Set 3: Informed Heuristic Search

ICS 271 Fall 2013
Kalev Kask

Overview

e Heuristics and Optimal search strategies

heuristics

hill-climbing algorithms

Best-First search

A*: optimal search using heuristics

Properties of A*
* admissibility,
* consistency,
e accuracy and dominance
* Optimal efficiency of A*

Branch and Bound
lterative deepening A*
Automatic generation of heuristics

Heuristic Search

* State-Space Search: every problem is like search of a map

A problem solving robot finds a path in a state-space graph from start
state to goal state, using heuristics

=] Dradea

Straight-line distance

o Buchapest
Arad 155
Bucharest 0
Cralova L&D
Dobreta 142
Eforie 151
Fagaras 176
Giurgiu 77
Hirsova 151
Ins 1185
Lugoj 244
hlehadis 141
Meamt 134
Orades 150
Pitesti 1
Rimnicu Vikea o3
Sibiu 153
Timisoars 179
Urziceni B0
Cralova Vaslui 199
Zerind 174

Heuristic = straight-line distance
271-Fall 2013

State Space for Path Finding in a Map

< had

imiscara

& Arad v ¢ Fagaras » ¢ Oradea ¥ Bimniewilemy 4 Arad v ¢ Lugej Arad ¢ Oradea 3

271-Fall 2013

State Space for Path Finding in a Map

< Amd >

imiscara

Fimnicu Wlcaa

271-Fall 2013

Greedy Search Example

g

B

T

TN, ; 3 I
- " = y . " — -
366 y ™ . 380 193

: ",

 Sbiu_OpGuchars=D

253 a

State Space of the 8 Puzzle

8-puzzle: 181,440 states
15-puzzle: 1.3 trilion
24-puzzle: 10"25

Search space exponential

Use Heuristics
as people do

HHa!' .
7lale

I5j

Left J’ Right

Problem

Initial state

1113

8 2

-

goal

|
!
Y

714 6l{117 6/ 57
nonjponiona| o

' K 453”1!4! 1]al3]
5|7 8,6l[718l6]l7]6la![7]6 2|
Bl oninn (DNl
I _ T
| | | ! |
v ' v y v Y

Figure 3.6 State space of the 8-puzzle generated by

271-Fall 2013

“move blank"” operations.

State Space of the 8 Puzzle
Problem BE

hl =number of misplaced tiles

h2 = Manhattan distance

Left J’ Right

H1.]3|'i'1!3..4'3"-_1‘!4]3: 1lajaji]ajsl|1]«[l1]als
71alej 7lal6|j117 6 s5i7/8| 7 8/6l[7l8l6]l7]elal[7]6] 2]
la!‘s'k_2|sliaL2|E5 Biﬁi.j__ﬂ.j'zﬁ 3 IE Iaa],is
| | 1 | !
-’ | | ' | .!
v v v ' y ' '
Figure 3.6 State space of the 8-puzzle generated by
“move blank"” operations.

271-Fall 2013

What are Heuristics

Rule of thumb, intuition

A quick way to estimate how close we are to the

goal. How close is a state to the goal..

Pearl: “the ever-amazing observation of how much
people can accomplish with that simplistic, unreliable
information source known as intuition.

8-puzzle

— h1(n): number of misplaced tiles

”

— h2(n): Manhattan distance

Path-finding on a map
— Euclidean distance

7 2 1
5 3 4
8 3 6 7

Start State

h,(S)=28

h,(S) = ? 3+1+2+2+2+3+3+2 = 18

Goal State

Straight-line distance

o Buchamst
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Meamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

664

0
160
242
161
174
151
226
244
241

100
193
153
39

1o
74

Problem: Finding a Minimum Cost Path

* Previously we wanted an arbitrary path to a goal or best
cost. Now, we want the minimum cost path to a goal G

