
UNIVERSITY OF CALIFORNIA
IRVINE

A Connector-Centric Approach to Architectural Access Control

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Jie Ren

Dissertation Committee:
Professor Richard N. Taylor, Chair

Professor Debra J. Richardson
Professor David F. Redmiles

2006

© 2006 Jie Ren

The dissertation of Jie Ren

is approved and is acceptable in quality

and form for publication on microfilm:

Committee Chair

University of California, Irvine

2006

ii

DEDICATION

To

my mother, Jingze Zhang

and

my father, Zugen Ren

iii

TABLE OF CONTENTS

LIST OF FIGURES viii
ACKNOWLEDGMENTS x

CURRICULUM VITAE xi
ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1

1.1 Problem Summary 1

1.2 Approach 5

1.3 Hypotheses and Validation 8

1.4 Contributions 12

1.5 Overview of Dissertation 15

2 Background and Related Work 17

2.1 Security Overview 17

2.2 Security Models 18
2.2.1 Access Control Models 18
2.2.2 Information Flow Models 23

2.3 Formal Foundations for Composition 24
2.3.1 Abadi-Lamport Composition in Alpern-Schneider Framework 25
2.3.2 Integrity 26
2.3.3 Confidentiality: Information Flow Security 29

2.4 Component Specifications of Software Security 35
2.4.1 Computer Security Contract 36
2.4.2 cTLA Contract 39
2.4.3 Discussion 41

2.5 Architectural Approaches to Software Security 42
2.5.1 Object-Oriented Labeling 42
2.5.2 UML-based Security Modeling 45
2.5.3 ASTER 45
2.5.4 System Architecture Model 48
2.5.5 Connector Transformation 51
2.5.6 SADL 55
2.5.7 Law-Governed Architecture 59
2.5.8 Discussion 61

3 Basic Modeling Concepts and an Analysis Algorithm 63

iv

3.1 Architectural Access Control 63
3.1.1 Subject 63
3.1.2 Principal 64
3.1.3 Resource 65
3.1.4 Permission, Privilege and Safeguard 65
3.1.5 Policy 66

3.2 A Secure Software Architecture Description Language 67
3.2.1 Overview of xADL 67
3.2.2 Overview of XACML 68
3.2.3 Constructs of Secure xADL 71
3.2.4 Rationales for Language Design 74

3.3 The Central Role of Architectural Connectors 76
3.3.1 Components: Supply Security Contract 77
3.3.2 Connectors: Regulate and Enforce Contract 78

3.4 Context for Architectural Access Control 80
3.4.1 Nearby Components and Connectors 80
3.4.2 Types 83
3.4.3 Containing Sub-architecture 84
3.4.4 Complete System 86

3.5 An algorithm to Check Architectural Access Control 87
3.5.1 Algorithm for Single Architectural Access 87
3.5.2 Extend to Complete Architecture 92
3.5.3 Validity of the Algorithm 95

4 Advanced Modeling Concepts 99

4.1 Handling Large Scale Access through Roles 99
4.1.1 Basic Role-based Access Control 99
4.1.2 Hierarchical Roles and Separation of Duty 100
4.1.3 RBAC Support in XACML 101
4.1.4 Roles as Principals in Secure xADL 102

4.2 Handling Heterogeneous Access through Trust Management 105
4.2.1 Trust and Delegation in Decentralized Systems 105
4.2.2 Role-based Trust Management in Secure xADL 107
4.2.3 Trust Boundary and Architectural Connector 109

4.3 Handling Content-based Access 111

4.4 Handling Architectural Execution 114
4.4.1 Architectural Instantiation 114
4.4.2 Architectural Connection 115
4.4.3 Message Routing 115

4.5 Summary of Modeling Concepts 117

5 Tools Support 119

5.1 Evaluation Engine of Access Control Models 119

v

5.1.1 Implementing Role-based Access Control 119
5.1.2 Integrating Role-based Trust Management 121
5.1.3 Integrating with SunXACML 122

5.2 Overview of ArchStudio 123

5.3 Design-time Support 124
5.3.1 Integrating the XACML Policy Editor 124
5.3.2 Access Control Analysis 126

5.4 Run-time Support 128
5.4.1 Policy Decision Point and Policy Enforcement Point 128
5.4.2 The c2.fw.secure Framework 129
5.4.3 The Secure Architecture Controller 130
5.4.4 Sources and Defaults of Policies 131
5.4.5 Architectural Instantiation 131
5.4.6 Architectural Connection 132
5.4.7 External Message Routing 133
5.4.8 Internal Message Routing 134
5.4.9 A Connector’s Role in Secure Architectural Execution 135

6 Case Studies 137

6.1 Coalition 138
6.1.1 The Original Architecture 138
6.1.2 An Architecture with Two Secure Connectors 141
6.1.3 An Architecture with a Single Secure Connector 144

6.2 Impromptu 147
6.2.1 Overview of Project Impromptu 147
6.2.2 Architectural Components and Connectors 149
6.2.3 Connector Using IP Address Authentication 151
6.2.4 Standard-Compliant Composite Connector 154

6.3 Firefox Component Security 157
6.3.1 Firefox Architecture 157
6.3.2 Platform Technologies: XPCOM, JavaScript, and XPConnect 159
6.3.3 Trust Boundary between Chrome and Content 160
6.3.4 Trust Boundary between Contents from Different Origins 161
6.3.5 Principals 162
6.3.6 Container: Document and Window 163
6.3.7 DOM Node 164
6.3.8 Enforcing Security: Security Manager 165
6.3.9 Transport: URI, Channel, Protocol Handler 169
6.3.10 XPConnect as the Architectural Connector 171
6.3.11 Discussions 175

6.4 DCOM 179
6.4.1 DCOM Architecture 179
6.4.2 Anonymous, Local, Remote, Activate, Launch, and Access 181
6.4.3 Impersonation and Delegation 185

vi

6.4.4 DCOM and Internet 185

7 Conclusion 188

7.1 Summary 188

7.2 Future work 194
7.2.1 Different Types of Connectors 194
7.2.2 Different Mechanisms to Construct Connectors 194
7.2.3 Security as an Aspect 194
7.2.4 Reflective Architectural Model 195
7.2.5 Dynamic Architecture 195
7.2.6 Policy Conflict Resolution 196

Bibliography 197

vii

LIST OF FIGURES

Figure 1-1, Vulnerabilities reported to CERT 1
Figure 1-2, Incidents reported to CERT 2
Figure 1-3, IIS Rearchitecting, from [146] 4
Figure 2-1, Access Control Matrix 19
Figure 2-2, Dominance Lattice 20
Figure 2-3, Information Flow Properties, from [85] 31

Figure 2-4, Active Interface, from [73] 37
Figure 2-5, System Architecture Model, from [29] 49
Figure 2-6, Connector Transformation, from [131] 53
Figure 2-7, Secure Software Architecture, from [48] 55
Figure 3-1, Secure xADL schema 72
Figure 3-2, A Secure Connector with Subject and Policy 73
Figure 3-3, Privilege Propagation Connectors 82
Figure 3-4, Policy for Privilege Propagation 90

Figure 3-5, Algorithm 1: Access Control Check 91
Figure 3-6, Algorithm 2: Sub-architecture Access Control Check 95
Figure 4-1, Role-based Access Control, from [122] 100
Figure 4-2, Hierarchical RBAC 103
Figure 4-3, A Core RBAC Policy 105
Figure 4-4, A Trust Management Policy 110
Figure 4-5, Content-based Access Control 113
Figure 4-6, Policy for Architectural Connection 116
Figure 5-1, Core RBAC Interface 120
Figure 5-2, Hierarchical RBAC Interface 120
Figure 5-3, RBTM Interface 121
Figure 5-4, Policy Editor in ArchEdit 125

Figure 5-5, Policy Editor in Archipelago 125
Figure 5-6, Menu for Access Control Check 126
Figure 5-7, Architectural Connection Failure 133
Figure 6-1, Coalition in Execution 139
Figure 6-2, Original Coalition 140

viii

Figure 6-3, Coalition with Two Secure Connectors 141
Figure 6-4, Type Policy and Instance Policy 143
Figure 6-5, Coalition with One Secure Connector 144
Figure 6-6, Role-based and Content-based Routing 146
Figure 6-7.Impromptu User Interface 148
Figure 6-8, Impromptu Architecture 149
Figure 6-9, Secure WebDAV Connector 152

Figure 6-10, Composite Secure WebDAV Connector 156
Figure 6-11, Firefox Architecture, from [88] 157
Figure 6-12, Firefox Security Policy 172
Figure 6-13, Firefox Component Security Architecture 173

Figure 6-14, DCOM Architecture 180
Figure 6-15, DCOM Authentication and Authorization 183
Figure 6-16, DCOM for XP SP2 184
Figure 6-17, DCOM with Delegation 186

ix

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor, Professor Richard N.
Taylor. His insights, encouragement, and feedback are invaluable. Thanks also to
Professor Debra J. Richardson, Professor David F. Redmiles, and Professor Paul
Dourish, whom I had the honor to work with and receive indispensable guidance
and help.

Special thanks to Eric Dashofy, whose incredible work on xADL and
ArchStudio form the foundations for this research, and whose insights and
humor have made graduate school an enjoyable experience.

Thanks to my officemates, Yuzo Kanomata and Justin Erenkrantz. Not
only have they provided priceless technical information, but they also have taught
me numerous other lessons.

Other members of the C2 group, including Hazel Asuncion, Joe Feise,
John Georgas, Michael Gorlick, Scott Hendrickson, Girish Suryanarayana and
Debra Brodbeck, have provided valuable help in various forms.

Members of the Swirl group, including Rogerio DePaula, Xianghua Ding,
Ben Pillet, Jennifer Rode, and Roberto Silva Filho, have greatly helped in
developing the Impromptu system. Kari Nies, who is also the author of the
original Coalition application, is worth special thanks.

Thor Larholm, Oliver Lavery, and Geoff Shively of PivX Solutions
introduced me to the industry side of software security. That experience is
irreplaceable.

I would also like to thank Professor Ninghui Li from Purdue University for
allowing me to use the code for the RBTM framework, thank Professor Gregorio
Martinez and Professor Antonio Skarmeta from University of Murcia for
permission to integrate the XACML editor, and thank Seth Proctor and Anne
Anderson from Sun for useful discussions on SunXACML and RBAC.

This work was supported in part by the National Science Foundation
under grants 0133749, 0205724, and 0326105, a grant from the Intel
Corporation, and a UC Irvine Dissertation Fellowship.

x

CURRICULUM VITAE

Jie Ren

Education

1999.9-2006.1 Ph.D. Information and Computer Science, University of
California, Irvine

1992.9-1995.7 M.Sc. Department of Computer Science, Fudan University
1988.9-1992.7 B.Sc. Department of Computer Science, Fudan University

Working Experience

2004.6-2004.9 PivX Solutions, Inc., Intern Security Researcher
2002.7-2002.9 Endeavors Technology Inc., Intern Quality Assurance

Engineer
1998.9-1999.7 Department of Computer Science, Fudan University, Lecturer
1996.9-1998.8 Department of Computer Science, Fudan University, Assistant

Lecturer
1995.7-1996.8 ZTE Corporation, China, Software Engineer

Teaching Experience

• Reader, ICS 142, Compilers and Interpreters, Winter 2004

• Reader, ICS 121, Software Tools and Methods, Fall 2003

• Teaching Assistant, ICS 52, Introduction to Software Engineering, Spring
2003

• Reader, ICS 125, Project in Software System Design, Winter 2003

• Teaching Assistant, ICS 123, Software Architectures, Distributed Systems,
and Interoperability, Fall 2002

• Teaching Assistant, ICS 121, Software Tools and Methods, Spring 2000

• Teaching Assistant, ICS 125, Project in Software System Design, Winter
2000

• Teaching Assistant, ICS 125, Project in Software System Design, Fall 1999

• Co-Instructor, Advanced Software Engineering, Fudan University, Spring
1999

• Co-Instructor, Advanced Software Engineering, Fudan University, Spring
1998

xi

Publications

Jie Ren, Richard Taylor, A Secure Software Architecture Description Language,
Proceedings of the Workshop on Software Security Assurance Tools,
Techniques, and Metrics, held in conjunction with the 20th IEEE/ACM
International Conference on Automated Software Engineering, Long
Beach, California, USA, November 7-11, 2005.

Jie Ren, Richard Taylor, Automatic and Versatile Publications Ranking for
Research Institutions and Scholars, to appear in the Communications of
the ACM.

Rogerio de Paula, Xianghua Ding, Paul Dourish, Kari Nies, Ben Pillet, David
Redmiles, Jie Ren, Jennifer Rode, Roberto Silva Filho, In the Eye of the
Beholder: A Visualization-based Approach to Information System
Security, International Journal of Human-Computer Studies (IJHCS), Vol.
63, No. 1-2, pp. 5-24, July 2005.

Rogerio de Paula, Xianghua Ding, Paul Dourish, Kari Nies, Ben Pillet, David
Redmiles, Jie Ren, Jennifer Rode, Roberto Silva Filho, Two Experiences
Designing for Effective Security, Proceedings of the 2005 Symposium On
Usable Privacy and Security, pp. 25-34, Pittsburgh, PA, July 6-8, 2005.

Jie Ren, Richard Taylor, Paul Dourish, David Redmiles, Towards An
Architectural Treatment of Software Security: A Connector-Centric
Approach, Proceedings of the Workshop on Software Engineering for
Secure Systems, held in conjunction with the 27th International
Conference on Software Engineering, St. Louis, Missouri, USA, May 15-16,
2005.

Jie Ren, Richard Taylor, Utilizing Commercial Object Libraries within Loosely-
Coupled, Event-Based Systems, Proceedings of the 8th IASTED
International Conference on Software Engineering and Applications , pp.
192-197, Cambridge, Massachusetts, USA, November 9-11, 2004.

Jie Ren, Richard Taylor, An Automatic and Generic Framework for Ranking
Research Institutions and Scholars based on Publications, Technical
Report UCI-ISR-04-5, June 2004.

Jie Ren, Modular Security: Design and Analysis, Technical Report UCI-ISR-04-
4, June 2004.

Jie Ren, Richard Taylor, Visualizing Software Architecture with Off-The-Shelf
Components, Proceedings of the 15th International Conference on
Software Engineering & Knowledge Engineering, pp. 132-141, San
Francisco, California, USA, July 1-3, 2003.

