Unbalanced two-factor ANOVA

The term "unbalanced" means that the sample sizes n_{ij} are not all equal. A balanced design is one in which all $n_{ij} = n$.

In the unbalanced case, there are two ways to define sums of squares for factors A and B.

Method 1 is the default in Stata, and goes by the name "partial SS" or "adjusted SS." In SAS it's called Type III sums of squares. For this method, here are the full and reduced models being tested for Factor A, Factor B, and the AB interaction:

(I've left the subscripts off in all of the following model statements. They should be obvious.)

Factor A:

Full model is $Y = \mu + \alpha + \beta + \alpha\beta + \epsilon$ Reduced model is $Y = \mu + \beta + \alpha\beta + \epsilon$

Factor B:

Full model is $Y = \mu + \alpha + \beta + \alpha\beta + \epsilon$ Reduced model is $Y = \mu + \alpha + \alpha\beta + \epsilon$

AB interaction:

Full model is $Y = \mu + \alpha + \beta + \alpha\beta + \epsilon$ Reduced model is $Y = \mu + \alpha + \beta + \epsilon$

Method 2 is called sequential sums of squares, and is the default in R. To get it in Stata, you need to add the option ", sequential" to the end of the anova command. It's called Type I sums of squares in SAS.

Factor A:

Full model is $Y = \mu + \alpha + \epsilon$ Reduced model is $Y = \mu + \epsilon$

Factor B:

Full model is $Y = \mu + \alpha + \beta + \epsilon$ Reduced model is $Y = \mu + \alpha + \epsilon$

AB interaction: Same as above.

For Method 2, notice that it matters what order you use to name the factors, whereas it doesn't matter in Method 1.

Random Effects Models

A factor is called a <u>random effects factor</u> if the levels of the factor represent a larger set of interest.

Examples:

1. Medicine: How accurate are labs for testing for a certain disease? Do labs differ in their accuracy? Suppose we have people tested at 3 different labs.

Factor = Lab

Unit = a person having a medical test

 Y_{ij} = accuracy rating of the test for person j and lab i

 n_i = number of people tested at Lab i

Lab is a <u>fixed effect</u> if we care only about those labs.

Lab is a <u>random effect</u> if the 3 labs are a random sample of all such labs.

2. Ecology: How much species diversity is there in some forests of interest? (Species diversity is number of different species.) Suppose we have 4 forests to use.

Factor = Forest

Unit = a randomly selected one acre square within a forest

 Y_{ij} = diversity for acre j in forest i.

 n_i = number of different squares examined in Forest i.

Forest is a <u>fixed effect</u> if we care only about those 4 forests.

Forest is a <u>random effect</u> if those forest are randomly sampled from a larger set of interest.

3. Psychology: Compare therapists for effectiveness.

Factor = therapist

Unit = patient

 Y_{ij} = change in score on depression test after one year of therapy for patient j with therapist i.

Therapist is a <u>fixed effect</u> if we are interested in those specific therapists
Therapist is a <u>random effect</u> if the therapists are randomly selected from all therapists of interest.

RANDOM EFFECTS MODEL (One factor only):

$$Y_{ij} = \mu_i + \epsilon_{ij} = \ \mu_i + \tau_i + \epsilon_{ij} \quad \text{ for } i=1, \, ..., \, k; \, j=1, \, ..., \, n_i$$

Where:

- 1. ϵ_{ij} is $N(0, \sigma^2)$ as before 2. μ_i is $N(\mu_i, \sigma_{\mu}^2)$, so the μ_i are *not* considered fixed as they were before.
- 3. µ is a fixed constant.
- 4. All μ_i and ϵ_{ii} are independent.

Picture: Normal curve with μ as the mean, each μ_i drawn from it. Then normal curves with each μ_i as the mean, each Y_{ii} drawn from that.

EXAMPLE: Therapists and depression scores

μ is the overall mean change in depression scores for the *population* of all possible patients (not just those treated) for all possible therapists of the type the sample was drawn from

μ_i is the overall mean change in depression scores for the *population* of *all possible* patients if they were to have therapist i.

 σ^2 is the variance of the changes in depression scores for the population for *any* particular therapist.

 $\sigma_{\mu}^{\ 2}$ is the variance of the *means* μ_{i} for all possible therapists (not just the ones in the study), so it's the variability across therapists in the population.

