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Muchhas changedsince the widespread introductionof statistics
courses into the university curriculum, but the way introductory
statistics courses are taught has not kept up with these changes.
This article discusses the changes, and the way the introductory
syllabus should change to re� ect them. In particular, seven ideas
are discussed that every student who takes elementary statistics
should learn and understand in order to be an educated citi-
zen. Misunderstanding these topics leads to cynicism among
the public at best, and misuse of study results by policy-makers,
physicians, and others at worst.
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1. INTRODUCTION

Statistical studies are prominently featured in most major
newspapers on a daily or weekly basis, yet most citizens, and
even many reporters, do not have the knowledge required to
read them critically. When statistics courses were � rst intro-
duced, they were taken primarily by students who intended to
pursue their own research, or were in disciplines that required
them to analyze data as part of their training. The focus of those
courses was on computation, and little emphasis was placed on
how to integrate information from study design to � nal conclu-
sions in a meaningful way. Much has changed since then, in
three ways: the audience, the tools available to students, and the
world around us.

At many universities, students in a large proportion of majors
are required to take an introductory statistics course. Most of
these students will never actually do statistical analyses of their
own. Therefore, we should be preparing them to read and un-
derstand studies conducted and analyzed by others, published in
journals, and reported by the media. Anecdotally, the audience
has changedin twootherways as well.First, studentsin introduc-
tory statistics courses seem less adept at quantitative reasoning
than in earlier days, perhaps because of the broader representa-
tion of majors. And there are more returning students, who may
have different interests than traditional college-age students.

There is no question that the tools available for use by the
students have changed in recent years. Most students come to
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college with a sophisticated calculator, at least capable of � nd-
ing means and standard deviations, and often capable of doing
most of the procedures taught in introductory statistics courses.
Further, there is universal access to computers, and programs
like Excel have standard statistical features. Even the use of sta-
tistical software has changed over the past few decades, with
programs like Minitab and SPSS being menu-driven, making
them easy for novices to learn and use.

The world around us has changed as well. Statistical studies
are reported regularly in newspapers and magazines, so students
are likely to encounter them on a routine basis. And, for class-
room use, there is an abundance of examples available on the
Internet through sites like those of the GallupOrganization,USA
Today, the Bureau of Labor Statistics, and so on. Further, many
journal articles are available on-line, so it is easy for instructors
and students to � nd complete examples of the design, imple-
mentation, analysis, and conclusions of statistical studies.

The consequence of all of these changes is that there is less
need to emphasize calculations, and more need to focus on
understanding how statistical studies are conducted and inter-
preted. Relevant and interesting examples are readily available.
Yet many instructors have not made any changes in how they
teach introductory statistics.

2. SEVEN IMPORTANT TOPICS

There are of course many important topics that need to be dis-
cussed in an elementary statistics course. For this article, I have
selected seven topics that I have found to be commonly mis-
understood by citizens, including the journalists who present
statistical studies to the public. In fact researchers themselves,
who present their results in journals and at the scienti� c meet-
ings from which the journalists cull their stories, misunderstand
many of these topics. If all students of introductory statistics
understood them, there would be much less confusion and mis-
interpretation related to statistics and probability and � ndings
based on them. In fact the public is often cynical about statistical
studies, because these misunderstandingslead to the appearance
of a stream of studieswith con� ictingresults. This is particularly
true of medical studies, where the misunderstandings can have
serious consequences when neither physicians nor patients can
properly interpret the statistical results.

A summary of the seven topics covered in this article is pre-
sented � rst, followed by a more in-depth explanation with ex-
amples for each topic:

1. When it can be concludedthat a relationshipis one of cause
and effect, and when it cannot, including the difference between
randomized experiments and observational studies.

2. The difference between statistical signi� cance and practi-
cal importance, especially when using large sample sizes.
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3. The difference between � nding “no effect” or “no differ-
ence” and � ndingno statistically signi� cant effect or difference,
especially when using small sample sizes.

4. Common sources of bias in surveys and experiments, such
as poor wording of questions, volunteer response, and socially
desirable answers.

5. The idea that coincidencesand seeminglyvery improbable
events are not uncommon because there are so many possibili-
ties.

6. “Confusionof the inverse” in whicha conditionalprobabil-
ity in one direction is confused with the conditional probability
in the other direction.