Jie Ren, Richard Taylor, Incorporating Off-The-Shelf Components with Event-
based Integration, Proceedings of the ISCA 12th International Conference
on Intelligent and Adaptive Systems and Software Engineering, pp. 188-
191, San Francisco, California, USA, July 9-11, 2003.

xii

Jie Ren, Richard Taylor, Incorporating Off-The-Shelf Components with Event-
based Integration, Technical Report UCI-ISR-03-2, April 2003. (This is a
longer version of the above paper.)

Jie Ren, Internet-scale Event Notification: Architecture Alternatives, position
paper for Workshop on Evaluating Software Architectural Solutions,
Irvine, California, USA, May 8-9, 2000.

Junfeng Wang, Xiaobin Qi, Kuanli Xia, Jie Ren, Design Patterns and UML,
Application Research of Computers, vol. 16, no.5, pp. 27-30, May 1999. In
Chinese.

Shengxin Zhang, Jie Ren, Leqiu Qian, Investigation and Research on
Components Matching Methods, Computer Engineering, vol. 25, no. 3, pp.
8-10, March 1999. In Chinese.

Jie Ren, Wenyun Zhao, Yongxue Sun, Leqiu Qian, Research on Domain-Specific
Software Architecture, Computer Engineering, vol. 23, Special Issue, pp.
222-224, December 1997. In Chinese.

Jie Ren, Leqiu Qian, The Object-Oriented Development of C Coding Tool,
Proceedings of 5th Chinese National Conference on Software Engineering,
Shanghai, China, December 1993. In Chinese.

xiii

ABSTRACT OF THE DISSERTATION

A Connector-Centric Approach to Architectural Access Control

By

Jie Ren

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2006

Professor Richard N. Taylor, Chair

An important problem is the architectural access control question: how

can we describe and check access control issues at the software architecture level?

We propose a connector-centric approach for software architectural access

control. Our approach is based on a unified access control model incorporating

the classic model, the role-based model, and the trust management model.

We design a secure software architecture description language, Secure

xADL, that extends the xADL language with constructs necessary to describe

access control issues. Secure xADL extends descriptions of components,

connectors, their types, sub-architectures, and the global architecture with

subject, principal, permission, resource, privilege, safeguard, and policy. We use

the XACML language as the basis for architectural security policy modeling. Four

types of contexts for architectural access control are also identified: 1) the nearby

constituents of components and connectors, 2) the types of components and

connectors, 3) the containing sub-architecture, and 4) the global architecture.

xiv

We present an algorithm to check architectural access control: given a

secure software architecture description written in Secure xADL, if a component

A wants to access another component B, should the access be allowed?

Tool support is provided as part of the ArchStudio architecture

development environment, including an editor, a checker, the secure architecture

controller, and a run-time framework enabling important architectural

operations: instantiating components and connectors, connecting components to

connectors, and message routing.

Connectors play a central role in our approach. They can propagate

privileges within the architecture, decide whether architectural connections can

be made, and route messages according to their security policies.

Our hypotheses are: an architectural connector may serve as a suitable

construct to model architectural access control; the connector-centric approach

can be applied to different types of componentized and networked software

systems; the access control check algorithm can check the suitability of accessing

interfaces; in an architecture style based on event routing connectors, our

approach can route events in accordance with the secure delivery requirements.

To validate these hypotheses, we have performed an informal analysis of

the algorithm, developed two applications, Secure Coalition and Impromptu, and

modeled the security architecture of Firefox and DCOM.

xv

1 Introduction

1.1 Problem Summary
The past decade has seen rapid penetration of information technology into

every aspect of our society. More organizations and individuals have been

transforming their work and lives with ever increasing computation power and

communication capability. Such a trend will continue to change the way that our

society operates.

Vulnerabilities

0

500

1000

1500

2000

2500

3000

3500

4000

4500

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

1Q
-2Q

,20
05

Figure 1-1, Vulnerabilities reported to CERT

Unfortunately, such transformation has certain undesirable side effects.

Rampant security breaches are one of the most prominent examples of these

unwelcome consequences. More than 3500 vulnerabilities were reported to the

Computer Emergency Response Team Coordination Center (CERT/CC) each year

during the past three years (see Figure 1-1). There were about 140,000 security

1

incidents reported to CERT in 2003 (see Figure 1-2). Such incidents have become

so commonplace that CERT has stopped publishing these statistics since 2004.

Incidents

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 1-2, Incidents reported to CERT

The unsatisfactory situation of software security partly comes from the

mechanism used to build the software systems and the environment in which

these systems are deployed and operated. More and more software is built from

existing components. These components may come from different sources. This

complicates analysis and composition, even when a dominant decomposition

mechanism is available. Additionally more and more software is running in a

networked environment. The fast and permanent network connections open

possibilities for malicious attacks that were not possible in the past. These

situations raise new challenges on how we develop secure software.

2

Traditional security research has been focusing on how to provide

assurance on confidentiality, integrity, and availability [14]. However, with the

exception of mobile code protection mechanisms, the focus of past research is not

how to develop secure software that is made of components from different

sources. Previous research provides necessary infrastructures, but a higher level

perspective on how to utilize them to describe and enforce security, especially for

componentized software, has not received sufficient attention from research

communities so far. Despite occasional cryptology-related attacks [25, 142], most

security vulnerabilities result from poor software design and implementation,

such as the ever-lasting buffer overrun bugs. Thus approaches to designing

secure software, not just from a traditional cryptology viewpoint, but with a

software engineering perspective, are needed to counter the current

unsatisfactory situation.

Software architecture research, which has been an active field in the past

decade, could provide an appropriate angle for guiding design of secure software.

The potential of an architecture-guided secure software design approach can be

illustrated by the rearchitecting of a major web server, Microsoft Internet

Information Service, whose security has been significantly improved by a

carefully designed software architecture, without introduction of major

cryptography features [146]. The Microsoft Internet Information Server (IIS) web

server was first introduced in 1995. It has gone through several version changes

during the following years, reaching Version 5.1 in 2001. Along this course, it was

the source of several vulnerabilities, some of which were high profile and have

caused serious damages [9]. A major architectural change, as outlined in Figure

3

1-3, was introduced in 2003 for its Version 6.0. This version is much safer than

previous versions, due to these architectural changes [146]. No major cryptology

technologies were introduced with this version. Only existing technologies were

rearchitected for better security. This rearchitecting effort suggests that more

disciplined approaches to utilize existing technologies can significantly improve

the security of a complex, componentized, and networked software system.

Figure 1-3, IIS Rearchitecting, from [146]

Component-based software engineering and software architecture provide

the necessary higher-level perspective for system wide security. Security is an

emergent property, so it is insufficient for a component to be secure. For the

whole system to be secure, all relevant components must collaborate to ensure

the security of the system. An architecture model guides the comprehensive

development of security. Such high-level modeling enables designers to locate

potential vulnerabilities and install appropriate countermeasures. It facilitates

4

checking that security is not compromised by individual components and enables

secure interactions between components. An architecture model also allows

selecting the most secure alternatives based on existing components and

supports continuous refinement for further development.

We present a software architecture-based approach that can help design

and analyze secure software. Specifically, the approach extends traditional

software architecture descriptions with the capability to describe and check

access control policies. Access control, which controls how protected

computational resource can be accessed, is arguably the most dominant security

assurance mechanism. We are trying to answer the following architectural

access control question: how can we describe and check access control

issues at the software architecture level?

Answering this question can bring deeper and more comprehensive

modeling of architectural security, and help software architects detect

architectural vulnerabilities and support correct access control at the architecture

level. While such an answer cannot fully solve the general software security

problem, it can complement and possibly guide other solutions that operate on

the mathematical properties and low-level implementations to collectively

provide the comprehensive solution that is necessary for a complex,

componentized, and networked software system.

1.2 Approach
We propose a connector-centric approach for software architectural access

control. The approach is based on a unified access control model. The model

guides the design of a secure architecture description language that can describe

5

architecturally significant operations. The validity of access within software

architecture is checked by an algorithm that takes different types of architectural

contexts into consideration. Connectors play a central role in establishing the

security of these operations. Tools are provided to help software architects use

this approach for designing and analyzing software security.

Our approach is based on a unified access control model that incorporates

the classic access control model, the role-based access control model, and the

trust management model. The classic model describes access control with a set of

subjects that have permissions and a set of objects on which these permissions

can be exercised. The role-based model introduces the concept of roles as an

indirection to organize the permission assignments to subjects. The trust

management model provides a decentralized approach to manage subjects and

delegate permissions. The unified model uses subjects, objects and permissions

to integrate the three models.

We design a secure software architecture description language, Secure

xADL [115], that extends our extensible architecture description language, xADL

[27], with constructs that are necessary to describe access control issues. Secure

xADL extends descriptions of architectural constituents (components, connectors,

their types, sub-architectures, and the global architecture) with the following

constructs: subject, principal, permission, resource, privilege,

safeguard, and policy. Subject is the user on whose behalf software

constituents execute. A subject can take multiple principals. Each principal

encapsulates a credential that the subject possesses to acquire permissions. A

permission is an allowed operation on a resource. A resource is an entity

6

whose access should be protected. A resource can be passive, like files, or it can

be active, like components and connectors. A privilege describes permissions

that components and connectors possess, depending on the executing subject. A

safeguard describes permissions required to access the protected interfaces of

components and connectors. A policy ties all these concepts together, and

specifies what access is allowed and what access should be denied. We use the

eXtensible Access Control Markup Language (XACML) [106] as the basis for our

architectural security policy modeling.

In addition to the access control policies locally specified in components

and connectors, we use context to designate those additional relationships

involved in architectural access control for the components and connectors. Such

contexts change how access control is regulated. There are four types of contexts:

1) the nearby constituents of components and connectors, 2) the types of

components and connectors, 3) the explicitly modeled sub-architecture that

contains components and connectors, and 4) the global architecture. These

contexts are integrated in policy modeling through the XACML policy

combination mechanism.

We present an algorithm to check architectural access control at design-

time: given a secure software architecture description written in

Secure xADL, if a component A wants to access another component B,

should the access be allowed? Our algorithm is based on graph reachability

analysis. The algorithm obtains necessary privileges, retrieves relevant policies

from the established contexts, and makes a decision based on the privileges and

the policies.

7

Tool support for the approach is also provided, as part of the ArchStudio

architecture development environment [27]. An editor allows an architect to

specify the architectural access control policies. A checker statically checks that

the given component can access an interface of another component. A run-time

framework enables applications to perform important architectural operations:

instantiating components and connectors, connecting components to connectors,

routing messages from one component to another connector, and forwarding

messages between interfaces of a connector.

Connectors play a central role in our approach. Depending on their types,

connectors can propagate privileges within the architecture, decide whether

architectural connections can be made, and route messages according to its

security policies.

1.3 Hypotheses and Validation
The hypotheses for this research are that:

Hypothesis 1: An architectural connector may serve as a

suitable construct to model architectural access control.

Hypothesis 2: The connector-centric approach can be applied to

different types of componentized and networked software systems.

Hypothesis 3: With a Secure xADL description, the access

control check algorithm can check the suitability of accessing

interfaces.

Hypothesis 4: In an architecture style based on event routing

connectors, our approach can route events in accordance with the

secure delivery requirements.

8

To validate these hypotheses, we have analyzed the validity of the

algorithm by mapping it to a well known graph reachability problem, and we

have also developed two applications and analyzed two third party software

systems.

The first application developed was a secure coalition application. It is a

C2-style application that uses events as the communication mechanism. Our

approach enables architects to decide how the components are connected and

how such connections can be used to deliver events according to the desired

security requirements.

The second application developed was Impromptu, a peer-to-peer file

sharing application that allows different users to share files freely and securely.

The application visualizes security relevant events so users can make better

informed decisions on security issues. This application uses the Jetty

HTTP/Servlet server and the Apache Slide WebDAV server. A secure WebDAV

proxy is developed to connect communicating peers. Users can use off-the-shelf

standard-compliant applications to access and manipulate those shared files.

In addition to designing these two applications, we also have analyzed two

existing systems. The first analyzed system was the Firefox open source web

browser. Compared to another popular web browser, Internet Explorer, Firefox

does not support ActiveX but makes extensive use of JavaScript. The script

segments from a web page are executed by the script engine, subject to access

control policies. We analyzed how this access control is enacted by various

architectural connectors.

9

The second system analyzed was Microsoft’s DCOM. DCOM provides

network invocable services between clients and servers. The services can have

different levels of authentication and authorization properties. An intermediate

server can also act on behalf of a client to access a third server. We modeled

DCOM’s role as a secure connector between clients and servers using our

approach.

Through these analysis, design and modeling activities, we have validated

our four hypotheses, and illustrated the feasibility of our connector-centric

approach.

Firstly, we have demonstrated that an architectural connector may

serve as a suitable construct to model architectural access control.

Connectors propagate privileges that are necessary for access control decisions.

They regulate architectural connections between components. And they can also

coordinate message routing securely.

Secondly, we have established that the connector-centric approach

can be applied to different types of componentized and networked

software systems. Impromptu demonstrates that our approach can be applied

to develop a system composed of externally developed components connected

through secure connectors. The modeling of Firefox shows the applicability of our

approach in handling security of untrustworthy components. Modeling DCOM

demonstrates that our approach can model a large and complex network

application that has complex access control requirements.

These studies demonstrate that our approach is applicable to different

types of software systems. The secure coalition application is based on an

10

internally developed Java framework. Impromptu is a Java-based application

that extensively reuses existing components. Firefox is a third party

C/C++/JavaScript-based cross-platform application. DCOM is a third party

C/C++-based Windows application. The diversity of these systems shows that our

approach can support heterogeneous environments.

The studies demonstrate that our approach can be applied to both

designing a new component-based application and analyzing an existing-

component-based application. We have developed the secure coalition

application with an internally developed framework. We have also developed

Impromptu with many existing components. Both Firefox and DCOM are third

party applications. We have modeled their component-based architectures and

investigated the security implications of architectural choices.

The studies demonstrate that our approach can handle security

properties of different types of software connectors. The secure coalition

application uses a C2 style broadcast connector. Impromptu composes several

connectors into a composite connector. Firefox is a host-based application whose

operations are mostly limited to a client’s machine. Different components

interact with each other through traditional API connections, in the form of a

cross-language connector. DCOM is an application based on a network protocol.