— Cost of a path = sum of individual transitions along path

 Examples of path-cost:
— Navigation

* path-cost = distance to node in miles
— minimum => minimum time, least fuel

— VLSI Design

* path-cost = length of wires between chips
— minimum => least clock/signal delay

— 8-Puzzle

* path-cost = number of pieces moved
— minimum => |east time to solve the puzzle

. ﬁllgcarithm: Uniform-cost search... still somewhat
In

271-Fall 2013

Heuristic Functions

e 8-puzzle
— Number of misplaced tiles
— Manhatten distance
— Gaschnig’s

* 8-queen
— Number of future feasible slots

— Min number of feasible slots in a
row

— Min number of conflicts (in
complete assignments states)

e Travelling salesperson
— Minimum spanning tree
— Minimum assignment problem

4

7 2
5
8 3

7

Start State

Goal State

Best-First (Greedy) Search:
f(n) = number of misplaced tiles
21813

1]6]4
e 1123 A5
164 Bl 4
118 11613
21813 21813 21813
11614 1] |4 11614
5 L1715 3 17]6]5 51715
Stat and Goal Configurations for the Eight-Puzze \
283 21 3 2183
e 13[4 1[4
A3/'76\ 3 [76]5 4 [I16I5
HnE 21203 \ To the goal
3 [7]6]5 4 1 Tels

3
4

8
1
6
1
6

5
\ To more fruitless wandering

| [g] [oe

271-Fall 2013

Romania with Step Costs in km

Ta

Arad

271-Fall 2013

8ad

Rimnicu ¥Wikcea

[] ¥Waslui

-] Hirsowa

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobrets
Eforie
IFagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

ks

0
Lad
42
lal
17&

151
224
14
241
s

L
193
153
329

195
A4

Greedy Best-First Search

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

e.g., hq p(n) = straight-line distance from n to
Bucharest

Greedy best-first search expands the node
that appears to be closest to goal

Greedy Best-First Search Example

Greedy Best-First Search Example

253 ax a4

[0 Cradea

Pitesti

Greedy Best-First Search Example

SCTR

- 32 a4

366 178 380 193

Greedy Best-First Search Example

SCTR

; S , - 3 I
- " = y . " — -
366 y ™ . 380 193

: ",

 Sbiu_OpGuchars=D

253 a

Problems with Greedy Search

Not complete

Get stuck on local minimas and plateaus,
Irrevocable,
Infinite loops

Can we incorporate heuristics in systematic
search?

Informed Search - Heuristic Search

How to use heuristic knowledge in systematic search?
Where ? (in node expansion? hill-climbing ?)
Best-first:
— select the best from all the nodes encountered so far in OPEN.
— “good” use heuristics
Heuristic estimates value of a node
— promise of a node
— difficulty of solving the subproblem
— quality of solution represented by node
— the amount of information gained.
f(n)- heuristic evaluation function.
— depends on n, goal, search so far, domain

A" Search

|ldea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to goal

A" Searc

h Exam

366=0+366

e

A" Search Example

—

imisoara

H7=118+329 4489=75+374

Search Example

< Sbi >

el 447=118+379 449-T54374

G46=280+366 415=239+176 671=291+380 413=220+193

Search Example

< hmd
c:fsﬁ@
e H47=118+329 449=75+374

G46=280+366 415=239+176 &71= 2‘31-!-380

526=366+160 417=317+100 553=300+253

A" Search Example

nd
——— e

<8k >

"‘: — H7=1158+329 448=T5+374

-

G45=280+366 Iy ”x\ G671=281+380

> & G TED>

531=338+253 450=45040 526=366+160 417=317+100 553=300+253

271-Fall 2013

A" Search Example

C Amd

——.

