Normal Probability Distribution

Random variable X has a Normal distribution with mean μ and variance σ^2 , or std.dev. σ . This distribution curve is symmetric, center is the mean μ and spread is the std.dev. σ . Standard Normal Random Variable:

If X = normal r.v. mean μ and std.dev. σ , then a transformation: $Z = \frac{X - \mu}{\sigma}$ (z-score) is standard normal r.v. with

mean $\mu = 0$, std.dev. $\sigma = 1$, that is: $X \sim N(\mu, \sigma^2) \implies Z \sim N(0,1)$

Use normal tables to find probabilities for *z* (areas under curve). Normal tables give: P(z < a), see shade in Tables picture. Total Area under normal curve is = 1. P[x falls into interval from a to b] = P(a < x < b) = area under the curve between a and b. P(a < x < b) = P(x < b) - P(x < a); $P(x > a) = 1 - P(x \ge a) = 1 - P(x < a).$

T-distribution

Similar to standard normal distribution, symmetric at 0, but has heavier tails. A new parameter: degrees of freedom (*df*), determines the shape (how flat) of the distribution. t-score will be different with every degree of freedom. When df = 1 => t-distr. is flat. When df $\ge 30 \approx \infty =>$ t-distr. is same as standard normal distr.

<u>Sampling distribution</u> of a statistic/estimator – the probability distribution for the possible values of the statistic that results when random samples of size n are repeatedly drawn from the population.

<u>Central Limit Theorem</u>: If random samples of *n* observations are drawn from a non-normal population with finite mean μ and standard deviation σ , then, when *n* is *large*, the sampling distribution of the sample mean \overline{x} is approximately normally

distributed, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$. The approximation becomes more accurate as *n* becomes large.

Sampling Distribution of the <u>Sample Mean</u> \overline{x}

When a random sample of *n* measurements is selected from a population with mean μ and standard deviation $\sigma \implies$

Sampling Distribution of the Sample Mean \bar{x} has mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

If $n \ge 30$, then \overline{x} has approximately-Normal distribution with mean μ and standard error $SE(\overline{x}) = \frac{\sigma}{\sqrt{n}}$.

Standardized z-score:
$$z = \frac{\overline{x} - \mu}{SE(\overline{x})} = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

(1-α)% Confidence Interval: (general formula)
[Point estimator] ± [Multiplier] × [Standard error of the estimator]

(1- α)% CI for Population Mean μ :

 $\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$, assumption: the sample is randomly selected from a normally distributed population. Use t-distr with d.f. = n - 1. Why?

Because 1 degree of freedom is lost for estimating \overline{x} in the formula of standard deviation: $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{x_i - 1}}$

Sta108 Fall 2007 Utts

Hypothesis Tests

- 1. Null and Alternative Hypotheses (Ho and Ha)
- 2. Test Statistic
- 3. Critical value / rejection region approach
- 4. Decision Rule (based on p-value), state: reject / do not reject Ho
- 5. Conclusion (Interpretation in context of the original problem)

Tests for Population Mean μ :

Type of test	Null and Alternatives	Test Statistic	p-value (use t-distr. table)
	Ho: $\mu = \mu_0$	$t^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	Rule: Reject Ho if p-value $< \alpha$
Right-tailed test:	Ha: $\mu > \mu_0$		$P(t > t^*) \qquad \qquad d.f = n - 1$
Left-tailed test:	Ha: $\mu < \mu_0$		P(t < t*)
Two-tailed test:	Ha: $\mu \neq \mu_0$		$2 P(t > t^*)$

Check assumptions that the sample is random and sample comes from normal population.