The components of this application, the clients and the servers, interact through

the protocol. The various types of connectors (event routing connector, local

procedure call connector, network application protocol connector, and their

composites) illustrate that our approach is capable of modeling access control

properties of different software connection mechanism.

11

Thirdly, we have shown that with a Secure xADL description, the

access control check algorithm can check the suitability of accessing

interfaces. We transform a Secure xADL architecture description into a graph,

where the nodes stand for privileges and safeguards, and the edges represent

connections permitted by policies of connectors. We have shown that permitting

an architectural access between a pair of interfaces roughly equals to finding a

path in the constructed graph, and thus any standard solution to the reachability

problem can be used.

Finally, we have illustrated that in an architecture style based on

event routing connectors, our approach can route events in

accordance with the secure delivery requirements. The secure coalition

application, in the event-based C2 style, can use different types of message

routing connectors to route messages that only one party deems secure to share

with the other party. These connectors, being part of an application framework,

can also be used in constructing other C2 style applications.

1.4 Contributions
Our research contributions include a design and analysis method for

security in software architecture research, a formal language to model access

control at the architecture level, an algorithm to check the correctness of such

models, a technique to compose secure connectors from existing connectors, and

a suite of support tools. This approach contributes to deeper and more

comprehensive modeling of architectural security, and facilitates checking correct

access control and detecting vulnerabilities at the architecture level.

More specifically, the contributions of this research are as follows:

12

A novel approach to the design and analysis of the access

control property for software architectures. We address the access

control problem from an architectural viewpoint and use an architecture model

to guide the design and analysis of architectural access control in software

systems. Access control is a very important security property at the architecture

level. We provide a comprehensive treatment of this property. The treatment

employs architectural contexts such as neighboring constituents, types,

containing sub-architecture, and global architecture, to facilitate the design and

analysis of access control. Our approach combines researches from software

architecture and security, and it is the first approach that addresses the access

control problem from an architectural level. The feasibility of our approach is

illustrated through our design and analysis of four significant case studies.

A usable formalism for modeling and reasoning about

architectural access control. We propose a secure architecture description

language that can unify related security concepts, such as subject, principal,

permission, resource, privilege, safeguard, and policy, at the architecture level.

This language combines our base extensible architecture description language,

xADL, with another extensible security policy language, XACML. This formalism

is suitable for security design and analysis. We have illustrated this by designing

two significant in-house applications, a secure coalition application and a secure

file sharing application, and by analyzing two large-scale third party applications,

Firefox and DCOM. These applications adopt different types of access control

policies. Our validations demonstrate that our approach can be utilized for a wide

range of security properties.

13

An algorithm for checking whether the architectural model

maintains proper access control at design-time. Based on the modeling of

access control properties at the architectural level, we have developed an

algorithm that can check whether a componentized and networked software

system violates specified security policies for the constituents and the

architecture at design-time.

A novel approach to constructing secure connectors. Our

treatment of access control at the architectural level is centered around

connectors. We provide one type of secure connector that can securely route

events to appropriate components when used in event-based software, like the C2

style. This connector has been used in one of our significant case studies, the

secure coalition application. We also provide one type of composite connector

that can achieve the conjunction of the access control properties of its constituent

connectors. This type of connector has been used in another case study, the

Impromptu file sharing application. Our treatment of connectors extends existing

understanding and techniques of connectors and provides techniques and

notations for handling richer connector semantics.

A suite of usable tools to design and analyze secure software.

We supply a suite of usable tools to support our approach. We have extended our

base architecture development environment, ArchStudio, with editors that allow

architects to design access control properties and analysis tools that can check

the proper access control. We have provided a framework that can be used to

write secure software in the C2 architecture style. We have also provided run-

time support tools for executing software written using this framework. Both the

14

framework and the run-time support tools have been used in developing the

secure coalition application.

1.5 Overview of Dissertation
The remaining part of the dissertation is organized as following.

Chapter 2 introduces the basic notions of security, discusses the classic

security models, and surveys how previous software mechanisms have attempted

to describe, analyze, and enforce security with a focus on component

specifications and architectural approaches.

Chapter 3 defines the basic concepts of architectural access control, gives

an overview of the proposed secure architecture description language, Secure

xADL, discusses the central roles that connectors play in our approach,

establishes the different architectural contexts that are involved in making access

control decisions, and presents an algorithm that can check whether the intended

architectural access should be granted within the given contexts.

Chapter 4 extends the previous chapter to handle large scale access

through the role-based access control model, to handle heterogeneous access

through trust management, and to handle content-based access among interfaces.

It also outlines how dynamic architectural execution, including instantiation,

connection, and message routing, can be controlled.

Chapter 5 illustrates the tool support. It first presents our

implementations of the evaluation engines for the various access control models.

After presenting an overview of the base architecture development environment,

ArchStudio, the chapter elaborates on how design-time and run-time support is

built into this environment.

15

Chapter 6 presents four case studies to illustrate and help validate the

hypotheses: the development of the C2-based secure coalition application and the

Impromptu file sharing application, as well as the analysis of Firefox and DCOM.

Finally, Chapter 7 summarizes the research and discusses future work.

16

2 Background and Related Work
In this chapter we introduce the basic notions of security, discuss the

classic security models, and survey how previous software mechanisms has

attempted to describe, analyze and enforce security, with a focus on component

specifications and architectural approaches.

2.1 Security Overview
Because security is a very broad subject, this section only gives a brief

overview of basic security concepts. For other security topics, Bishop provides a

comprehensive and recent overview [14].

The main security properties are confidentiality, integrity, and

availability [90]. Confidentiality refers to that there is no improper information

disclosure. Integrity refers to that there is no improper information modification.

Availability refers to that there is no improper denial of service to legitimate users.

The focus of this research is integrity, which is usually enforced by controlling

access to protected resources.

The terms of security policy, security model, and security

mechanism are defined as follows. Security policies define what rules are to be

enforced and what goals are to be achieved. A security model provides a formal

representation of security policies. Security mechanisms are hardware devices

and software functions used to implement security policies [122].

The most basic type of security mechanism to enforce secure access,

solidly established ever since the seminal work of Anderson [4], is a reference

monitor. The reference monitor is a trusted computing base (TCB) that is

17

trusted to intercept every possible access from external subjects to the secured

resources and assure that the access does not violate any established policy.

Widely accepted practices require a reference monitor to be tamper-proof, non-

bypassable, and small. A reference monitor should be tamper-proof so that no

alteration of it is possible. It should be non-bypassable so that each access is

mediated by the reference monitor. It should be small so that it can be thoroughly

verified. A more comprehensive and deeper treatment of reference monitors can

be found at [14].

Security policy composition, which occurs when multiple sub-policies

coming from different sources are combined into an integral policy, has been

extensively studied [19, 66]. The study has investigated questions such as what

operations are available, how to decide whether to grant or reject an access

request, and how to resolve conflicts between sub-policies.

2.2 Security Models
There are different types of security models. Two most common types are

access control models and information flow models.

2.2.1 Access Control Models
Two dominant types of access control models are discretionary access

control (DAC) models and mandatory access control (MAC) models. In a

discretionary model, access is based on the identity of the requestor, the accessed

resource, and the permission that the requestor has on the resource. The

permission can be granted or revoked at will by the owner of the resource.

However, in a mandatory model, the access decision is made according to a policy

by a central authority.

18

Figure 2-1, Access Control Matrix

The Access Matrix Model, depicted in Figure 2-1, is the most common

discretionary access control model. It was first proposed by Lampson [79] and

later formalized by Harrison, Ruzzo, and Ullmann [55]. In this model, a system

contains a set of subjects that has privileges (also called permissions) and a set

of objects on which these privileges can be exercised. A privilege is usually a

permission to perform an action on an object. An access matrix specifies what

privileges a subject has on a particular object. The rows of the matrix correspond

to the subjects, the columns correspond to the objects, and each cell lists the

allowed privileges that the subject has over the object. The access matrix can be

implemented directly, resulting in an authorization table. More commonly, it is

implemented as an access control list (ACL), where the matrix is stored by

column, and each object has one column that specifies privileges each subject

possesses over the object. A less common implementation is a capability

19

system, where the access matrix is stored by rows, and each subject has a row

that specifies the privileges (capabilities) that the subject has over all objects.

Secret

Classified

Unclassified

Top Secret

Figure 2-2, Dominance Lattice

Mandatory Access Control models are less common and more stringent

than discretionary models. They can prevent both direct and indirect

inappropriate access. The most common types of mandatory models work in a

multi-level security (MLS) environment, which is typical in a military setting.

In this environment, each subject (on behalf of a user) and each object is assigned

a security label. The labels have dominance relationship between each other,

forming a lattice [30]. For example, in Figure 2-2, the label “top secret”

dominates the label “secret”, the label “secret” dominates the label “classified”,

and the label “classified” dominates the label “unclassified”. The label on an

object specifies the sensitiveness level of the information, and the label on the

subject identifies the clearance and trustworthiness that the subject has. The

20

subjects/objects with a dominating label are at a higher level, and the

subjects/objects with a dominated label are at a lower level.

The most famous MLS MAC model, which is a model for confidentiality, is

the Bell-LaPadula model [6]. The model specifies two rules that must be

satisfied by each access to protect confidentiality: 1) no read up (originally called

simple security): a subject is allowed reading an object only if its security

clearance dominates the security level of the object. That is, the label of the

subject is over the label of the object in the lattice. Thus, a low-level subject

cannot read a high-level object. 2) no write down (originally called *-property) : a

subject is allowed writing to an object only if its security clearance is dominated

by that of the object, so a high-level subject cannot write to a low-level object (to

leak more sensitive information intentionally or unintentionally). These rules

prevent confidential information of sensitive objects from flowing to less

trustworthy subjects.

Another important MLS MAC model is the Biba model [10]. This is a

model for integrity, and can be considered as a mathematical dual of the Bell-

LaPadula model. The model assigns an integrity label to each subject and object,

as the confidentiality label of the Bell-LaPadula model. The Biba model has two

principles. The first is “no read down”: a subject can only read an object whose

integrity label dominates its own so it can trust the integrity of the object. The

second is “no write up”: a subject can only write to an object whose integrity label

is dominated by its own so it won’t violate the integrity of the object. These rules

prevent information stored in lower level and less reliable objects from flowing to

and affecting higher level and more reliable objects.

21

Both the Bell-LaPadula model and the Biba model work in a static

environment, where the security labels of subjects and objects change little, if any.

The Chinese Wall model [20] can be considered as a dynamic mandatory

access control model. In this model, objects are assigned to different domains.

Each domain represents its own interest, and its interest potentially conflicts with

those of other domains. Initially, a subject can access any domain initially.

However, once it is granted access to a domain, it is prohibited access of any

other conflicting domains thereafter. It is essentially limited within the wall of its

own domain. The Chinese Wall model is a model of dynamic separation of duty,

and can be mapped to the Bell-LaPadula model if dynamic security labels are

allowed in the Bell-LaPadula model [118].

Both the Bell-LaPadula model and the Biba model originate from a

military setting. They do not fit well in a commercial environment. The Clark-

Wilson model [23] summarizes many common security rules practiced in

commercial activities. It defines four basic criteria that require authenticating all

subjects, auditing all activities, allowing only well-formed transactions, and

separating duties. The model has two types of data items and two types of

procedures. Data items are either constrained data items or unconstrained data

items. Procedures are either integrity verification procedures or transaction

procedures. Constrained data items are the items whose validity is verified by

Integrity Verification Procedures. These data items can only be changed by

Transaction Procedures. The model also requires that administrators must certify

all procedures and the system should enforce these procedures. This model is not

as formal as other models, though. It is not easy to analyze and enforce.

22

2.2.2 Information Flow Models
Mandatory Access Control models can prevent overt channels that allow

inappropriate information flows, but they are still vulnerable to covert channels

where an information flow exists in a clandestine manner utilizing stealthy

storage or timing facilities [78]. Information Flow Models are confidentiality

models that are also called secrecy models. These models are interface models

that specify how the information should or should not flow between subjects so

that there are no covert channels. They do not suggest how this can be achieved

[90].

There have been many proposals of different information flow security

properties. Most of them adopt a trace-based viewpoint. In these models, subjects

are usually called agents. Agents are classified into two categories: low level

agents and high level agents. A trace is inputs received and outputs generated

from these agents. The focus of an information flow security model is to prevent

low level agents from receiving any secret information from high level agents.

The first information flow security property proposed is Non-Interference

[49], which requires low level output should not be affected by high level input.

This assures that a low level agent cannot get information about the high level

inputs.

Other properties have also been proposed. Non-Deducibility on Input [136]

utilizes information functions to require that low level agents cannot deduce

information about high level agents. Restrictiveness [87] requires that low level

agents cannot differentiate between possible states after certain state transitions.

Correctability [68] requires that a trace after a perturbation (adding or removing

23

an input) and a correction (adding or removing an output) is still a valid trace.

Non-Deducibility on Strategy [147] specifies that a low level agent cannot tell a

high level agent from a process formed from the composition of the high level

agent and a strategy, where a strategy is a process that computes inputs to the

high level agent based on previous histories.

These models can be applied differently, depending on whether the

secrecy is intended for high-level inputs only or both inputs and outputs, whether

synchrony is required, whether non-determinism is allowed, and whether

probability, instead of possibility, is considered.

However, the programming language community looks at the problem of

information flow security in a different manner [120]. Instead of focusing on

prevention of any possible information flow, a less stringent but more realistic

approach is taken to track the more explicit information flow. An example is

given by Sewell and Vitek [129], where an intentional approach for information

flow security is proposed, unlike the traditional extensional trace-based approach.

This intentional approach assigns an agent “colors”, which designate subjects

that have causally affected the agent. The colors can be considered as the type of

the agent, and a type theory calculus is used to check the validity for information

flow security.

2.3 Formal Foundations for Composition
In this section we survey how the problem of describing and analyzing

security property for composite software systems is handled by the formal

methods community. The definitions and theorems form the theoretical

foundation for further study.

24

2.3.1 Abadi-Lamport Composition in Alpern-Schneider Framework
In the formal method field, the theory of Abadi and Lamport serves as the

foundation for composition. While the theory can deal with integrity adequately,

it is insufficient for confidentiality.

Abadi and Lamport proposes a general composition principle and a proof

rule that compose concurrent specifications in a modular manner [1]. The

composition works within the safety/liveness framework first proposed by Alpern

and Schneider [3].