{: Shiu 0 imisoara
. _

H7=118+329

m

EJ-E-EB’JHEE -~ "\‘ 6?1 2914-380

591=338+253 450=450+0 526=366+160 T T 553=300+253

PETD o> @D

418=418+0 G15=455+160 G07=414+193

4489=75+374

A*- a Special Best-First Search

Goal: find a minimum sum-cost path

Notation:
— ¢(n,n’) - cost of arc (n,n’)
— g(n) = cost of current path from start to node n in the search tree.
— h(n) = estimate of the cheapest cost of a path from n to a goal.
— Special evaluation function: f=g+h

f(n) estimates the cheapest cost solution path that goes through n.
— h*(n) is the true cheapest cost from n to a goal.
— g*(n) is the true shortest path from the start s, to n.

If the heuristic function, h always underestimate the true cost
(h(n) is smaller than h*(n)), then A* is guaranteed to find an
optimal solution.

A* on 8-Puzzle with h(n) = # misplaced tiles

IR E
{64
0+ 417015
BB IR E 2113
1]6]4 1 4 11614
1 + 51715 1 + 3 765 1+ 505
BB 5T 13 AEE
114 1[8]4 114
2 + 3 76l 2 + 3 [716]5 2+ 4 [716]5
8]3 21313 T3 T3
21114 71114 1134 1EE
3 + 3 [Tlel5 3+ 4 6]5 3+2?i5 3 + 4 [71sl5
1213
3|4
4 + 1171615
Goal Y
1213 213
3] |4 71814
271-Fall 2013 5+ 0 [Zlels 5+ 2 [sls

Algorithm A* (with any h on search Graph)

* Input: an implicit search graph problem with cost on the arcs
e Qutput: the minimal cost path from start node to a goal node.
— 1. Put the start node s on OPEN.
— 2. 1f OPEN is empty, exit with failure
— 3. Remove from OPEN and place on CLOSED a node n having minimum f.

— 4. If nis a goal node exit successfully with a solution path obtained by
tracing back the pointers from n to s.

— 5. Otherwise, expand n generating its children and directing pointers
from each child node to n.

* For every child node n’ do
— evaluate h(n’) and compute f(n’) = g(n’) +h(n’)= g(n)+c(n,n’)+h(n’)
— If n’is already on OPEN or CLOSED compare its new f with the old f. If the new value is
higher, discard the node.
— Else, put n” with its fvalue in the right order in OPEN

— 6. Go to step 2.

Best-First Algorithm BF (*)

Put the start node s on a list called OPEN of unexpanded nodes.
If OPEN is empty exit with failure; no solutions exists.

Remove the first OPEN node n at which f is minimum (break ties arbitrarily), and place it on a list called
CLOSED to be used for expanded nodes.

Expand node n, generating all it’s successors with pointers back to n.

5. If any of n’s successors is a goal node, exit successfully with the solution obtained by tracing the path

(o)}

*

along the pointers from the goal back to s.

. For every successor n’on n:

a. Calculate f (n’).
b. if n” was neither on OPEN nor on CLOSED, add it to OPEN. Attach a

pointer from n’ back to n. Assign the newly computed f(n’) to node n’.
c. if n” already resided on OPEN or CLOSED, compare the newly

computed f(n’) with the value previously assigned to n’. If the old

value is lower, discard the newly generated node. If the new value is lower, substitute it for the old (n’
now points back to n instead of to its previous predecessor). If the matching node n’ resided on CLOSED,
move it back to OPEN.

Go to step 2.

With tests for duplicate nodes.

Example of A* Algorithm in Action

1
2+10.4=12.4 9 =13.9
3+6.7=9.7 Q 5)

- s \\8+69:149 6
7+4_1%%> € 6 +6.9=12.9
I
10+3.0=13

11+6.7=17.7
8

4.0

13+0=13

Behavior of A - Termination

The heuristic function h(n) is called admissible if h(n) is never larger than
h*(n), namely h(n) is always less or equal to true cheapest cost from n to
the goal.

A* is admissible if it uses an admissible heuristic, and h(goal) = 0.

