(nk®k?)

ICS-271:Notes 5: 77

Tree Decomposition

Complexity is O(n exp(w))
Where w bounds the number of
Variables in a cluster. Known as the
treewidth

ICS-271:Notes 5: 78

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints

operators reassign variable values
Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe

Example: 4-Queens

States: 4 queens in 4 columns (4" = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: A(n) = number of attacks

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe a8

Problem Hardness

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

B

number of variables

CPU
time

=
critical
ratio

Sections 3.7 and 4.4, Chapter 5 of AIMA2e 39

ICS-271:Notes 5: 81

© o N OhAWDNRE

GSAT —local search for SAT

(Selman, Levesque and Mitchell, 1992)

For i=1 to MaxTries
Select arandom assignment A
For j=1 to MaxFlips
iIf A satisfies all constraint, return A
else flip avariable to maximize the score
(number of satisfied constraints; if no variable
assignment increases the score, flip at random)
end
end

Greatly improves hill-climbing by adding
restarts and sideway moves

ICS-271:Notes 5: 82

WalkSAT

(Selman, Kautz and Cohen, 1994)

Adds random walk to GSAT:

With probability p

random walk — flip a variable in some unsatisfied constraint
With probability 1-p

perform a hill-climbing step

Randomized hill-climbing often solves
large and hard satisfiable problems

ICS-271:Notes 5: 83

More Stochastic Search:
Simulated Annealing, reweighting

« Simulated annealing:
— A method for overcoming local minimas
— Allows bad moves with some probability:

« With some probability related to a temperature parameter T the
next move is picked randomly.

— Theoretically, with a slow enough cooling schedule, this algorithm
will find the optimal solution. But so will searching randomly.

 Breakout method (Morris, 1990): adjust the weights of the violated
constraints

ICS-271:Notes 5: 84

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

lterative min-conflicts is usually effective in practice

Sectiona 3.7 and 4.4, Chapter 5 of AIMAZe

40