In this composition framework, a state is represented by assignments to

state variables. A trace is a set of state transitions caused by agents. A system

specification describes all possible traces of the system. A property is a predicate

that defines a set of traces. A property can also be viewed as the set of traces thus

defined. There are two types of properties. A safety property defines the initial

state and valid state transitions. A liveness property (also called progress

property) specifies that the state transitions eventually occur. The specification of

a system consists of the conjunction of various safety and liveness properties.

Because systems, properties, and specifications can all be viewed as sets of traces,

a system satisfies a property if the set of traces for the system is a subset of the

traces for the property. The environment in which the system behaves can be

specified in a similar manner, and a system’s specification is valid only when the

environment satisfies its constraints.

Reasoning about composite behaviors under this framework comprises

two steps. The composition step uses the proof rule to establish under what

conditions the properties of the subsystems can be connected together in the

25

composite environment. The refinement step finds a mapping under which the

conjunctions of subsystem properties will imply the composite property.

Informally, a composition decides when subsystems can be composed together,

and a refinement ensures the composed system implements the needed

composite system.

The Abadi-Lamport composition/refinement rule provides a solid

foundation for the general divide-and-conquer approach. However, because

security properties are not functionalities, these properties are not preserved by

standard notions of refinement or composition. This results in that assurance

gained from formal proofs at one level of abstraction cannot necessarily be

transferred to a more concrete level [92]. The reason, suggested in [91], is that

general functional properties are sets of traces. Security properties, on the other

hand, are sets of sets of traces, or power sets of traces. It is believed that luckily

integrity, and hopefully availability, is mostly preserved under refinement and

composition. However, confidentially is generally not preserved [125], because

refinement into components can bring new chances of interaction and

observation that are not possible in a monolithic system. This makes the security

composition problem a hard problem.

2.3.2 Integrity
There have been many efforts that use Abadi-Lamport theory to directly

verify security. Generally the security under consideration is integrity, and the

problem will be reduced to prove the safety and liveness of the system. Some

prominent examples found in literatures are summarized below.

26

Heckman and Levitt verifies the correct enforcement of access control

policies by a set of distributed servers [56]. The verified system consists of two

server processes, each implementing one system call. Both the safety property

and the liveness property of the composite system are verified. A Higher Order

Logic theorem prover is used to assist the proof. Of the 23000 lines of code for

the proof, about 7% is about composition proof, 24% is for the refinement of

safety, and 69% is for the refinement of liveness.

Hemenway and Fellows apply the composition theorem with the Formal

Development Methodology tools [57]. A system consisting of a workstation, the

IPC communication, and the network communication is modeled. The

enforcement of a mandatory access control policy is verified.

Bieber uses a state machine to model the imperative properties and adopts

temporal logic to describe declarative properties [13]. Even though he tries to

handle information flow properties, the approach still mainly verifies safety.

Composability for Security Systems (CSS) [107, 108] is another logic-based

method to reason about security of components and their composition. It uses

PVS [109] to prove theorems, with a custom developed proof strategy. It mainly

investigates integrity of composite systems.

The features of the CSS framework are: 1) it makes agents, which performs

actions, explicit to support security analysis; 2) composing components will

invoke environmental constraints automatically; 3) it does not support

quantifiers, simplifying proofs at the cost of some expressiveness.

The CSS framework provides two lessons for using logic in security

verification. The first is the elimination of state translators. Previously a

27

translator between the states of components and the state of their composition

was employed. This complicated the property proof. CSS instead uses a single

common state that has a field for each component state. A theorem about the

configuration of the system is also added. Both the common state and the

configuration theorem simplify the proof. Secondly, they discover that a

refinement proof is easier to perform than a property proof. To prove a lower

level specification is secure, instead of following the more difficult route to prove

the property on the specification itself directly, it is easier to first prove the

security on a higher-level specification and then prove that refining from the

higher level specification to the lower level specification preserves the security.

This is a common theme in logic-based security design and analysis approaches

[29, 48].

The CSS framework is used to prove that a file manager always returns a

secure file handle to a process manager [110]. The components are developed and

different approaches to compose them are investigated to compare the tradeoffs

of different architectures. The effort confirms that first proving the properties on

the components and then proving a refinement mapping between the system and

the components is easier than directly proving the composite property on the

system. The effort also argues that this route can reuse existing proofs in proving

newer properties.

The techniques enumerated above demonstrate the effectiveness of the

Abadi-Lamport theory. However, these examples also illustrate how labor

intensive the verification activity can be, even for small problems. These

approaches also require highly skilled professionals with special expertise.

28

2.3.3 Confidentiality: Information Flow Security
As discussed before, confidentiality cannot be sufficiently treated in the

Abadi-Lamport composition. Researchers took a different path towards this

property. They have proposed frameworks unifying information flow security

properties and have studied composing these properties under the frameworks.

Unifying Framework. The various information flow security properties

listed in Section 2.2.2 have been proposed with different intentions. These

properties operate under different formalisms, making comparison among them

difficult. There have been many efforts to unify these properties under a single

formal framework so that the properties can be compared, deeper insights can be

gained, and a consensus on which property is the most desirable might be

reached. A unifying framework can also provide a more solid foundation to study

the composition of these properties under different operations.

Naturally, most unifying frameworks are based on trace and logic because

these are used for defining most of the properties originally. Four representative

frameworks are outlined here. These efforts lay down the foundation to study

securely composing abstract computations for confidentiality.

John McLean proposes the first such framework, Selective Interleaving

Function (SIF) [89, 91]. It views each information flow security property as a

function that takes two traces and interleaves fragments of these traces to

generate a new trace. Different properties can be described using corresponding

functions that takes related fragments and perform appropriate processing on the

first and the second trace. A partial ordering among the proposed properties is

29

established, based on the implication relationships between the equivalent

functions of these properties.

Peri et al. suggest a simple unification framework based on the many-

sorted logic [111]. They study a limited set of proposed properties with the logic

and restate the properties using formulas of the logic.

MAKS is another concise unifying framework [85]. Its basic building

blocks are Basic Security Predicates. A predicate can be Removal (R), Backward

Strict Deletion (BSD), Backward Strict Insertion (BSI), Backward Strict Insertion

of Admissible Events (BSIA), Forward Correctable Insertion (FCI), and Forward

Correctable Deletion (FCD). These predicates describe operations available on

traces. MAKS proves that existing properties can be constructed from these

predicates. The implication relationship between the predicates can be used to

order the corresponding security properties. The result is illustrated in Figure 2-3.

Halpern and O’Neill uses a modal logic of knowledge to unify the various

properties [53]. Their framework models states of both the agents and the

environment. The framework extends the notion of Non-Deducibility on Input

[136] in several aspects. Firstly, its notion of secrecy allows asymmetric secrecy

from one agent to the other, unlike the symmetry of the original definition. Since

the secrecy is modeled as knowledge, it can be more specific on what is to be

guarded, relieving the requirement that everything is a secret. Secondly, its

notion of a trace (called Run in the framework) makes time more explicit. It

introduces an allowability function based on time that can uniformly handle

complete synchrony, complete asynchrony, and any middle points between the

two extremes. Thirdly, it also introduces a probability measure to handle

30

probabilistic secrecy. This measure can be either a global measure on all possible

runs, or a locally defined one on partitions of runs. In addition to these

extensions, using model logic of knowledge also enables the framework to model

resource-bound adversaries where revealing of secrecy is computationally

expensive.

Figure 2-3, Information Flow Properties, from [85]

Some unifying frameworks based on process algebras are also suggested.

Process algebras are compact, can express composition naturally, and can handle

situations where traces on inputs and outputs are insufficient. For example,

process algebras can specify that a low level agent should not get any information

by observing a high level agent being deadlocked. This is a possibility that is not

addressed in trace-based formalisms.

31

Security Process Algebra (SPA)[40, 41, 43] is a security extension to the

process algebra Calculus of Communicating Systems (CCS) [100]. It views

various definitions of information flow securities as requirements on the

processes, and uses equivalence relations to classify those properties based on

their implication relationships. It uses trace equivalence and test/failure

equivalence to classify existing properties, and proposes behavior equivalence as

a stronger definition of equivalence. The behavior equivalence is based on weak

bisimulation of processes, where processes are equivalent if they can accept the

same nondeterministic events. Based on this notion of equivalence and the

definition of Non-Deducibility on Strategy [147], SPA proposes a new security

property, Bisimulation Non-Deducibility on Composition, where a high level

agent can compose with a general process.

Ryan and Schneider applies a different process algebra Communicating

Sequential Process (CSP) [62] to unify information flow properties [119]. They

eliminate the difference between inputs and outputs, viewing them as just events.

They use power bisimulation to unify those properties. Power Bisimulation is a

different equivalence than the weak bisimulation used in the Security Process

Algebra.

Composition. The composition problem has received significant

attention within the information flow security community. The general question

to be answered is: given a component with one property and a component with

potentially different properties, when they are composed using one composition

construct, what property will the composite system satisfy [91]? A simplified

version is: when two components with one property are composed using a

32

particular composition construct, will the composite system also satisfy that

property? If yes, then it can be said that the property is compositional

(composable) under that composition construct.

The notion of composition depends on the formalism adopted. Selective

Interleaving Function classifies composition into three different constructs [91].

In a product composition, two components are juxtaposed, without any

interaction. In a cascade composition, one component’s output is fed as another

component’s input. In a feedback composition, in addition to the input/output

relationship established in cascade, the output of the second component is also

the input of the first component, forming a loop between the two components.

Some representative results from studying composition under these

constructs are summarized below. It is proved in [91] that the feedback

composition retains less security properties than the product composition and

the cascade composition, because it is too restrictive on what to accept and too

generous on what to produce. MAKS only considers product composition and

cascade composition [85]. It uses a powerful lemma to unify known composition

results. MAKS reveals why certain properties cannot hold under composition and

suggests what emergent behaviors (behaviors that only exist in a composite

system) can emerge under composition. Zakinthinos proposes a simple bunch-

theory based framework, where a bunch is the content of a set [148]. The

framework studies both cascade and feedback and discovers that properties

eliminating dependencies on inputs are preserved under feedback composition.

Peri et al. [111] study the composition problem under the many-sorted logic and

33

prove compositional properties in cascade and feedback composition using PVS

[109].

Composition takes a different form in Security Process Algebra [41]. It is

formed by the parallel execution of processes. These processes only synchronize

on common complementary actions when one process’s output is another’s input.

The algebra studies whether certain properties can still hold when the restriction

operator and the hiding operator applies on the composition operator. The

Bisimulation Non-Deducibility on Composition property has to be extended to its

strong variant to be composable. A model checking tool, compositional security

checker [42], is used to check the compositionality of security. The power

bisimulation proposed in [119] is also composable.

Santen et al. views the compositional problem under the

refinement/composition perspective [125]. They argue that traditional

possibilitistic secrecy is too strong, requiring too many sufficient conditions and

providing too few necessary conditions. They suggest that in a refinement setting,

if a concrete specification preserves the same probability of discovering secrecy as

an abstract specification, then it is a secrecy-preserving implementation of the

abstract specification. Santen et al. discovers that failing to hold security under

composition comes from the new window of observation opened up by

decomposing a system into components.

Discussion. The information flow security property captures a natural

notion of secrecy. Despite its general appeal and two decades of research for it,

the topic remains mostly of an academic interest [117]. In real systems, high-level

agents do interact with low-level agents. Even among researchers, there is no

34

universally accepted consensus about what is the best definition and formalism to

characterize the information flow security property. This can be seen from the

many proposed properties and even more frameworks unifying them. These

properties are too remote from a real system and few real policies care about

information flow security. The composition mechanisms are very primitive and

far from real connection facilities. Finally, information flow security models are

very difficult to build. Their canonical definitions took a form of an inductive or a

universally quantified format, which is not constructive at all. It may be necessary

to retreat to building a traditional access control model first and performing

covert channel analysis afterwards [90, 99]. As suggested in [117], “non-

interference is little more than a rather intriguing topic of arcane debate, at best

the source of compelling theoretical challenges on which learned but largely

irrelevant papers can be written.” In spite of its appeal and abundance of

mathematically beautiful results, information flow security might not be very

relevant and practical for real software.

2.4 Component Specifications of Software Security
After surveying the theoretical results on security, we will discuss two

types of software techniques that describe, analyze, and enforce security for

componentized and networked software systems in the remaining part of this

chapter. This section focuses on how a component can be specified for its security

requirements and provisions. The next section elevates the abstraction to the

architectural level and surveys related approaches. For a more comprehensive

discussion of software mechanisms utilized in complex systems to handle

modular security, please see [113].

35

This section investigates techniques that support explicit component

security specification. During composition, these specified components should be

combined consistently, resolving potential conflicts and accomplishing system

wide security.

2.4.1 Computer Security Contract
Computer Security Contract (CSC) addresses how to disclose the security

property of a component to others [72, 73]. It tries to answer the following

questions: how to characterize the security properties of a component, how to

access these properties at runtime, how to characterize the composite security

properties when a system is composed out of several components statically or

dynamically, and whether the composite properties are also available at run-time.

Computer Security Contract explicitly specifies security properties of

component interfaces. The interface specifies ensured and required security

properties of a component using logic. When the components are composed

together, a composite logical description is deduced to capture the ensured and

required properties of the composite component. These properties can be

accessed at run-time. An interface with reasoning capability and knowledge

storage is named Active Interface.

The basic form of the logic is an atom describing three items: the security

operation, the security credential used in the operation, and the data operated by

the operation. For example, an encryption operation takes a key as the credential

and a stream of data for encryption.

The CSC framework operates in an event-based environment. When a

component needs a service, it broadcasts a request, and becomes the focal

36

component. A candidate component is the component responding to this request.

If the two components can successfully negotiate and find a way to satisfy the

required security properties of each other, then a binding is established between

the two components, forming a composition. The composite contract is the

composition of the contracts of the two components, with the required property

of the candidate component as the composite required property, and the ensured

property of the focal component as the composite ensured property. After a

successful negotiation, both the focal and candidate component reconfigure them

to behave as specified by the contract.

Figure 2-4, Active Interface, from [73]

To enable the run-time access of security properties described by

composite contracts, each component has an interface called the Active Interface.