Theorem (completeness) (Hart, Nilsson and Raphael, 1968)

— A* always terminates with a solution path (h is not necessarily admissible) if
* costs on arcs are positive, above epsilon
* branching degree is finite.

Proof: The evaluation function f of nodes expanded must increase

eventually (since paths are longer and more costly) until all the nodes on
an optimal path are expanded.

Behavior of A* - Completeness

 Theorem (completeness for optimal solution) (HNL, 1968):

— If the heuristic function is admissible than A* finds an optimal
solution.

 Proof:

— 1. A* will expand only nodes whose f-values are less (or equal)
to the optimal cost path C* (f(n) is less-or-equal C*).

— 2. The evaluation function of a goal node along an optimal path
equals C*.

e Lemma:

— Anytime before A* terminates there exists and OPEN node n’ on
an optimal path with f(n’) <= C*.

Consistent (monotone) Heuristics

* A heuristicis consistent if for every node n, every successor n' of n generated by any action a,

h(n) < c(n,a,n’') + h(n')

* If his consistent, we have c(n,a,n’)

f(n') = g(n') + h(n’)
=g(n) + c(n,a,n') + h(n')
>g(n) + h(n)
= f(n)

* i.e, f(n)is non-decreasing along any path.

* Theorem: If h(n) is consistent, f along any path is non-decreasing.
* Corollary: the f values seen by A* are non-decreasing.

Consistent Heuristics

If h is consistent) and h(goal)=0 then h is admissible
— Proof: (by induction of distance from the goal)

An A* guided by consistent heuristic finds an optimal paths to all expanded nodes, namely
g(n) = g*(n) for any closed n.

— Proof: Assume g(n) > g*(n) and n expanded along a non-optimal
path.

— Let n’ be the shallowest OPEN node on optimal path pton 2>
— g(n’) = g*(n’) and therefor f(n’)=g*(n’)+h(n’)

— Due to consistency we get f(n’) <=g*(n’)+k(n’,n)+h(n)

— Since g*(n) = g*(n’)+k(n’,n) along the optimal path, we get that
— f(n’) <=g*(n) + h(n)

— And since g(n) > g*(n) then f(n’) < g(n)+h(n) = f(n), contradiction

A" with Consistent Heuristics

. A" expands nodes in order of increasing f value

. Gradually adds "f-contours" of nodes
. Contour i has all nodes with f=f, where f, < f,,,

271-Fall 2013

Summary of Consistent Heuristics

* hisconsistent if the heuristic function satisfies triangle inequality for every n and
its child node n’: h(ni) <= h(nj) + c(ni,nj)

h(n;)

h(n) < c(ni, m) + h(n))

 When his consistent, the f values of nodes expanded by A* are never decreasing.
* When A* selected n for expansion it already found the shortest path to it.
 When his consistent every node is expanded once (if check for duplicates).
 Normally the heuristics we encounter are consistent

— the number of misplaced tiles

— Manhattan distance

— straight-line distance

Admissible and Consistent Heuristics?

E.g., for the 8-puzzle:

h,(n) = number of misplaced tiles

h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)
The true cost is 26.
Average cost for 8-puzzle is 22. Branching degree 3.

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

* hy(S)=28
. hg(S) =? 3+1+2+2+2+3+3+2 =18

271-Fall 2013

Summary so far

* Heuristic (informed) search
— Best-First (guided by heuristic eval fn f)
— A* as a special case of BF (f=g+h)
— A* is guaranteed to terminate as long as costs>0 and branching
factor is finite (any h)
— A* is guaranteed to find optimal if h is admissible
* If not admissible, still useful, but optimality not guaranteed

— Consistent (monotonic) h
* Consistent implies admissible
 When a node is selected for expansion, shortest path to it is found
* More efficient, do not have to re-open expanded (closed) nodes
* Expands nodes in increasing order of f

A* properties
A* expands every path along which f(n) < C*
A* will never expand any node s.t. f(n) > C*

If h is consistent A* will expand any node such that f(n) < C*

Therefore, A* expands all the nodes for which f(n) < C* and
a subset of the nodes for which f(n) = C*.