7. Understandingthat variability is natural, and that “normal”
is not the same as “average.”

3. CAUSE AND EFFECT

Probably the most common misinterpretation of statistical
studies in the news is to conclude that when a relationship is
statistically signi� cant, a change in an explanatory variable is
the cause of a change in the response variable. This conclusion
is appropriate only under very restricted conditions, such as for
large randomized experiments. For single observational stud-
ies, it is rarely appropriate to conclude that one variable caused
a change in another. Therefore, it is important for students of
statistics to understand the distinction between randomized ex-
periments and observational studies, and to understand how the
potential for confounding variables limits the conclusions that
can be made from observational studies.

As an example of this problem,an article appeared in USA To-
day titled “Prayer can lower blood pressure” (Davis 1998). The
article reported on an observational study funded by the United
States National Institutes of Health, which followed 2,391 peo-
ple aged 65 or over for six years. One of the conclusionsreported
in the article read:

Attending religious services lowers blood pressure more than tuning
into religious TV or radio, a new study says. People who attended a
religious service once a week and prayed or studied the Bible once a
day were 40% less likely to have high blood pressure than those who
don’t go to church every week and prayed and studied the Bible less
(Davis 1998).

The headline and the displayed quote both indicate that pray-
ing and attending religious services actually causes blood pres-
sure to be lower. But there is no way to determine a causal
relationship based on this study. It could be that people who are
healthier are more able to attend religious services, so the causal
relationship is the reverse of what is attributed. Or, it could be
that people who are more socially inclined are less stressed and
thus have lower blood pressure, and are more likely to attend
church. There are many other possible confounding variables in
this study that could account for the observed relationship. The
problem is that readers may mistakenly think that if they alter
their behavior with more prayer and church attendance, it will
cause their blood pressure to lower.

Another example illustrates that even researchers can make
this mistake. An article in The Sacramento Bee (Perkins 1999)
reported on an observational study of a random sample of more
than 6,000 individualswith an average age of 70 when the study

began. The study followed them over time and found that a
majority, over 70%, of the participants did not lose cognitive
functioning over time. One result was quoted as “Those who
have diabetes or high levels of arteriosclerosis in combination
with a gene for Alzheimer’s disease are eight times more likely
to show a decline in cognitive function” (Perkins 1999). So far,
so good, because the reporter is not implying that the increased
risk is causal.However, one of the original researchers (if quoted
accurately) was not so careful. The researcher was quotedas fol-
lows: “That has implicationsfor prevention,which is goodnews.
If we can prevent arteriosclerosis, we can prevent memory loss
over time, and we know how to do that with behavior changes—
low-fat diets, weight control, exercise, not smoking, and drug
treatments” (Perkins 1999).

In other words, the researcher is assuming that high levels of
arteriosclerosis are causing the decline in cognitivefunctioning.
But there are many possible confounding variables that may
cause bothhigh levelsof arteriosclerosisand decline in cognitive
functioning,such as geneticdisposition,certain viruses, lifestyle
choices, and so on.

Resisting the temptation to make a causal conclusion is par-
ticularly dif� cult when a causal conclusion is logical, or when
one can think of reasons for how the cause and effect mecha-
nism may work. Therefore, when illustrating this concept for
students, it is important to give many examples and to discuss
how confounding variables may account for the relationship.
Fortunately, examples are easy to � nd. Most major newspapers
and Internet news sites report observationalstudies several times
a week, and they often make a possibly erroneous causal con-
clusion.

4. STATISTICAL SIGNIFICANCE AND PRACTICAL
IMPORTANCE

Studentsneed to understandthata statisticallysigni� cant � nd-
ing may not have much practical importance. This is especially
likely to be a problem when the sample size is large, so it is easy
to reject the null hypothesis even if there is a very small effect.

As an example, the New York Times ran an article with the
title “Sad, Lonely World Discovered in Cyberspace” (Harmon
1998). It said, in part:

People who spend even a few hours a week online have higher levels
of depressionand loneliness than they would if they used the computer
network less frequently: : : it raises troublingquestionsabout the nature
of ‘virtual’ communication and the disembodied relationships that are
often formed in cyberspace (Harmon 1998).