The interface consists of an identifier verifiable through a digital certificate, a

traditional functional interface describing the available functions, a read-only

public security knowledge database providing the ensured and required security

37

property of the component, and a read-write protected computer security

contract base containing all the active contracts that the component is currently

bound to as a focal component. The contract base will expand and shrink, as the

component engages in different compositions. However, each candidate

component bound to a focal component cannot see the contract of other

candidate components, providing a protection among the components. The

structure of the active interface is shown in Figure 2-4.

The logic-based contract is expressed with a Prolog-like form of logic

programming [74]. A contract has a set of rules each of which has a header and a

body. The header is a predicate that can be derived if all predicates in the body

are satisfied. An ensured property is a rule containing only a header. A required

property is a rule containing only a body. A compositional contract is the result

derived from the rules of the components. Logic programming allows more

powerful automation and reasoning. A rule can use predicates from the

authentication logic proposed in [21]. The authentication logic reasons about the

authentication and belief relationships among components, and provides a well-

established foundation to from a compositional security property from

component contracts.

In summary, the Computer Security Contract approach extends the

traditional functional interface of a component with an extra-functional interface

about required and ensured security properties. A logic approach is used to

describe these properties. Logic reasoning is utilized in negotiating a composition

of components and determining the composite security properties. A run-time

structure provides storage and access of these properties.

38

While this approach is promising, some issues need to be resolved. Firstly,

a more expressive and efficient expression mechanism is needed. The current

basic atom describing security operations, credentials and data does not capture

most entities involved in security design and analysis. How to improve its

expressive power yet retain its computation efficiency is still an open research

question. Secondly, the current composition mechanism is still rather simple,

mirroring a function call between a caller and a callee. Existing logics on

functional composition can be applied to this composition mechanism. Other

composition mechanisms, possibly involving more than two entities, need to be

incorporated [75]. Thirdly, the current contract base is stored at the focal

component and requires modifying the component, so it depends highly on one

party of the component. Whether this is the only or the best choice is arguable.

When a general component container is used, it might be a better place to serve

as the composite contract base. Other forms of composition might choose

different places to store security contracts.

2.4.2 cTLA Contract
Hermann proposes a more elaborate component specification to describe

and verify security properties of component-based systems [60]. Instead of the

simple first order predicate logic used in the Computer Security Contract, a

compositional extension to the Temporal Logic of Actions (TLA)[77], cTLA, is

used to specify the behavior contract of components and their compositions.

The cTLA is a linear time temporal logic describing the safety and liveness

properties of systems (see Section 2.3.1). The contract written in cTLA models

each component as a process and delineates the state transitions of the process

39

for the component, forming a state machine. The state machine can be used to

enforce security properties, allowing valid state transitions and prohibiting

invalid ones, as described in [127].

The composition feature of cTLA is based on concurrent execution of

processes. cTLA enables composition from implementation-oriented processes,

constraint-oriented processes, and processes combining both. The composition

feature of cTLA supports the property of superposition, where a property of a

process is also a property of the embedding system.

The superposition of composition greatly simplifies the verification of

compositional systems. The verification can utilize a pre-developed framework

containing theorems about shared global settings and the properties of

constituent components. To prove a more concrete system holds the same

property as a more abstract system, a correspondence between a process in the

latter and a component in the former should be established, most probably in the

form of a refinement mapping.

A Role-based Access Control policy is modeled as cTLA processes. The

validity of the access control policy of an e-commerce procurement application is

verified using the refinement mapping technology suggested above. That

experience suggests that a refinement mapping is relatively easy to find, and

much of the verification work can be automated with tools.

Compared to the Compositional Security Contract [73] (see Section 2.4.1),

cTLA does not focus on what a compositional contract will be when composing

components, and how a run-time system can support reasoning, storage, and

utilization of this contract. Composition Security Contract is a bottom-up

40

approach. cTLA is another instance of those top-down logic-based refinement

verification methodologies [36, 134]. Despite the initial positive experience, the

approach faces the same challenges, namely finding the suitable security

properties for the methodology and effectively conducting the proof with more

automation and less dependence on human experts.

2.4.3 Discussion
The techniques proposed in this section are only a sample of possible

alternatives. They stand out by their explicit use of logic-based component

specification. Using logic facilitates automatic reasoning and proving during

composition and refinement. One issue beyond simple composition is the

emergent property problem. Emergent properties are those properties that only

come from composing components. Undesirable emergent properties might be

the result of under-specification of the components or implicit assumptions made

by the components. Specifications of components should be complete so no

undesirable properties will emerge during composition [61, 149]. Desirable

emergent properties are also challenging. An open research question is whether a

set of secure components can be composed to achieve more security that what is

available through a single component [32] and how this can be accomplished.

A problem with the component specification approach is how trustworthy

the specification is, because there might be no proof that the real behavior of the

component is the same as that specified in its specification. One possible

mitigation is using certification [47]. Some trusted third party can certify the

conformance between the specification of a component and its underlying

behavior and issue a certificate difficult to forge to the component. The certificate

41

can easily be verified during composition. This is not a complete solution, but it

can be part of the foundations to support secure composition of components.

2.5 Architectural Approaches to Software Security
Software architecture has been proposed as an effective method to design

and analyze large and complex software systems. Most of the previous work has

focused on functionality. This section will examine its support for security. Some

questions specific to an architectural approach are: Does the technique employ a

formal architecture model? If there is a formal architecture model, are

connections between components buried in an ad hoc manner, or are the

connections abstracted as first class connectors? If connectors are used, how do

they facilitate the expression and enforcement of security?

This section begins by examining security extensions of standard object-

orientated techniques (Section 2.5.1 and Section 2.5.2). It then turns to

approaches without an explicit notion of connectors (Section 2.5.3 and 2.5.4).

The next discussion is about architectural models supporting explicit connectors

(Section 2.5.5 and 2.5.6). The issue of security in architecture evolution is

discussed in Section 2.5.7.

2.5.1 Object-Oriented Labeling
Like modeling software architecture with standard object-oriented

notations [93], some design techniques extend object-orientated methodologies

to support security. Herrmann introduces a methodology to analyze information

flow security [59]. The theoretical foundation of the methodology is a

decentralized labeling model. The meta-model used in the methodology is the

42

Common Criteria [22]. To facilitate the adoption of the methodology, a tool based

on graph rewrite system is also developed.

A label in the decentralized labeling model [105] identifies a set of

principals. One of them is the owner; the others are readers who are granted

reading access by the owner. An “act for” relationship can be defined between

principals so one principal can have the same reading privilege as the other

principal. Operators are defined over labels to generate more restrictive or less

restrictive labels. Each component, interface, method, and field of an object-

oriented design model is assigned a label. A label serves as an access control

policy to define what kind of access is granted to which principal. The

decentralized labeling model facilitates static analysis of information flow

security for a model so labeled.

The Common Criteria [22] defines a set of classes for concepts utilized in a

security evaluation process. An asset is a resource needing protection. It has

vulnerabilities, so it is exposed to threats. Risks are associated with these threats.

Countermeasures can be deployed to fight the threats. However,

countermeasures may contain vulnerabilities themselves, so more

countermeasures are needed. For each asset, vulnerability, risk, threat, and

countermeasure, a number is assigned to reflect its relative value, severity, or

effectiveness.

A graph rewrite system is a set of rules used in transforming graphs. Each

rule specifies a pre-pattern that identifies the graph before transformation, a

post-pattern that specifies the graph after transformation, an application

43

function that must be met by the attributes of the original graph, and an effect

function that the attributes in the transformed graph will exhibit.

Guided by the meta model of the Common Criteria, the object-oriented

labeling methodology assigns a numeric value to each data item described in the

object-oriented model. It also labels each component, interface, method, and

field to reflect the current access control policy. Using graph rewrite rules, the full

access control relationship is computed, so is the asset value of each data

structure and data storage component. If some of the more precious assets might

be exposed to malicious principals, a threat is identified, and the corresponding

risks are assessed. If the risks are within the acceptable range, then the object-

oriented model is satisfactorily secure. Otherwise, either the label needs

relabeling, or countermeasures should be deployed to attack the threats. The

effectiveness of the new countermeasure needs to be reevaluated. Since

countermeasures might bring in new vulnerabilities, this process will iterate until

the risks fall into a range acceptable to the security assessor.

This methodology integrates formal information flow analysis into

mainstream object-oriented design techniques, resulting in a usable approach

that can enhance the security of design. Its use of a graph rewrite system can

easily integrate more knowledge about security analysis into the design process, if

the knowledge can be embodied in a graph rewriting rule.

The assessment on security is reached through a subjective evaluation

process, thus the assurance provided by the methodology is at best qualified.

Currently the methodology can only utilize one kind of formalism (object

structure) and evaluate designs statically. Integrating multiple kinds of formalism

44

(object behaviors) and expanding the evaluation into a dynamic environment is

worth pursing.

A similar approach is MOMT [86], a methodology that adds multilevel

security to the original Object Modeling Technique. The basic extension is to add

a security label to attributes and operations of objects and classes in the static

model, and add a security label to the events produced in the dynamic model. The

MOMT methodology is not widely used, possibly due to its incompleteness.

2.5.2 UML-based Security Modeling
UML is a standard design modeling language. There have been several

UML-based approaches for modeling security. UMLsec [70] and SecureUML [82]

are two UML profiles for developing secure software. They use standard UML

extension mechanisms (constraints, tagged values, and stereotypes) to describe

security properties.

Aspect-Oriented Modeling [112] models access control as an aspect. The

modeling technique uses template UML static and collaboration diagrams to

describe the aspect. The template is instantiated when the security aspect is

combined with the primary functional model. This process is similar to the

weaving process of aspect-oriented programming. The work described in [71]

uses concern diagram as a vehicle to support general architectural aspects. It

collects relevant UML modeling elements into UML package diagrams.

2.5.3 ASTER
Bidan and Issarny proposes one of the first techniques to address security

issues using an architecture description language supporting connectors [12].

Based on security requirements of components to be composed, the approach

45

uses the specification matching technique [150] and composes a customized

connector out of base connectors and system-provided connectors to connect the

components and meet those requirements. These connectors are implicit, though.

In canonical software architecture paradigm, a connector handles

communication issues between components. The quality of service of

communication, such as security, can be handled via newly formed connectors

composed of existing application-level connectors and system connectors [132].

This connector composition approach has the following benefits: 1) separation of

concerns: computation, communication, and QoS of communication are handled

by different constituent parts of the architecture; 2) limited impact on the

existing architecture; 3) assurance of enforceability by the underlying system.

The proposed approach addresses three types of security properties:

encryption, authentication, and access control. An encryption specification of a

component specifies the parameters of the encryption, such as the algorithm

being used, the key size, and the session length. A component might use a set of

encryption algorithms and have different levels of trust for each algorithm, with

the highest trust on the most secure encryption. Based on the specifications, if

two components can each find an algorithm sufficiently trusted and the

algorithms are compatible (probably using the same algorithm and accepting

keys of the same size), the components are bound together, and the connector

will be the most secure connector that can be established between the two

components.

A similar process is applied to match the authentication requirements of

the components. Each component specifies the authentication protocols that it

46

can use and the level of trust of each protocol. The most trusted protocol that can

be mutually applied will authenticate the components.

A different specification is used to specify access control policies [11]. For

each component, the specification stipulates the types of subjects (classifications)

and the types of access these subjects will be granted (access rules). When

composing two components together, the composite classifications can be the

union, intersection, or product from the classifications of the components. The

composite access rules can be the logical conjunction or logical disjunction of the

access rules of the components. Two types of match are defined to compare

access control policies: a plug-in match if one policy subsumes the other and an

exact match if they are equal.

The ASTER configuration-based environment is extended to compose

components having security specifications. The environment is based on a

module interconnection language, and it can be used for run-time composition of

components.

This approach is among the first to specify security requirements for

components and form composition based on the requirements (see also Section

2.4). The approach is supported by a configuration-based design environment.

The approach still has the following limitations: 1) The security specification is

not very expressive. It is limited to certain aspects of certain properties, such as

algorithms of encryption and protocols of authentication. 2) The match of the

specifications is primitive. It is mostly a selection process based on parameters of

the specifications. 3) Even though the approach argues for composition of

connectors, it is still oriented towards module interconnection, lacking an explicit

47

notion of connector that stores and enforces the composite security property. 4)

The approach does not directly address how composition can be applied to

composite systems.

2.5.4 System Architecture Model
System Architecture Model (SAM) is a methodology that can be used to

model and analyze security of system architectures [29]. The methodology

models security as a global constraint on the system architecture. It then

propagates the constraint down to the components, and verifies that the

components satisfy the constraint collectively. The methodology then applies the

same process to model and analyze each component individually.

The System Architecture Model (SAM) integrates a model-oriented

formalism, Petri net, and a property-oriented formalism, Temporal Logic. Its

lower level (proposition level) utilizes Place-Transition nets and Real-Time

Computation Tree Logic, so the model can be automatically analyzed. At the

higher level (first order level), it adopts Predicate/Transition nets and First Order

Temporal Logic, because they are more expressive. The security modeling and

analysis is based on the higher level notions. Petri nets describe components and

connectors, and Temporal Logic specifies architectural constraints.

The methodology consists of the following steps [29]:

1) Construct a top-level secure system architecture model.

2) Specify system wide architectural security constraint patterns. These

patterns are expressed in temporal logic, and they involve only ports of the

components.

48

3) Decompose the system wide security constraint patterns into individual

constraint patterns on components.

4) Verify the consistency between the system wide constraint patterns and

the component-level constraint patterns. The verification generally is not

decidable. However, since the component constraints are derived from the

system wide constraints and the architecture connects components together, a

smaller Petri net can be designed to replace each component, using conversion

guidelines delineated by the methodology. The resultant larger and executable

Petri net can be used to verify the consistency between constraint patterns from

two different levels.

5) Incrementally design and verify components. Apply the about four steps

for each component.

Figure 2-5, System Architecture Model, from [29]

49

The overall methodology is illustrated in Figure 2-5, which shows the

environmental constraints and component constraints at the high level, and how

constraints on one component are inherited as the composition constraint in the

low level.

The SAM methodology is applied to model the Resource Access Decision

Facility of CORBA. It is verified that the architecture satisfies the security

constraints: the access control decision is always in accordance with the current

policy.

This methodology can model the security of a system architecture in a

systematic and formal manner. It can assure that a system composed from

components satisfies the security requirements. It claims to be one of the first

such efforts that model architectural security in a composable and verifiable

fashion.

