$General\ Linear\ Test-Summary$

Here are the details for the general linear test of H_0 : Reduced Model is sufficient

H_a: Full Model is needed

	General	Section 2.8 Test for $\beta_1 = 0$	Section 3.7 Lack of fit test $c = \text{number of different } X \text{ values in sample}$ $n_j = \text{number of } Y \text{ values at } X_j$ $Y_{ij} = i^{th} \text{ value of } Y \text{ at } X_j$
Full Model	Varies	$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$	$Y_{ij} = \mu_i + \varepsilon_{ij}$
Reduced Model	Varies	$Y_i = \beta_0 + \varepsilon_i$	$Y_{ij} = \beta_0 + \beta_1 X_j + \varepsilon_{ij}$
Degrees of freedom (full) = df_F	n – # of parameters estimated in full model	n-2 (2 parameters are estimated)	n – c (c different means estimated)
Degrees of freedom (reduced) = df_R	n – # of parameters estimated in reduced model	n-1 (1 parameter is estimated)	n-2 (2 parameters are estimated)
SSE(F)	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \text{ where } \hat{Y}_i \text{ is the }$ predicted value using the full model	Usual SSE for simple linear regression	SSPE = Pure error sum of squares $= \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2$
SSE(R)	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \text{ where } \hat{Y}_i \text{ is the}$ predicted value using the reduced model	Usual SSTO for simple linear regression	Usual SSE for simple linear regression
Numerator of test statistic F*	$[SSE(R) - SSE(F)]/(df_R - df_F)$	[Usual SSR]/1	SSLF/(c-2) where $SSLF = Lack$ of fit sum of squares = Usual $SSE - SSPE$
Denominator of test statistic F*	SSE(F)/df _F	Usual MSE for simple linear regression	SSPE/(n - c)
Degrees of freedom for F*	$[(df_R - df_F), df_F]$	[1, n-2]	[c-2, n-c]