STATA FOR ONE-WAY ANALYSIS OF VARIANCE GPA BY SEAT LOCATION EXAMPLE

There are 384 students in the dataset. Y = GPA and there is one categorical variable, "seat" which is a response to the question "Where do you typically sit in a classroom – in the front, middle or back?" We want to know if population mean GPA differs for students who typically sit in the 3 classroom locations.

For one-way ANOVA, you can use the special command "oneway" or you can use the more general command "anova." Both are illustrated below. If the categorical variable is a "string" variable (i.e. not numerical), before you use the "anova" command, you need to "encode" it to give integer values to the categories. In this example, the "seat" variable was recorded as strings, like "3 Back." So we need to:

encode seat, generate(location)

Let's see what happened, by listing the first few rows of data:

list seat gpa location in 1/3

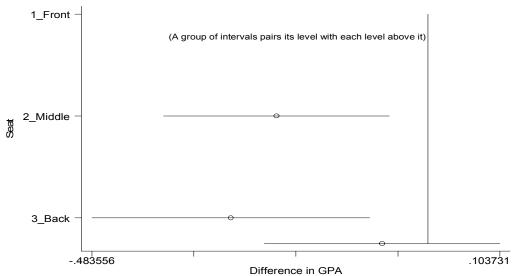
	seat	gpa	location
1. 2. 3.	2_Middle 2_Middle 1 Front	2.6 2.7 3	2_Middle 2_Middle 1 Front
	+		+

Notice that Stata kept the labels when it created the variable "location" so it's hard to see that it's numerical. We can list the variables without the labels attached, which makes it clearer:

list seat gpa location in 1/3, nolabel

	+		+
	seat	gpa	location
1.	2 Middle	2.6	2
2.	2 Middle	2.7	2
3.	$ $ 1_{Front}	3	1
	+		+

We can use either "seat" or "location" with the oneway command, but we can use only "location" with the anova command. Here are the results (using "oneway gpa location" would be identical):


oneway gpa seat						
	Analysis	of Va	riance			
Source	SS	df	MS	F	Prob > F	
Between groups	3.99726251	2	1.99863125	6.69	0.0014	
Within groups	113.777936	381	.298629753			
Total	117.775198	383	.307507046			
Bartlett's test for	equal varian	ces:	chi2(2) = 0.8	641 Prob	b > chi2 = 0.649	

Notice the difference between the names given for the "Sources" for the oneway command (above) and the anova command (below).

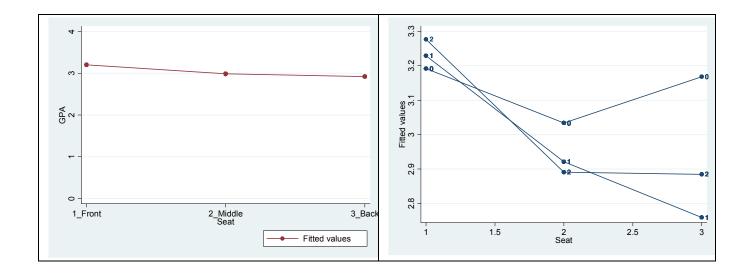
anova gpa location	Number of obs		R-squared Adj R-squared	
· ·	Partial SS	df 1	MS F	Prob > F
Model location			63125 6.69	0.0014
Total	117.775198	383 .3075	07046	

Next, we would like to use the Tukey method to find out which population means are significantly different. Stata doesn't do this automatically, but we can install the "prcomp" software:

```
findit prcomp
prcomp gpa location, tukey order(m) graph xlin(0)
               Pairwise Comparisons of Means
Response variable (Y): gpa GPA
Group variable (X): location Seat
Group variable (X): location Response variable (Y): gpa
_____
    Level
                Label
                                        Mean
______
                         88 3.202955 .0585445
218 2.985275 .0377666
78 2.919359 .0577982
              1 Front
        2
              2 Middle
        3
              3 Back
Simultaneous confidence level: 95% (Tukey wsd method)
Homogeneous error SD = .5464703, degrees of freedom = 381
                                                        95%
Level(X) Mean(Y) Level(X) Mean(Y) Diff Mean Confidence Limits
                                    -.2176793 -.3800729 -.0552858
2 Middle 2.985275 1 Front 3.202955
 3 Back 2.919359 1 Front 3.202955
                                     -.2835956 -.4835555 -.0836356
                                       -.0659162 -.2355639 .1037314
                  2 Middle
                           2.985275
```


Stata will also provide output similar to regression output, with the following command:

Source		SS	df MS		MS		Number of obs	= 6.69 = 0.0014 = 0.0339 = 0.0289
_	'	3.99726251 113.777936		1.99863125 .298629753		Prob > F R-squared Adj R-squared Root MSE		
Total		117.775198	17.775198 383 .307507		507046			
	gpa	Coef.	Std. I	Err.	t	P> t	[95% Conf.	Interval]
_cons _cons location		2.919359	.0618	756	47.18	0.000	2.797699	3.041019
	1	.2835956	.0849	983	3.34	0.001	.1165012	.4506899
	2 3	.0659162 (dropped)	.07210	003	0.91	0.361	075848	.2076805


Notice that it has made the 3^{rd} category ("back") the reference, and the coefficients for locations 1 and 2 are the additional terms needed to get the average GPA for those two locations. The test of interest is the overall F test, $F^* = 6.69$. That's the test of whether anything other than the constant is needed.

CELL MEANS PLOT

Especially with two factor ANOVA and higher, it's useful to plot the "cell means." Again you need to install software:

findit anovaplot
anovaplot, scatter(ms(i))

This command follows the anova command, so Stata knows what variables you want to plot. Including "scatter(ms(i))" eliminates the actual data, and just plots the means. This will be more important for two-factor ANOVA when looking for interactions. The right hand side shows an example of a cell means plot with interactions, to be discussed next.