The methodology achieves scalability through the classical divide-and-

conquer mechanism. Once the constraints on each component are verified to

preserve the architectural constraints, each component can be designed and

analyzed separately. As long as a component conforms to its part of the full

contract, the global property will not be affected.

The SAM methodology is a top-down approach. It starts with the security

requirements of a system, and assigns responsibility to each component, so their

composition can be verified for satisfying the requirements. The methodology

could not be applied in a bottom-up manner, where the composite security from

composing components needs to be reasoned from the security of those

components.

50

The methodology also models security as a form of correctness. It treats

security as a property that can be expressed by first order temporal logic. While

this can cover a large set of problems, the approach cannot address problems in

the covert channel domain. This methodology is an architectural level integrity

verification methodology for safety composition and refinement (see Section 2.3.1

and 2.3.2).

In step 3 of the methodology, how to decompose the global constraints

into each component is not always straightforward. With a given architecture,

there can be several alternatives to allocate constraints. How to decide the

tradeoffs of the alternatives is worth exploration. More challengingly, when the

architecture is still under design and it can still be changed to accommodate

different security property, performing such an allocation and tradeoff analysis

becomes even more difficult.

Since the System Architecture Model is based on Petri nets, it does not

have the notion of explicit connectors. The “connector” is actually the transitions

between places, not the usual notion of communications between computations.

Therefore, the methodology does not have a step to incrementally design and

verify “connectors”. While the temporal logic-based formalism is applicable to

other software architecture description languages, extrapolating the Petri net-

specific mechanism might not be very straightforward.

2.5.5 Connector Transformation
Given the importance of connectors in architectural development [95],

constructing them effectively is of great importance. Handcrafting each connector

can be expensive. Existing connectors do not always provide all required qualities.

51

Like composing general application using existing components, connector

composition is aiming at reducing development efforts. Spitznagel and Garlan

proposes a set of operators that can be used to transform an existing connector

into a new connector that provides required security property [131].

The motivating problem of the approach is to add security property to a

generic communication mechanism. In the example given in [131], it is to add

Kerberos authentication support to Java Remote Method Invocation. One

possible solution is to ask the developer to modify the original application that

uses the communication mechanism. This solution is rather expensive, and the

result is not maintainable. A second possibility is to modify the generator

generating stubs for the communication mechanism so the mechanism provides

the security capability at appropriate locations. This method requires expertise of

the communication and security mechanisms, and it cannot scale to other

properties because a new property will require further modification of the

modified mechanism.

The authors propose a solution employing a set of transformations on the

original connector to produce a new connector that can meet both the

communication and security requirements. A tool can be developed to automate

the process. This transformational method lowers requirements on the

knowledge about the original communication mechanism. The general

transformational method could be applied again on the resultant connector when

the mechanism needs to provide other qualities.

The transformation method is outlined in Figure 2-6, where l designates

communication libraries, generated stubs, etc., below the application level, s

52

represents low level infrastructure services, t stores data and tables for

information like locations of communicating parties, p is a policy specifying the

proper use of these parties, and w collects the formal specification describing the

connector’s proper behavior.

Figure 2-6, Connector Transformation, from [131]

The authors argue that the transformations on connectors should balance

between formalism and practice, and the transformations should be useful,

general and analyzable. They propose the following transformations for secure

communication: data transformation that changes the format of data exchanged,

53

splice that combines two binary connectors into one new binary connector,

adding a role that enables adding a new party to the interaction, session that

makes a stateful connection stateless or vice versa, and aggregate that puts a set

of connectors under the control of one controller.

The Kerberos support is successfully added to Java RMI after these

transformations. The engineering effort involved is reasonable, but the

advantages gained are significant.

They admit that their current technology only handles different types of

transformations applied on a single type of connector, because a transformation

requires knowledge of the specific connector. Finding a set of general

transformations applicable to many types of connectors is a great challenge. The

current formalism used in describing the transformations is still limited to the

specific connector type.

Transformational construction of connectors can be an effective way of

providing extra functionality in connectors. However, finding a set of

transformations useful, general, and analyzable remains a big challenge.

Connector transformation can be considered as one method to introduce

more aspects onto the base communication capability. The aspect methodologies

provide a general framework that can handle many different aspects, but not

much support specific for security is provided [113]. The connector

transformation methodology utilizes a set of transformations useful in supporting

security. Which methodology is more powerful and more secure, and whether a

combination of both is possible, remain open research issues.

54

2.5.6 SADL
Architecture Proof. Secure Software Architecture [104] is one of the

few approaches that directly deal with security at the architectural level. Based on

the correct refinement approach presented in [103], the Secure Software

Architecture approach presents three unique features: it supports not only

horizontal decomposition of architectures but also vertical decomposition

between different layers of abstractions, it maintains a correctness retaining

mapping between different layers, and it utilizes a canonical architecture

description language that supports property refinement. The approach is

illustrated in Figure 2-7.

Figure 2-7, Secure Software Architecture, from [48]

55

The authors use the approach to prove the Bell-LaPadula [6] security of a

secure extension to the X/Open Distributed Transaction Processing standard

(SDTP). They argue that proving the security property at an architectural level on

a standard has the advantage that any compliant products will possess the same

security assurance without further proof. They develop different security

extensions to the original architecture and prove that each extension preserves

the required security.

In the SDTP proof, the DTP standard partitions a distributed transaction

processing system into three components: the application component that is the

initiator of the transaction, the resource manager that manages resources of the

transaction, and the transaction manager that coordinates the transaction. Three

possible architectures that enforce Bell-LaPadula security are: 1) Place all three

components into a single security level. 2) Put the application and the resource

manager at different levels, connect them through a MLS (Multi Level Security)

filter that enforces security, and use a full MLS transaction manager. 3) Use a full

MLS application component, a full MLS resource manager, and a full MLS

transaction manager. They prove that each architectural variation can preserve

the required security.

The reasoning power of the architecture definition language SADL is based

on logic. During the refinement process, the mapping established between the

higher level abstraction and the lower level abstraction must be both a theory

interpretation and a faithful interpretation. That is, a true property at the higher

level abstraction is also true at the lower level, and a false property at the higher

level is also false at the lower level. In other words, the lower level architecture

56

implements the higher level architecture exactly. This is based on a completeness

assumption on that all true statements at each level of abstraction can be derived

from the specifications of that level. As will be clear later, this is a rather stringent

requirement.

After establishing the mappings between the proposed secure

architectures, they manually prove that these mappings actually preserve the

security properties.

Implementation. The effectiveness of the architectural refinement

methodology is demonstrated by implementing the secure distributed transaction

processing (SDTP) architecture proposed above [48]. The demonstration reveals

important properties of the methodology.

The most important objective of the implementation case study is to

determine whether applying transformations using only faithful interpretations is

sufficient to derive the implementation level description from the most abstract

descriptions. The non-definitive conclusion from the case study is that it is very

difficult or even impossible. A less stringent kind of transformations always

preserving security is showed to suffice for the derivation, but it requires very

strong preconditions, which severely affects the applicability of such

transformations. Eventually the authors have to introduce transformations that

do not always preserve security, and they will check to assure that such

transformations still retain security in each case. To prove that the

transformations still preserve security, they utilize the same transformations

used in architectural descriptions to prove the security perseverance of these

transformations. They call this notion as “proof-carrying architecture” because of

57

the carrying along of transformations from architecture descriptions. Combining

transformations that always preserve security and transformations that can be

checked to preserve security together, they accomplish the goal of deriving a low-

level secure architecture from an abstract description.

The study also demonstrates that rearchitecting can be an effective

method to introduce security. Security is not an inherent property of the original

architecture standard. It is an add-on feature after the architecture has been

established. The methodology shows how to introduce and verify security on a

legacy architecture.

Transformations are a common software production technique. While they

cannot achieve everything through a limited set of transformations, they verify

the validity of transformations that they believe are generally useful.

Also, the authors can derive the final implementation from the lowest

“implementation-level” descriptions straightforwardly, due to the formality of

facilities from the selected programming language. The argument for the

programming language dependence is that this is necessary to assure no

significant gap exists between the lowest level description and the code, and the

confidence gained in the transformations and checking is not lost in the final step

of software construction.

Discussion. This experience suggests that employing mathematically

sound transformations only, such as faithful interpretations or security

preserving transformations, is too difficult for practical applications of the

methodology. However, loosening the stringent requirements on transformations

and checking security after transformations with the connection embodied in

58

architectural descriptions is more effective in verifying the security of the

architecture. This is also demonstrated in [29], where verifying the consistency

between architectural constraints and component constraints is facilitated by the

fact that the latter is derived from the former.

A common obstacle against a transformation and proof-based approach is

that it requires significant expertise and is highly labor intensive (see also Section

2.3.2). An automated tool simplifying the application of the methodology is

possible, with the insights gained from the effectiveness of rearchitecting, the

available stock of general and verified transformations, and the easiness of

producing code from low level descriptions,.

The authors plan to use light weight formal approach, design a lot, specify

some, and prove just a little [133]. This approach would be more practical than a

formal method that requires great efforts from methodology experts.

2.5.7 Law-Governed Architecture
Law-Governed Architecture [101] is a methodology arguing for not only

the description of an architecture model but also its enforcement. The benefits of

an enforced architecture model are two folds. Firstly, it can bridge the gap

between a descriptive architecture and the system, enabling reliable reasoning

about the system. Secondly, due to its carefully circumscribed flexibility,

developers can enforce invariants of evolution when the system evolves during its

lifetime.

The focus of the Law-Governed Architecture approach is the evolution of a

system in its operational context. An evolving system models three aspects of the

system. The first is the system itself. The second is the explicit rules (called laws)

59

that govern the structure of the system, the evolution of the structure, and the

evolution of the laws. The third is the environment in which a system lives and

the laws are enforced.

The laws can be classified into two categories. The system sub-laws govern

the structure and behavior of the system. The evolution sub-laws regulate the

development and evolution of the system and the laws themselves. Based on a set

of initial laws, a system can evolve into other forms. During the evolution, certain

rules are enforced, and these rules are called evolution invariants. Strong

invariants are those invariants that not even the developer or the manager can

change.

Different types of systems, different kinds of laws, and different

enforcement techniques can be used in Law-Governed Architecture. The laws can

be enforced statically and centrally, through a persistent object base describing

all program modules, rules of evolution, meta rules about rules creation and

modification, and builders who conduct development and evolution. The laws

can also be enforced dynamically and distributedly, by intercepting message

exchanges between architectural components.

The Law-Governed Architecture can be applied to enforce secure

operation and evolution of a system. For example, a set of rules can be defined to

require that one component cannot access data in another component. Rules can

be refined into more detailed rules. They can also be relaxed to allow more

permissive accesses. However, the strong invariants should never be violated.

60

In sum, Law-Governed Architecture not only models the architecture of a

system but also specifies and enforces its evolution, through a set of reflexive

rules. The rules can specify the security properties of the system.

The limitation of the Law-Governed Architecture methodology lies in the

expressiveness and enforcement of the laws. The laws must be enforceable, and

the enforcement should be reasonably efficient. This limits laws that can be

imposed. The methodology suggests that there still are many useful laws within

the limit. Finding these laws remains an open research problem.

2.5.8 Discussion
This section has discussed several software architecture-related solutions

proposed for handling security of componentized software systems.

The simple extension of standard object-oriented notions with security

information (Section 2.5.1) can be rather useful, when such a model comes into

existence at a later stage of design. They can serve as a prelude to the secure

program partition method [105], whose information flow security requirements

on programs can derive from the secure object-orientated design models.

UML is now widely accepted as the standard detailed design notations.

Previous research shows it had some major shortcomings when used to describe

software architecture [93]. Thus the techniques proposed in Section 2.5.2 might

not be well suited for architectural security. With the recent introduction of UML

2.0, this issue might need to be revisited.

Security should be addressed as early as possible. This naturally leads to

an architecture-based approach. Simple extensions to module interconnection

models (Section 2.5.3) do not provide a formalism rich enough to express and

61

reason about architectural security concerns. Even models with a formal

underpinning (Section 2.5.4) can mix the artificial requirements of the formalism

and the underlying semantics of the real communication, and hinder the ability

to reason about security in certain cases.

An architecture model that features connectors (Section 2.5.5 and 2.5.6)

can facilitate the analysis and design of security, because the security issue can be

expressed clearly at an early stage, and reasoning about, composing and

implementing security can be allocated into relevant connectors.

An architecture model can also guide the proper evolution of a system

(Section 2.5.7). The model can serve as a basis to prevent the system from

degenerating into insecure variants. This still remains a big challenge for

researchers.

Compared to previous methods using architectural connectors (Section

2.5.5 and 2.5.6), which only handles simple encryption and description functions

but do not address other security requirements such as authentication and

authorization, our approach supports the dominant security enforcement

mechanism (namely access control), adopts an extensible architecture

description language to express security modeling, uses connectors as a central

vehicle for expressing and enforcing access control decisions, and provides a suite

of support tools to realize these concepts.

62

3 Basic Modeling Concepts and an Analysis Algorithm
This chapter elaborates on our connector-centric approach to solve the

architectural access control problem: how can we describe and check

access control issues at the software architecture level? We first define

the basic concepts in architectural access control, and then we give an overview of

the proposed secure Architecture Description Language, Secure xADL. After that

we discuss the central roles that connectors play in our approach. Then we

establish the different architectural contexts that are involved in making access

control decisions. Finally we present an algorithm that can check whether the

intended architectural access should be granted within the given contexts.

3.1 Architectural Access Control
We choose the discretionary access control model discussed in Section

2.2.1 as the base security model, because it is the dominant model deployed and

utilized by the majority of the componentized and networked software systems.

We introduce the following core concepts that are necessary to model access

control at the architecture level: subject, principal, resource, privilege,

safeguard, and policy.

3.1.1 Subject
A subject is the user on whose behalf software executes. Subject is a key

concept in security, but it is missing from traditional software architectures.

Traditional software architecture generally assumes that a) all of its components

and connectors execute under the same subject, b) this subject can be determined

at design-time, c) it generally will not change during runtime, either

63

inadvertently or intentionally, and d) even if there is a change, it has no impact

on the software architecture. As a result, there is no modeling facility to capture

allowed subjects of architectural components and connectors. Also, the allowed

subjects cannot be checked against actual subjects at execution time to enforce

security conformance. We extend the basic component and connector constructs

with the subject for which they perform, thus enabling architectural design and

analysis based on different security subjects defined by software architects.