It sounds like the research uncovered a major problem for
people who use the Internet frequently.But on closer inspection,
the magnitude of the difference was very small. On a scale from
1 (more lonely) to 5, self-reported loneliness decreased from an
average of 1.99 to 1.89, and on a scale from 0 (more) to 3 (less),
self-reported depressiondecreased from an averageof .73 to .62.

Here is another example of how a very large sample size re-
sulted in a statistically signi� cant difference that seems to be
of little practical importance to the general public. The origi-
nal report was in Nature (Weber, Prossinger, and Seidler 1998),
and a Reuters article on the Yahoo Health News Web site ran
a headline “Spring Birthday Confers Height Advantage” (Feb.
18, 1998). The article described an Austrian study of the heights
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of 507,125 military recruits, in which a highly signi� cant differ-
ence was found between recruits born in the spring and the fall.
The difference in average heights was all of .6 centimeters, or
about 1/4 inch. While that may be important to researchers who
are studying growth issues, the difference is hardly what most
of us would consider to be “a height advantage.”

A related common problem is when multiple comparisons or
analyses are done, but only those that achieve statistical signi� -
cance are reported. In most studies a variety of relationships are
examined, but only those achieving statistical signi� cance are
reported in the media. For instance, a randomized experiment
studying the effect of taking aspirin or hormones may examine
their relationshipwith multipleoutcomes, such as heart disease,
stroke, and various types of cancer. If the researchers have not
adjusted for multiple comparisons, it is misleading to focus on
the relationships that achieved statistical signi� cance as if those
were the only ones tested. Although the multiple analysis prob-
lem is not discussed in detail here, it is important to discuss it
with students when explaining cautions about interpreting sta-
tistical signi� cance.

5. LOW POWER VERSUS NO EFFECT

It is also important for students to understand that sample size
plays a large role in whether or not a relationshipor difference is
statisticallysigni� cant, and that a � ndingof “no difference” may
simply mean that the study had insuf� cient power. For instance,
suppose a study is done to determine whether more than a ma-
jority of a populationhas a certain opinion, so the test considers
H0 : p = :5 versus Ha : p > :5. If in fact as much as 60% of
the population has that opinion, a sample size of 100 will only
have power of .64. In other words, there is still a 36% chance
that the null hypothesis will not be rejected. Yet, reporters often
make a big deal of the fact that a study has “failed to replicate”
an earlier � nding, when in reality the magnitude of the effect
mimics that of the original study, but the power of the study was
too low to detect it as statistically signi� cant.

As an examplewith importantconsequences,a February 1993
conference sponsored by the United States National Cancer In-
stitute (NCI) conducted a meta-analysis of eight studies on the
effectiveness of mammography as a screening device. The con-
clusion about women aged 40–49 years was: “For this age group
it is clear that in the � rst 5–7 years after study entry, there is no
reduction in mortality from breast cancer that can be attributed
to screening” (Fletcher et al. 1993).

The problematicwords are that there is no reduction. A debate
ensued between the NCI and American Cancer Society.Here are
two additional quotes that illustrate the problem:

A spokeswomanfor the American Cancer Society’s nationalof� ce said
Tuesday that the : : : study would not change the group’s recommenda-
tion because it was not big enough to draw de� nite conclusions. The
study would have to screen 1 million women to get a certain answer
because breast cancer is so uncommon in young women (San Jose
Mercury News, Nov. 24, 1993).

Even pooling the data from all eight randomized controlled trials pro-
duces insuf� cient statistical power to indicate presence or absence of
bene� t from screening. In the eight trials, there were only 167,000
women (30% of the participants) aged 40–49, a number too small to
provide a statistically signi� cant result (Sickles and Kopans 1993).

The con� dence interval for the relative risk after seven years
of follow-up was .85 to 1.39, with a point estimate of 1.08,
indicating that there may be a small reduction in mortality for
women in this age group, or there may be a slight increase (see
Utts 1999, p. 433). The original statement that there was “no
reduction in mortality” is dangerously misleading.

The lesson to convey in this context is that students should be
wary when they read that a study found no effect or relationship
when the researchers expected there to be one. Generally, this
conclusion is newsworthy only when it contradicts earlier � nd-
ings or common wisdom. It is important in such cases to � nd
out the size of the sample, and if possible, to � nd a con� dence
interval for the results. If the con� dence interval is wide or if
it tends to be more to one side of chance than the other, there
is reason to suspect that the study may not have had suf� cient
power to detect a real difference or relationship.