Therefore, if h.(n) < h:(n) clearly the subset of nodes
expanded by h. is smaller.

Complexity of A*

A* is optimally efficient (Dechter and Pearl 1985):

— It can be shown that all algorithms that do not expand a node
which A* did expand (inside the contours) may miss an optimal
solution

A* worst-case time complexity:
— is exponential unless the heuristic function is very accurate
If his exact (h = h*)
— search focus only on optimal paths
Main problem: space complexity is exponential
Effective branching factor:
— logarithm of base (d+1) of average number of nodes expanded.

Effectiveness of A* search

How quality of heuristic impact search?
What is the time and space complexity?
Is any algorithm better? Worse?

Case study: the 8-puzzle

Effectiveness of A* Search Algorithm

Average number of nodes expanded

d IDS A*(h1) A*(h2)
2 10 6 6

4 112 13 12

8 6384 39 25

12 364404 227 73

14 3473941 539 113

7 7276 676
7 39135 1641

Average over 100 randomly generated 8-puzzle problems
h1l = number of tiles in the wrong position
h2 = sum of Manhattan distances

Dominance

Definition: If h,(n) 2 h,(n) for all n (both admissible) then h,
dominates h,

Is h, better for search?
Typical search costs (average number of nodes expanded):

d=12 IDS = 3,644,035 nodes
A’ (h) = 227 nodes
A’ (hz) = 73 nodes

d=24 IDS = out of memory
A’ (h) =39,135 nodes
A’ (hz) =1, 641 nodes

Heuristic's Dominance and Pruning Power

Definition:

— A heuristic function h, (strictly) dominates h, if both are
admissible and for every node n, h,(n) is (strictly) greater than

h,(n).
Theorem (Hart, Nilsson and Raphale, 1968):

— An A* search with a dominating heuristic function h, has the
property that any node it expands is also expanded by A*
with h,.

Question: Does Manhattan distance dominate the
number of misplaced tiles?

Extreme cases
—h=0
— h=h*

A" with Consistent Heuristics

. Contours of stronger (dominating) heuristics are inside contours of weaker heuristics

271-Fall 2013

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)
Time?? Exponential in [relative error in h x length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f; . until f; is finished

A* expands all nodes with f(n) < C*
A" expands some nodes with f(n) = C"
A* expands no nodes with f(n) > C*

Chapter 4, Sections 1-3,

271-Fall 2013

Relationships among Search Algorithms

Depth first
(LIFO ordering)

f = depth
(Breadth first)

h=0

(Uniform cost)

(Best-first search)

(Generic graph-search
algorithms)

Example of Branch and Bound in action

1
2+10.4=12.4 5+8.9=13.9
2 D
3+6.7=9.7 / %8
+
7+4=11 4+8.9=12.9

-
4 8+69 14.9 0
@ @ 6+69 12.9

12+3=15 6 0+8$9 18.9

L=15+0=15

11+6.7=17.7

G/

271-Fall

Pseudocode for Branch and Bound Search
(An informed depth-first search)

Initialize: Let Q = {S}, L=00

While Q is not empty
pull Q1, the first element in Q
if f(Q1)>=L, skip it
If Q1 is a goal compute the cost of the solution and update
L <-- minimum (new cost, old cost)

else

child_nodes = expand(Q1),

<eliminate child_nodes which represent simple loops>,

For each child node n do:

evaluate f(n). If f(n) is greater than L discard n.

end-for

Put remaining child_nodes on top of queue in the order of their f.
end

Continue

Properties of Branch-and-Bound

Not guaranteed to terminate unless

— has depth-bound

— consistent f and reasonable L

Optimal:

— finds an optimal solution (f is admissible)

Time complexity: exponential

Space complexity: can be linear

Advantage:

— anytime property

Note : unlike A*, BnB may (will) expand nodes f>C*.