3.1.2 Principal
A subject can take multiple principals. Essentially, principals

encapsulate the credentials that a subject possesses to acquire permissions. There

are different types of credentials. In the classic access control model, the

principal is synonymous with subject, directly designating the identity of the

subject. But other types of principals provide indirection and abstraction

necessary for more advanced access control models, as we will see in Chapter 4.

The results for accessing resources will vary depending on the different principals

a subject possesses.

Principals encapsulate credentials, yet in one sense a subject is also one

type of credential, from which an access control decision based on that subject

can be made. Both subject and principals are summary credentials that collect

and abstract more concrete types of credentials for further use. Such more

concrete credentials can be something the accessing entity is (the identity),

something the accessing entity owns, or something the accessing entity knows

(such as the password). The authentication process associates these more

concrete credentials to the more abstract subject and principals.

64

3.1.3 Resource
A resource is an entity whose access should be protected. For example, a

read-only file should not be modified, the password database can only be changed

by administrators, and a privileged port can only be opened by the root user.

Traditionally such resources are passive, and they are accessed by active software

components operating for different subjects. In a software architecture model,

resources can also be active. That is, the software components and connectors

themselves are resources whose access should be protected. Such an active view

is lacking in traditional architectural modeling. We feel that explicitly enabling

this view can give architects more analysis and design power to improve security

assurance.

3.1.4 Permission, Privilege and Safeguard
Permissions describe a possible operation on an object. Another

important security concept that is missing from traditional ADLs is privilege,

which describe what permissions a component possesses depending on the

executing subject. Most current modeling approaches take a maximum privilege

route, where a component’s interfaces list all privileges that a component

possibly needs. This could become a source for privilege escalation vulnerabilities,

where a less privileged component is given more privileges than what it should be

properly granted. A more disciplined modeling of privileges is thus needed to

reduce such vulnerabilities. We model two types of privileges, corresponding to

the two types of resources. The first type handles passive resources, such as

which subject has read/write access to which files. This has been extensively

studied in traditional resource access control literatures. The second type deals

65

with active resources. These privileges include architecturally important

privileges, such as instantiation and destruction of architectural constituents,

connection of components with connectors, execution through message routing

or procedure invocation, and reading and writing architecturally critical

information. Little attention has been paid to these privileges, and the limited

treatment so far has neglected the creation and destruction of software

components and connectors [145].

A notion corresponding to privilege is safeguard, which describe

permissions that are required to access the interfaces of the protected

components and connectors. A safeguard attached to a component or a connector

specifies what privileges other components and connectors should possess before

they can access the protected component or connector.

3.1.5 Policy
A policy ties all concepts defined above together. It specifies what

privileges a subject, with a given set of principals, could have to access resources

that are protected by safeguards. It is the foundation for architectural

constituents to make access control decisions. Components and connectors

consult the policy to decide whether an architectural access should be granted or

denied.

There have been numerous studies on security policies [54, 102, 144].

Since our focus is on a more practical and extensible modeling of software

security at the architecture level, our priorities in modeling policy are not

theoretical foundations, expressive power, or computational complexity. Instead,

66

we focus on the applicability of such policy modeling within a software

environment.

3.2 A Secure Software Architecture Description Language
To solve the architectural access control problem, we need a language to

express the security requirements of software architecture. We extend our

existing Architecture Description Language (ADL), xADL 2.0 [27], with these

concepts introduced in the last section, to get a new language, Secure xADL. We

adopt the eXtensible Access Control Markup Language (XACML) [106] as the

basis for architectural security policy modeling. This is the first effort to model

these security concepts directly in an architectural description language.

This section first gives overview of xADL and XACML, then describes the

syntax constructs of Secure xADL, and finally discusses the rationales for

following the extension route in language design.

3.2.1 Overview of xADL
xADL is an XML-based extensible ADL. It has a set of core constructs, and

it supports modular extensions.

The core constructs of xADL support modeling both the design-time and

run-time architecture of software systems. The most basic concepts of

architectural modeling are components and connectors. Components are loci of

computation, and connectors are loci of communication. xADL adopts these two

concepts, and extends them into design-time types and run-time instances.

Namely, in the design-time, each component or connector has a corresponding

type, a componentType or a connectorType. At run-time, each component or

connector is instantiated into one or more instances, componentInstances or

67

connectorInstances. This run-time instance/design-time structure/design-time

type relationship is very similar to the corresponding relationship between the

run-time objects, the program objects, and the program class hierarchy.

Each component type or connector type can define its signatures. The

signatures define what components and connectors provide and require. The

signatures become interfaces for individual components. Note that xADL itself

does not define the semantics of such signatures and interfaces. It only provides

the basic syntactic support to designate the locations of such semantics.

xADL also supports sub-architecture. A component type or a connector

type can have an internal sub-architecture that describes how the component

type or the connector type can be refined and implemented, with a set of

components and connectors that exist at a lower abstraction level. xADL allows

specifying the mapping between the signatures of the outer type and the

interfaces of the inner constituents. The sub-architecture support enables

composing more complex components or connectors from more basic ones.

xADL has been designed to be extensible. It provides an infrastructure to

introduce new modeling concepts, and has been extended successfully to model

software configuration management and provide a mapping facility that links

component types and connector types to their implementations.

3.2.2 Overview of XACML
The eXtensible Access Control Markup Language (XACML) [106] is an

open standard from OASIS to describe access control policies for different types

of applications. It is utilized in an environment where a policy enforcement point

(PEP) asks a policy decision point (PDP) whether a request, expressed in XACML,

68

should be permitted. The PDP consults its policy, also expressed in XACML, and

make a decision. The decision can be permit, deny, not applicable (when

the PDP cannot find a policy that clear gives a permit or a deny answer), and

indeterminate (when the PDP encounters other errors).

The core XACML is based on the classic discretionary access control model,

where a request for performing an action on an object by a subject is permitted or

denied. In XACML an object is termed a resource. Syntactically, a PDP has a

PolicySet, which consists of a set of Policy. Each Policy in turn consists of a

set of Rule. Each Rule decides whether a request from a subject for performing

an action on a resource should be permitted or denied. When a PDP receives a

request that contains attributes of the requesting subject, action, and resource, it

tries to find a matching Rule, whose attributes match those of the request, from

the Policy and PolicySet, and uses the matching rule to make a decision

about permitting or denying.

XACML has the following characteristics that make it a suitable choice to

meet our policy modeling needs:

Firstly, the language is based on XML, which makes it a syntactically

natural fit for our own XML-based ADL, xADL.

Secondly, the language is extensible. The language core supports

expressing policies within the classic access control model. Several extensions,

named profiles in the XACML standard, are developed to suit more specific needs.

Each profile defines new concepts and algorithms that are applicable to a new

domain. This modular approach, similar to our own xADL modular approach,

69

makes the language evolvable. The extensibility allows us to adopt it for

architectural modeling without loss of future expressiveness.

Thirdly, XACML provides a clean conceptual framework. The core

concepts of subject, action, and object are directly adopted from the classic access

control model. The basic matching procedure, based on the attributes of rules

and requests, is based on first order logic and set theory, which makes XACML

both reasonably expressive (many policies can be expressed using this formalism),

and plausibly practical (most practical software architects and developers can be

expected to master the language, maybe after some initial training). One notable

feature of XACML is that it supports a variety of combing algorithms that allows

flexibility in combing rules and policies. More specifically, it provides both a deny

override algorithm and a permit override algorithm. The former, when combined

with a “permit all” rule, supports an “open policy” [116] (where any requests that

are not explicitly denied will be permitted), and the latter algorithm, when

combined with a “deny all” rule, supports a “close policy” (where any requests

that are not explicitly permitted will be denied).

Fourthly, the language has been equipped with a formal semantics [64].

While this semantics is an add-on artifact of the language, it illustrates the

possibility to analyze the language more formally, and opens possibilities for

applying relevant theoretical results about expressiveness, safety, and

computational complexity to the language.

Last, but not least, even though XACML is still a rather new language,

some tool support has been available. The first version came out in February

2003, and the second version is recently approved in February 2005. Some early

70

tool support has been provided, including an open source evaluation engine

implemented in Java [135] that can evaluate whether a request should be

permitted by a policy, and a syntax-directed editor [44] for constructing and

modifying XACML documents. These tools facilitate our research on architectural

security policy modeling.

3.2.3 Constructs of Secure xADL
Combing the xADL language, the XACML language, and the architectural

access control concepts defined in Section 3.1, we define a secure software

architecture description language, Secure xADL, to describe security properties of

software architecture.

From the viewpoint of XACML, Secure xADL can be considered as a

profile for the software architecture domain. The profile defines new subjects

(such as components and connectors), actions (such as instantiating connectors

and connecting components), and resources (such as connectors connected to

and interfaces being accessed).

From the viewpoint of xADL, Secure xADL defines a new schema that

supplies a set of new elements types. Such types can be utilized, along with other

base and extension xADL schemas, in defining a complete software architecture.

Figure 3-1 depicts the core syntax of Secure xADL. The central construct is

SecurityPropertyType. It collects the subject, the principals, the privileges, and

the policies of an architectural constituent. The policies are written in XACML

syntax, and embedded in the xADL syntax. The SecurityPropertyType can be

attached to types of components and connectors. Figure 3-1 illustrates that it is

attached to a connector type to make a secure connector type. The

71

SecurityPropertyType can also be attached to components and connectors,

making them secure components and connectors. Finally, the

SecurityPropertyType can also be attached to the specifications of sub-

architectures and the description of the global software architecture.

<complexType name="SecurityPropertyType">
 <sequence>
 <element name="subject"
 type="Subject"/>
 <element name="principals"
 type="Principals"/>
 <element name="privileges"
 type="Privileges"/>
 <element name="policies"
 type="Policies"/>
 </sequence>
</complexType>
<complexType name="SecureConnectorType">
 <complexContent>
 <extension base="ConnectorType">
 <sequence>
 <element mame="security"
 type="SecurityPropertyType"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>
<complexType name="SecureSignature">
 <complexContent>
 <extension base="Signature">
 <sequence>
 <element name="safeguards"
 type="Safeguards"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>
<!-- similar constructs for component, structure, and
instance -->

Figure 3-1, Secure xADL schema

Another construct illustrated in Figure 3-1 is Secure Signature. It has a set

of associated safeguards to protect its access. The Secure Signature can be used to

72

define signatures of component types and connector types. Safeguards can also

be used on interfaces of components and connectors.

The xADL fragment in Figure 3-2 (In this dissertation, the XML syntax is

greatly abbreviated, and indentation is used to signify the markup structure)

specifies a secure connector. This secure connector is of type

BridgeConnector_type, which is a secure connector type. The connector has

a subject of US. Its associated policy, written in XACML, specifies that it will only

allow the creation of the connector when the associated subject is US. Different

types of policies will be further discussed in Section 4.4.

<connector id="UStoFranceConnector"
 xsi:type="SecureConnector">
 <type href="#BridgeConnector_type" />
 <security>
 <subject>US<subject/>
 <policies>
 <PolicySet PolicyCombiningAlgId="deny-overrides">
 <Policy RuleCombiningAlgId="deny-overrides">
 <Rule Effect="Deny">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>SecureManagedSystem
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>UStoFranceConnector
 <AttributeDesignator>resource-id
 <ActionMatch MatchId="string-equal">
 <AttributeValue>urn:xadl:action:AddBrick
 <AttributeDesignator>action-id
 <Condition FunctionId="not">
 <Apply FunctionId="string-is-in">
 <AttributeValue>US</AttributeValue>
 <AttributeDesignator>subject
 <Rule Effect="Permit" />
 </Policy>
 </PolicySet>
 </policies>
 </security>
</connector>

Figure 3-2, A Secure Connector with Subject and Policy

73

Note that both the policy combination algorithm and the rule combination

algorithm are deny-overrides, and the last rule, which has no match clauses

and thus matches any request, is a permit rule. The net effect is that if a request

matches the first rule, the request will be denied; any other requests will be

permitted. This is an “open policy”.

3.2.4 Rationales for Language Design
We choose not to design a brand new language. Instead, we extend and

combine two base languages, xADL and XACML. Adopting this choice in

language design is based on the following criteria.

Firstly, our base language, xADL, is extensible, and it has been extended to

address different architectural concerns, such as types and configuration

management. When it comes to modeling software security, it is rather natural

that we keep this choice and focus more on the core issues in architectural access

control. We have incorporated a set of core security concepts, and also allow

further security extensions in the future. These extensions will eventually be

subject to the extent that is made possible by both theoretical expressiveness and

practical applicability.

Secondly, XACML is also extensible. Its core specification describes the

basic concepts of subjects, actions, and resources and specifies how these

concepts can be integrated into rules, policies, and policy sets, and how these

policies can be combined. Several profiles have been developed for new domains.

Software architecture can be viewed as a new domain for XACML.

74

Thirdly, XACML provides a flexible framework for combining policies,

which allows us to design and combine suitable policies from different

architectural contexts, as will be discussed in Section 3.4.

Fourthly, both languages have ample tool support that further facilitates

new language designs. Our base language has been supported by a data binding

library and an architectural development environment that makes a developer of

extensions focus more on the development of the features per se. The availability

of the evaluation engine and the editor for XACML allows us to devote more

attentions to utilize XACML in an architectural context.

Finally, the major advantage of a new language is that it can be easily

experimented and changed by the designer to suit special needs. However, we

feel the core concepts that a language tries to express are more important than

their syntactic expressions. If such expressions do not bring major advantages for

conceptual understanding or tool support, we feel mere syntactic convenience

does not fully compensate for the associated cost. From a language design

viewpoint, reusing existing language facilities provides many benefits that a

newly developed language must exhibit before such a new language can be even

tested for its really innovative features. The costs of developing a brand new

language are not always easy to justify. We feel this is especially true for modern

software engineering research. Many times a language itself is a mere syntactic

convenience, because the core concepts that the language embodies can take

many different forms. The usability of the language is determined more by the

concepts and associated tools.

75

3.3 The Central Role of Architectural Connectors
Architecture Description Languages (ADLs) provide the foundation for

architectural description and reasoning [94]. Most existing ADLs support

descriptions of structural issues, such as components, connectors, and

configurations. Several ADLs also support descriptions of behaviors [2, 84]. The

description of behaviors is either centered around components, extending the

standard “providing” and “requiring” interfaces [137], or is attached to

connectors, if the language supports connectors as first class citizens [2]. These

descriptions enable reasoning about behaviors, such as deadlock avoidance and

deadlock detection [65].