Power is no longer a topic to be avoided in an introductory
course because it is easy to � nd software that can do the calcu-
lations, and the concept is no more dif� cult than the concept of
Type 1 and Type 2 errors. Minitab will calculate power for most
of the tests taught in an elementary statistics course, and there
are Web sites available as well. A good Internet source with
links to hundreds of sites for statistical calculations, including
power, is http://members.aol.com/johnp71/javastat.html, main-
tained by John Pezzullo.

6. BIASES IN SURVEYS

There are many different sources through which bias can be
introducedinto surveys.Some of the more egregiousare dif� cult
to detect unless all of the details are understood. For example, a
Gallup Poll released on July 9, 1999, based on a random sample
of 1,016 U.S. adults, asked two different questions in random
order, each of which could be used to report the percentage of
people who think creationism should be taught in public schools
in the United States. The two questions and the proportion that
answered “Favor” were:

Question 1: Do you favor or oppose teaching creationism
ALONG WITH evolution in public schools? (68% favor).

Question 2: Do you favor or oppose teaching creationism
INSTEAD OF evolution in public schools? (40% favor).

Notice that depending on one’s own opinion, these results
could be misused to advantage.Someone in favor of creationism
could report that 68% think it should be taught, while someone
opposedtocreationismcould report thatonly40%thinkit should
be taught.

It’s not just the wording of questions that can cause bias to be
introduced.There are many other detailsof how a survey is done
that may seem minor but that can have major consequences.For
instance, sometimes the order in which questions are asked can
change the results. Clark and Schober (1992, p. 41) reported on
a survey that asked the following two questions:

1. How happy are you with life in general?

2. How often do you normally go out on a date? About
times a month.

There was almost no relationship between the respondents’
answers to the two questions. But when the survey was done
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again with Question 2 being asked � rst, the answers were highly
related. Clark and Schober speculated that in that case, respon-
dents interpreted Question 1 to mean “Now, considering what
you just told me about dating, how happy are you with life in
general?” Respondents naturally think that questions on a sur-
vey are supposed to be related, and any issues brought to mind
by one question may in� uence subsequent answers.

There are many other ways in which question wording, ques-
tion order, method of sample selection and other issues can
bias survey results. See Tanur (1992), Utts (1999), or Utts and
Heckard (2003) for more discussion and examples.

7. PROBABLE COINCIDENCES

Most people have experienced one or more events in their
lives that seem to be improbablecoincidences.Some such events
are so surprising that they attract media attention, often with
estimatesof how improbable theyare. For instance,Plous (1993)
reported a story in which a Mr. and Mrs. Richard Baker left a
shopping mall, found what they thought was their car in the
parking lot, and drove away. A few minutes later they realized
that they had the wrong car. They returned to the parking lot
to � nd the police waiting for them. It turned out that the car
they were driving belonged to another Mr. Baker, who had the
same car, with an identical key! Plous reported that the police
estimated the odds at a million to one.

The problem with such stories and computations is that they
are based on asking the wrong question. The computation most
likely applies to that exact event happening. A more logical
question is: What is the probability of that or a similar event
happening sometime, somewhere, to someone? In most cases,
that probability would be very large.

For instance, I was once on a television talk show about luck
with a man who had won the million-dollar New York State
lottery twice, and the host of the show thought this demonstrated
extraordinaryluck.Althoughit may havebeenwonderful for that
individual, Diaconis and Mosteller (1989) reported that there is
about an even chance of the same person winning a state lottery
in the United States in a seven-year period. That was precisely
the interval between the two wins for this person.

It is not easy to calculate precise probabilities for coinci-
dences, but it is possible to show students calculations that ap-
proximate the order of magnitude. For instance, there are many
stories about twins raised separately who meet as adults and dis-
cover that they have striking characteristics in common. Perhaps
their wives or children have the same names, and they drive the
same kind of car, and they work in the same profession. As a
crude approximation, suppose the probability of a “match” on
any given item for two people of the same age and sex is 1/50
and that whether there is a match on one item is independent of
whether there is a match on other items. Further, suppose in the
course of getting to know each other they discuss 200 items, cer-
tainly not an unrealistic number. Then the number of “matches”
is a binomial random variable with n = 200 and p = :02. The
expected number of matches is four, and even the probabilityof
6 or more matches is relatively high, at about .21. But the focus
in this kind of encounter is on the striking matches, and not on
the many dozens of topics that were discussed but did not match.