The variance of Y_{ij} is made of *two* components. It's variance of $(\mu_i + \epsilon_{ij}) = \sigma^2 + \sigma_{\mu}^2 =$ variance across all possible patients and all possible therapists.

To summarize:

Fixed effects model, Y_{ij} is $N(\mu_i, \sigma^2)$ and all independent.

Random effects model, Y_{ij} is $N(\mu_i, \sigma^2 + \sigma_{\mu}^2)$ and *not* all independent. For two units from

the *same* level, Covariance is σ_{μ}^2 and correlation is $\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2}$ called the *intraclass*

correlation because it represents the correlation between 2 population units in the same class or level of the factor. Note it's *large* if the variability is large *between* levels compared to within levels. This makes sense, because then knowing the value for one unit within a level gives good info about other units in that same level. If there's lots of variability within a level, then knowing one value doesn't help so much with others.

QUESTIONS OF INTEREST FOR THE RANDOM EFFECTS MODEL:

1. Test H₀: $\sigma_{\mu}^2 = 0$ vs Ha: $\sigma_{\mu}^2 > 0$. If the null hypothesis is true, all *possible* μ_i are equal.

Example: Are all therapists equally effective, on average?

How to do this: EASY! Still use the same F test as in fixed effects one-way ANOVA, $F^* = MSR/MSE$. In this case, $E\{MSE\} = \sigma^2$ and $E\{MSR\} = \sigma^2 + n' \sigma_{\mu}^2$ where n' is a weighted sample size.

- 2. Estimate μ . Use \overline{Y} .., the overall mean. To get a confidence interval, use MSR instead of MSE as estimate of variance.
- 3. Estimate each component of the variances.
- 4. Estimate the intraclass correlation.

Details are messy – use computer!

EXAMPLE:

Datafile Name: Reading Test Scores

Datafile Subjects: Education

Story Names: Reading Comprehension

Reference: Moore, David S., and George P. McCabe (1989). Introduction to the Practice of Statistics. Original source: study conducted by Jim Baumann and Leah Jones of the Purdue University Education

Department.

Authorization:

Description: Data from a study of the effect of three different methods of instruction on reading comprehension in children. Participants were given a reading comprehension test before and after receiving the instruction.

Number of cases: 66 Variable Names:

- 1. Subject: Subject number
- 2. Group: Type of instruction that student received (Basal, DRTA, or Strat)
- 3. PRE1: Pretest score on first reading comprehension measure
- 4. PRE2: Pretest score on second reading comprehension measure
- 5. POST1: Posttest score on first reading comprehension measure
- 6. POST2: Posttest score on second reading comprehension measure
- 7. POST3: Posttest score on third reading comprehension measure

We will use the POST1 scores as the response variable. Three methods in Stata (next page)

COMPARING FIXED, RANDOM AND REGRESS ANOVA OUTPUT

	Analysis of Variance							
Source	SS	5	df	MS		F	Prob > 1	E
Between groups Within groups						5.32	0.007	3
Total	748.62	21212	65	11.5172	2494			
Bartlett's test	for equal	varianc	es:	chi2(2) =	= 3.73	49 Prob	>chi2 = (0.155
. loneway post1	group							
	One-way A	Analysis	of V	ariance :	for post	1: POST1		
				I	Number o R-sq	of obs = quared =	0.144	6 4
Source				df MS		F	Prob 3	> F
Between group Within group		3.12121	6	2 54.0 3 10.1	060606	5.32	2 0.00	073
Total				5 11.	517249			
Intrac correl	class ation	Asy. S.E.]	95% Conf	. Interv	ral]		
0.1	.6405 0.	.17156		0.00000	0.50	031		
Estima Est. r	ated SD of one of the state of	nin grou of a gr	p oup m		3.188	521		
. encode group, . anova post1 m								
Source	SS	df		MS			of obs =	
Residual		63	10.1	666667		F(2, 63) = Prob > F = 0 R-squared = 0 Adj R-squared = 0		0.0073 0.1444
•	748.621212						squared = SE =	
post1	Coef.	Std.	 Err.	t	P> t	 [95%	Conf. I	 nterval]
_cons method	7.772727	.679	795	11.43	0.000	6.41	.4265	9.131189
1 2	-1.090909 2 (dropped)	.9613 .9613	753 753	-1.13 2.08	0.261 0.042	-3.01 .078	.2064 88448	.8302461 3.921155