Iterative Deepening A* (IDA*)
(combining Branch-and-Bound and A*)

* |nitialize: f <-- the evaluation function of the start node

e until goal node is found
— Loop:
* Do Branch-and-bound with upper-bound L equal to current evaluation function f.
* Increment evaluation function to next contour level

— end

* Properties:
— Guarantee to find an optimal solution
— time: exponential, like A*
— space: linear, like B&B.

— Problems: The number of iterations may be large.

B

2.1
2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.1

1.0

The Effective Branching Factor

- d=72 d=3 d=4 d=35 d

L d=3
o B(BI-1)
i / N="F1 _
7] | | | [| [[L

/| HER
d=10
£

10 100 1,000 10,000
N

Inventing Heuristics automatically

e Examples of Heuristic Functions for A*

— The 8-puzzle problem
 The number of tiles in the wrong position
— is this admissible?

* Manhattan distance
— is this admissible?

— How can we invent admissible heuristics in general?

* look at “relaxed” problem where constraints are removed
— e.g.., we can move in straight lines between cities
— e.g.., we can move tiles independently of each other

Inventing Heuristics Automatically (cont.)

How did we

— find h1 and h2 for the 8-puzzle?

— verify admissibility?

— prove that straight-line distance is admissible? MST admissible?
Hypothetical answer:

— Heuristic are generated from relaxed problems

— Hypothesis: relaxed problems are easier to solve

In relaxed models the search space has more operators or more
directed arcs

Example: 8 puzzle:

— Rule : a tile can be moved from A to B, iff
 Aand B are adjacent
e Bis blank

— We can generate relaxed problems by removing one or more of the
conditions
 ..AandB are adjacent & B is blank
e ...if Bisblank

Relaxed Problems

A problem with fewer restrictions on the actions is called a
relaxed problem

The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h,(n) (number of misplaced tiles) gives the
shortest solution

If the rules are relaxed so that a tile can move to any h/v
adjacent square, then h,(n) (Manhatten distance) gives the
shortest solution

Generating heuristics (cont.)

 Example: TSP

* Find a tour. A tour is:
— 1. A graph with subset of edges
— 2. Connected
— 3. Total length of edges minimized
— 4. Each node has degree 2

* Eliminating 4 yields MST.

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)

Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

271-Fall 2013

Automating Heuristic generation

Use STRIPs language representation:
Operators:
— pre-conditions, add-list, delete list
8-puzzle example:
— on(x,y), clear(y) adj(y,z) ,tiles x1,...,x8
States: conjunction of predicates:
— on(x1,c1),on(x2,c2)....on(x8,c8),clear(c9)
move(x,c1,c2) (move tile x from location c1 to location c2)
— pre-cond: on(x1,cl), clear(c2), adj(c1,c2)
— add-list: on(x1,c2), clear(c1)
— delete-list: on(x1,c1), clear(c2)
Relaxation:
— Remove from precondition: clear(c2), adj(c2,c3) = #misplaced tiles
— Remove clear(c2) = Manhattan distance

— Remove adj(c2,c3) =2 h3, a new procedure that transfers to the empty
location a tile appearing there in the goal

The space of relaxations can be enriched by predicate refinements
— adj(y,z) = iff neigbour(y,z) and same-line(y,z)

Heuristic generation

 Theorem: Heuristics that are generated from relaxed models
are consistent.

* Proof: his true shortest path in a relaxed model
— h(n) <=c’(n,n’)+h(n’) (¢’ are shortest distances in relaxed
graph)
— ¢’(n,n’) <=c(n,n’)
— = h(n) <=c(n,n’)+h(n’)

Heuristic generation

Total (time) complexity = heuristic computation + nodes
expanded

More powerful heuristic — harder to compute, but more pruning
power (fewer nodes expanded)

Problem:
— not every relaxed problem is easy
 How to recognize a relaxed easy problem

* A proposal: a problem is easy if it can be solved optimally
by a greedy algorithm

Q: what if neither h, nor h, is clearly better? max(h, h,)

Often, a simpler problem which is more constrained is easier;
will provide a good upper-bound.