Even if an event with extremely low probabilityof occurrence
is reported, remember that there are over six billion people in
the world, with many circumstances occurring to each one daily.
Therefore, there are surely goingtobe some thatseem incredible.
In fact if something has only a one in a million probability of
happening to any particularperson in a given day, it will happen,
on average, to over 6000 people in the world, each day. When
the media reports an incredible coincidence it should be viewed
from this perspective.

8. CONFUSION OF THE INVERSE

Most teachers of statistics know that probability can be very
confusing to students, and that intuition about probability is not
very good. Psychologists have identi� ed a version of this prob-
lem that leads to important misunderstandings, called “confu-
sion of the inverse.” The basic problem is that people confuse the
conditionalprobabilityP (AjB) with the conditionalprobability
P (BjA).

As an example, Eddy (1982) presented this scenario to 100
physicians:

One of your patients has a lump in her breast. You are almost certain
that it is benign, in fact you would say there is only a 1% chance that
it is malignant. But just to be sure, you have the patient undergo a
mammogram, a breast X-ray designed to detect cancer.

You know from the medical literaturethat mammograms are 80% accu-
rate for malignant lumps and 90% accurate for benign lumps. In other
words, if the lump is truly malignant, the test results will say that it is
malignant 80% of the time and will falsely say it is benign 20% of the
time. If the lump is truly benign, the test results will say so 90% of the
time and will falsely declare that it is malignant only 10% of the time.

Sadly, the mammogram for your patient is returned with the news that
the lump is malignant. What are the chances that it is truly malignant?

Most of the physicians responded with an answer close to
75%. But in fact, given the probabilities presented, the correct
answer is only about 7.5%! Eddy reported: “When asked about
this, the erring physicians usually report that they assumed that
the probability of cancer given that the patient has a positive
X-ray was approximately equal to the probability of a positive
X-ray in a patient with cancer (1982, p. 254).” In other words,
the physicians confused the probability of a positive test given
that the woman has cancer with the probability that the woman
has cancer given that the test was positive.

Most medical tests have low false positive and false negative
rates, yet the probability of having the disease, given that a test
result is positive, can still be quite low if the initial probabilityof
having the disease is low. In that case, most positive test results
will be false positives.

I � nd that the easiest way to illustrate this concept for stu-
dents is through what I call a “hypothetical hundred thousand”
(Utts and Heckard 2003, p. 228), which is a table showing the
theoretical breakdown of results for 100,000 people. Table 1 il-
lustrates the breakdownusing the numbers for the exampleEddy
presented to the physicians. Notice that of the 10,700 patients
whose test is malignant, only 800, or about 7.5% actually had a
malignancy. Because there were so many more women with be-
nign lumps than malignant lumps, the 10% of them with a false
positive test made up the large majority of positive test results.

There are numerousothersituationswhere confusionof the in-
verse may apply. For example, a study released by the American

The American Statistician, May 2003, Vol. 57, No. 2 77



Table 1. Breakdown of Actual Status Versus Test Status for
a Rare Disease

Test is malignant Test is benign Total

Actually malignant 800 200 1,000
Actually benign 9,900 89,100 99,000
Total 10,700 89,300 100,000

Automobile Association Foundation for Traf� c Safety (Stutts et
al. 2001) was widely publicized because it found that only 1.5%
of drivers in accidents reported that they were using a cell phone,
whereas, for example, 10.9% reported that they were distracted
by another occupant in the car. Many media reports concluded
that this meant that talking on a cell phone was much less likely
to cause an accident than other distractions, like talking with
someone in the car or attending to the radio.