Improving Heuristics

* Reinforcement learning.

e Pattern Databases: you can solve optimally a
sub-problem

© 2 4 1 2

© @) 3 4 O

@ || 3 || 1 ©|[|C||S

Start State Goal State

271-Fall 2013

Pattern Databases

For sliding tiles and Rubic’s cube

For a subset of the tiles compute shortest path to the goal using
breadth-first search

For 15 puzzles, if we have 7 fringe tiles and one blank, the number of
patterns to store are 16!/(16-8)! = 518,918,400.

For each table entry we store the shortest number of moves to the
goal from the current location.

Use different subsets of tiles and take the max heuristic during IDA*
search. The number of nodes to solve 15 puzzles was reduced by a
factor of 346 (Culberson and Schaeffer)

How can this be generalized? (a possible project)

Problem-reduction representations
AND/OR search spaces

The erratic vacuum world (actions are non-deterministic)
Graphical models

Decomposable production systems (Natural language parsing)
Initial database: (C,B,Z)

Rules: R1: C =>(D,L)
R2: C—~> (B,M)
R3: B> (M,M)
R4:Z - (B,B,M)
Find a path generating a string with M’s only.
The tower of Hanoi
To move n disks from peg 1 to peg 3 using peg 2
Move n-1 pegs to peg 2 via peg 3,
move the nth disk to peg 3,
move n-1 disks from peg 2 to peg 3 via peg 1.

=)

GOAL

GOAL LOOP

AND/OR Graphs

* Nodes represent subproblems

— AND links represent subproblem decompositions
— OR links represent alternative solutions

— Start node is initial problem

— Terminal nodes are solved subproblems

e Solution graph

— Itis an AND/OR subgraph such that:

* |t contains the start node

» All its terminal nodes (nodes with no successors) are solved primitive
problems

* |f it contains an AND node A, it must contain the entire group of AND links
that leads to children of A.

Algorithms searching AND/OR graphs

All algorithms generalize using hyper-arc successors rather than simple
arcs.

AO*: is A* that searches AND/OR graphs for a solution subgraph.

The cost of a solution graph is the sum cost of it arcs. It can be defined
recursively as: k(n,N) =c_n+k(n1,N)+...k(n_k,N)

h*(n) is the cost of an optimal solution graph from n to a set of goal nodes
h(n) is an admissible heuristic for h*(n)
Monotonicity:

h(n)<= c+h(n1)+...h(nk) where n1,...nk are successors of n

AO* is guaranteed to find an optimal solution when it terminates if the
heuristic function is admissible

Beyond Classical Search
(chapter 4)

Local search for optimization

— Greedy hill-climbing search, simulated annealing, local beam search,
genetic algorithms.

— Local search in continuous spaces

— SLS : "Like climbing Everest in thick fog with amnesia"
Searching with non-deterministic actions

— The erratic vacuum cleaner example

— Using AND/OR search spaces; solution is a contingent plan.
Searching with partial observations

— Using belief states

Online search agents and unknown environments
— Actions, costs, goal-tests are revealed in state only
— Exploration problems. Safely explorable

AE:

L

e

w

W

e

5 | =il

7 | =t

Fi

5 |a=tli

7 |=tld

w

21

Summary

In practice we often want the goal with the minimum cost path
Exhaustive search is impractical except on small problems

Heuristic estimates of the path cost from a node to the goal can
be efficient in reducing the search space.

The A* algorithm combines all of these ideas with admissible
heuristics (which underestimate) , guaranteeing optimality.

Properties of heuristics:

— admissibility, consistency, dominance, accuracy
Reading

— R&N Chapters 3-4