But notice that this is confusing two conditionalprobabilities.
The reported proportion of accidents of .015 (1.5%) for which
the driver was using a cell phone is an estimate of the proba-
bility that a driver was using a cell phone, given that he or she
had an accident. The probability of interest is the inverse—the
probability that a driver will have an accident, given that he or
she is using a cell phone. That probabilitycannot be found from
the reported data because it depends on the prevalence of cell
phone use. But, it is almost certainly true that many more drivers
are talking with other occupants of the car than talking on a cell
phone at any given time. This study was criticized for other as-
pects as well; for an interesting critique see the article by the
hosts of the “Car Talk” radio show (Magliozzi and Magliozzi
2001); one of whom (Tom) has a Ph.D. in Management from
Boston University and a good understanding of statistics.

9. AVERAGE VERSUS NORMAL

The seventh concept students need to understand is that of
natural variability and its role in interpreting what is “normal.”
Here is a humorous example, described by Utts and Heckard
(2003). A company near Davis, California was having an odor
problem in its wastewater facility, which they tried to blame on
“abnormal” rainfall:

Last year’s severeodorproblemsweredue in part to theextremeweather
conditions created in the Woodland area by El Ni~no [according to a
company of� cial]. She said Woodland saw 170 to 180 percent of its
normal rainfall. “Excessive rain means the water in the holding ponds
takes longer to exit for irrigation,giving it more time to developan odor
(Goldwitz 1998).

The problem with this reasoning is that yearly rainfall is ex-
tremely variable. In the Davis, California area, a � ve-number
summary for rainfall in inches, from 1951 to 1997, is 6.1, 12.1,
16.7, 25.4, 37.4. (A � ve-number summary includes the low, � rst
quartile,median, third quartile,and high values.)The rainfall for
the year in question was 29.7 inches, well within the “normal”
range. The company of� cial, and the reporter, confused “aver-
age” with “normal.” This mistake is very common in reports of
temperature and rainfall data, as well as in other contexts. The
concept of natural variability is so crucial to the understanding
of statistical results that it should be reinforced throughout the
introductory course.

10. CONCLUSION

The issues discussed in this article constitute one list of com-
mon and importantmisunderstandingsin statisticsand probabil-
ity. There are obviously others, but I have found these to be so
prevalent that it is likely that millions of people are being misled
by them. It is the responsibility of those of us teaching intro-
ductory statistics to make sure that our students are not among
them.

Many universities now have statistical or numerical liter-
acy courses in addition to the traditional introductory statistics
course, and it may be tempting to think that these topics belong
in those courses rather than in the traditional courses. But that
misses the point. What good is it to know how to carry out a t
test if a student can not read a newspaper article and determine
that hypothesis testing has been misused?

It is not dif� cult to incorporate the topics covered in this ar-
ticle into the traditional curriculum, and in fact students enjoy
hearing about them if they are presented with good examples.
The discussion of topics 2 and 3, on the relationship between
statistical signi� cance and sample size, should be part of the
discussion of Type 1 and Type 2 errors. Topics 5 and 6 can be
incorporated into the syllabus with probability, and in fact make
interesting examples of � nding probabilities.Topic 7 on natural
variability as part of what’s normal, can be taught in the early
part of the course when discussing averages and measures of
variability.

Topic 1, on avoiding implications of cause and effect based
on observational studies, and Topic 4 about biases in surveys
are the only ones that may require additions to the syllabus.
But I think it’s important to give at least a brief overview of
types of statistical studies and how they are done, so that the
data collection process is not a complete mystery for students.
One lecture explaining the difference between an observational
study and a randomizedexperiment, and the role of confounding
variables in the interpretation of observational studies would
do more to prepare students for reading the news than a dozen
lectures on statistical inference procedures.

The focus of this article has been on helping students inter-
pret statistical studies. What about students who will eventually
carry out theirown research and data analysis? I think these ideas
are even more important for those students to learn. I serve on
many PhD exam committees for studentswho are doing research
across a wide range of disciplines.There are two questions I ask
every student. One is to explain the meaning of a p value. The
other has to do with replicating a study with an important � nd-
ing, but using a smaller sample size—the researcher is surprised
to � nd that the replication study was not statistically signi� cant.
I ask students to give possible explanations. I am sorry to report
that many students have dif� culty answering these questions,
even when they are told in advance that I’m going to ask them.
I will know we have ful� lled our mission of educating the cit-
izenry when any student who has taken a statistics class can
answer these questions and similar ones on the topics in this
article and related conceptual topics.
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