Among the numerous ADLs proposed, some do not support connectors as

first class citizens [29, 84]. Interactions between components are modeled

through component specifications in these modeling formalisms. This choice is in

accordance with the principles of component-based software engineering, where

every entity is a component and interactions between components are captured

in component interfaces. A component has a “provided” interface that lists the

functionality this component provides. It also has a “required” interface that

enumerates the functionalities it needs in providing its functionality. Interactions

between components are modeled by matching a component’s “required”

interface to other components’ “provided” interfaces.

Embedding interaction semantics within components has its appeal for

component-based software engineering, where components are the central units

for assembly and deployment. However, such a lack of first class connectors does

not give the important communication issue the status it deserves. This lack blurs

76

and complicates component descriptions, which makes components less reusable

in contexts that require different interaction paradigms [28]. It also hinders

capturing design rationales and reusing implementations of communication

mechanisms, which is made possible by standalone connectors [33]. We believe a

first class connector that explicitly captures communication mechanisms

provides a necessary design abstraction.

Several research efforts are focused on understanding and developing

connectors in the context of ADLs. A taxonomy of connectors is proposed in [95],

where connectors are classified by services (communication, coordination,

conversion, facilitation) and types (procedure call, event, data access, linkage,

stream, arbitrator, adaptor, and distributor). Techniques to transform an existing

connector to a new connector [131] and to compose high-order connectors from

existing connectors [83] are also proposed and experimented in handling

encryption and decryption issues.

Our approach for architectural access control is centered on connectors.

Connectors propagate privileges that are necessary for access control decisions.

They regulate architectural connections between components. And they can also

coordinate message routing securely. In the remaining part of this section we

discuss the central role of connectors. The importance of connectors becomes

more evident in Section 3.4 and Section 4.4, when we elaborate access control

check and architectural execution.

3.3.1 Components: Supply Security Contract
A security contract specifies permissions an architectural constituent

possesses to access other constituents and the permissions other constituents

77

should possess to access the constituent. A contract is expressed through the

privileges and safeguards of an architectural constituent.

For component types, the above modeling constructs are modeled as

extensions to the base xADL types. The extended security modeling constructs

describe the subject the component type acts for, the principals this component

type can take, and the privileges the component type possesses.

The base xADL component type supplies interface signatures, which

describe the basic functionality of components of this type. These signatures

become the active resources that should be protected. Thus, each interface

signature is augmented with safeguards that specify the necessary privileges an

accessing component should possess before the interfaces can be accessed.

3.3.2 Connectors: Regulate and Enforce Contract
Connectors play a key role in our approach. They regulate and enforce the

security contract specified by components.

Connectors can decide what subjects the connected components are

executing for. For example, in a normal SSL connector, the server authenticates

itself to the client, thus the client knows the executing subject of the server. A

stronger SSL connector can also require client authentication, thus both the

server component and the client component know the executing subjects of each

other. DCOM over Internet (Section 6.4.4) could utilize such a strong connector.

Connectors also regulate whether components have sufficient privileges to

communicate through the connectors. For example, a connector can use the

privileges information of connected components to decide whether a component

executing under a certain subject can deliver a request to the serving component.

78

This regulation is subject to the policy specification of the connector. DCOM for

SP2 (Section 6.4.2) introduces such regulation on local and remote connections.

Connectors also have potentials to provide secure interaction between

insecure components. Since many components in component-based software

engineering can only be used “as is” and many of them do not have

corresponding security descriptions, a connector is a suitable place to assure

appropriate security. A connector decides what communications are secure and

thus allowed, what communications are dangerous and thus rejected, and what

communications are potentially insecure thus require close monitoring.

XPConnect of Firefox (Section 6.3.10) can play such a role in securing possibly

insecure extensions.

Using connectors to regulate and enforce a security contract and

leveraging advanced connector capabilities will facilitate supporting multiple

security models [139]. These advanced connector capabilities include the

reflective architectural derivation of connectors from component specifications,

composing connectors from existing connectors [114], and replacing one

connector with another connector.

Connectors can be composite connectors. A composite connector

combines several connectors together into a large connector to achieve a

composite security policy. The combination can be conjunctive, when the

composite connector permits a request only if each sub-connector permits. Or the

combination can be disjunctive, when the composite connector permits if any

sub-connector permits. Each sub-connector operates independently, yet they

collaborate together to accomplish the accumulative effect.

79

3.4 Context for Architectural Access Control
Access control decisions are generally based on attributes of subjects,

resources, and actions. Factors other than the subject-operation-object tuple can

also contribute to access control decision. The most prominent example is time,

which has been extensively used to express temporal access control constraints

[69]. Such factors are called context or environment of access control decisions.

Likewise, from an architectural modeling viewpoint, when components

and connectors are making security decisions, the decisions might be based on

entities other than the decision maker and the protected resource. For example, a

component might need to adhere to the policy of its type, in addition to following

its own policy. We use context to designate those relationships involved in

architectural access control. These relationships affect how the accessing

constituent acquires its privileges and how the accessed constituent constructs its

policy.

There are different types of relationships that can affect access control

decision. Here we discuss four of them: the nearby components and connectors,

the type of components and connectors, the sub-architecture containing

components and connectors, and the global architecture. The reason we choose

these four is because that we believe they are probably the most common types of

contexts, and xADL provides native support for them.

3.4.1 Nearby Components and Connectors
A common source of context in software architecture is the neighboring

components and connectors. For a component, the context is the connectors that

it connects to. For a connector (which could be of many categories, such as a

80

simple procedure call connector or a more complex event routing connector), the

context derives from the components and other connectors that are connected to

it. In the most common case where a connector is connected to two components,

these two components form the immediate context for the connector. The

neighboring relationship can be expanded to components and connectors that are

not immediate neighbors.

An example of taking nearby components and connectors into

consideration during access control decisions is the access control check

algorithm of the Java security architecture [50]. In this architecture, components

are methods of different classes, and connectors are the procedure calls among

these methods. When a method tries to access a resource, the system will check

and decide whether such an access should be granted. The system does not only

inspect the permissions that the immediate calling method has. In addition, the

system uses a mechanism called Stack Inspection to walk up the call stack frames

and check all methods that reside above the method in the call stack (i.e., the

caller of the method, the caller of the caller, etc.) also have the requisite

permission. The requested access can be granted only if all methods involved

have the necessary permissions. For example, in Figure 3-3, where method A

calls method B that calls method C, if C needs to access a protected resource, then

C and B and A should all have the necessary permissions. This example illustrates

that when an access control decision is to be made, not only the immediate

component (the method that tries to access the protected resource) is considered,

but also the neighboring components that are connected through connectors (in

81

this case, all methods that are above the calling method in the call stack) should

also be accounted for.

Figure 3-3, Privilege Propagation Connectors

In this stack inspection scheme, a method with enough permission can

choose to take full responsibility of the access control with a doPrivileged call.

Then, when the system walks up the call stack, if it encounters such a method, it

stops walking the stack, and grants the permission of access to the original calling

method. Essentially the privileged method grants any method it calls the same

permissions as itself.

82

In Figure 3-3, if B is such a method, then its privileges can propagate

through the PC Connector 2 to method C, and C can acquire the permissions of B

even if the outermost caller A probably does not have the permission. This can be

viewed as an instance where a more privileged component uses special

connectors to grant such privileges to components of its choice.

In the general case, there exists a privilege propagation relationship

among components connected by connectors. Each component carries a set of

privileges. Such privileges can be propagated to the nearby components by using

different types of connectors. A more specialized connector can propagate more

privileges than other regular connectors. When a component makes a request, it

is its own permissions and all permissions propagated to it that are considered

for deciding whether the access should be granted or not.

Our approach supports describing this type of architectural context for

access control. Each component can have a description of its possessed privileges.

The connectors connecting them can be equipped with descriptions of how these

privileges should be propagated. When an architectural constituent tries to access

a protected resource, the support tools use the accumulated privileges of the

constituents to check against the safeguards of the protected resource.

3.4.2 Types
An important construct of xADL is its modeling capability of component

types and connector types. This construct is inspired by types in traditional

programming languages, where types provide a unit for abstraction and reuse.

More recently, type safety has been suggested as a foundation for security [128].

83

Types of components and connectors provide another context for access control

decisions of their instances.

In programming languages, the general rule is that an instance possesses

all properties of its type. In a security context, the relationship between an

instance and its type does not always follow this pattern. When both the type and

the instance specify a security policy, if there is any conflict, either the type or the

instance could be given a higher priority. A policy administrator may often desire

a “most-specific-override” policy, where the policy that has the most specific

applicability range should take precedence. This means that the policy of the

instance should be given the priority and the instance policy overrides the type

policy. In other situations, the administrator might want to assure that all

instances of the type obey the same policy, thus the management and

enforcement of the policy can be simplified, since only one policy, the type policy,

would need to be changed. This requires giving priority to the type policy.

Our approach treats the type of a component and a connector as a context,

and provides the required flexibility in choosing the more authoritative policy

between the instance policy and the type policy.

3.4.3 Containing Sub-architecture
xADL supports sub-architecture, which describes the internal architectural

structure of a component type and a connector type. This construct allows such a

type to be implemented as a collaborative set of components and connectors, and

provides a facility to map the interfaces of the sub-architecture to the interfaces

of the internal components and connectors. Sub-architecture enables abstraction

and composition of software architectural constituents.

84

Substructure is a powerful modeling mechanism. A large software system

can be composed from components and connectors, using sub-architecture

hierarchy. Such a hierarchy has implications not only for functionality but also

for security. In the most common case, each component and connector contained

within the sub-architecture possesses the same security properties as the

container, such as subject, principals, and privileges. In other cases, a component

or a connector has different security properties than its container. A

representative scenario for this case is mobile code, such as Java or JavaScript.

The mobile code, downloaded from external sites, executes within the container,

yet it is restricted to a sand box and subject to a set of access restrictions that do

not apply to the sub-architecture container and components outside of the

container. This containing sub-architecture should be utilized to make access

control decisions.

These cases illustrate the concept of trust domain and trust boundary. A

trust boundary delineates the trust relationship among components and

connectors. All components and connectors within the boundary trust each other

and form a trust domain. No security checks are needed for access between

constituents within the boundary. However, crossing boundary must be very

carefully checked and monitored.

Software architecture provides an appropriate means to model such

boundaries. The traditional software architecture should be augmented with trust

information to clearly define where trust starts and ends within a software system.

Viewing from this angle, the common case of sub-architecture has only one trust

domain, within which the components and connectors inherit security properties

85

from the container. The mobile code case, on the other hand, contains multiple

trust domains. The downloaded mobile code executes in a trust domain that is

different than that of the containing sub-architecture.

Our approach supports treating sub-architecture as another type of

context in which access control decisions are made. Our approach allows

specifying the internal components and connectors to inherit the same security

properties from the containing sub-architecture, thus forming the same trust

domain. It also allows specifying different security properties for components

and connectors within the sub-architecture and creating new trust domains.

3.4.4 Complete System
The complete software system forms the last type of context within which

security decisions are made. However, the boundary of a complete software

system is not always easy to identify. For example, in component-based software

engineering, a complete architecture might be just embedded into another

architecture and serve as a component within that larger architecture. Or, two

seemingly complete systems can interact with each other to accomplish a

collaborative task, thus forming a federation which might be viewed as the real

complete system. Our approach defines a complete system as the highest level of

architecture considered by an architect during architecture design and analysis.

In most traditional access control systems, the decisions are only made

within this context. Our approach allows combining this context with three other

types of contexts mentioned earlier: the nearby constituents, the type of

components and connectors, and the containing sub-architecture. We feel these

86

architectural contexts not only form the functional architecture of a software

system but also have significant security relevance.

3.5 An algorithm to Check Architectural Access Control
Based on the concepts outlined in Section 3.2.3 and the contexts

established in Section 3.4, in this section we present an algorithm that can check

whether an architectural access in a software architecture description should be

granted or denied. More formally, the algorithm finds the answer to this question:

given a secure software architecture description written in Secure

xADL, if a component A wants to access another component B,

should the access be allowed? Finding the answer to this question can help

an architect design secure software from two different perspectives. Firstly, the

answer helps the architect decide whether the given architecture satisfies

intended access control. If there is some access that is intended by the architect

yet is not allowed by the description, the description should be changed to

accommodate the access. Secondly, the answer can also help the architect decide

whether there are architectural vulnerabilities that introduce undesired access. If

some undesired access is allowed, then the architect must modify the architecture

to eliminate such vulnerabilities.

We first present an algorithm that decides whether a single architectural

access should be granted. Then, the algorithm is extended to check a complete

architecture description. Finally, we discuss the applicability of the algorithm.

3.5.1 Algorithm for Single Architectural Access
In xADL, each component and connector has a set of interfaces that

designate externally accessible functionalities. An interface can be either an

87

incoming interface, designating functionality the constituent provides, or an

outgoing interface, designating functionality that the constituent requires. Each

incoming interface can be protected by a set of safeguards, which specify the

permissions any components or connectors should possess before they can access

the interface. Each outgoing interface can also possess a set of privileges, which

are generally the same as those of the owner constituent.

The interfaces are connected together to form a complete architecture

topology. A pair of connected interfaces has one outgoing interface and one

incoming interface. Such a connection defines that the constituent with the

outgoing interface accesses the constituent at the incoming interface. Each such

connection defines an architectural access. For example, in the C2 architecture

style [138], a component sends a notification at its bottom interface to a top

interface of a connector. The algorithm can be used to decide whether the

outgoing interface (the bottom interface of the component in the above example)

carries sufficient privileges to satisfy the safeguards of the incoming interface (the

top interface of the connector).

Architectural access is not limited to direct connections between interfaces.

In xADL, a component cannot directly be connected to another component. Two

components should be connected through a connector. Thus, a meaningful

architectural access might involve the two components that are only indirectly

connected through a connector. For example, if a client is connected to a server

through a remote procedure call connector, then the meaning for access control is

the client’s access of the server’s methods, though it is through a standalone

88

connector. In the most general case, architectural access involves two interfaces

that are indirectly connected by components and connectors.

The architectural access check is made more complex by the contexts

discussed in Section 3.4. The accessing component can acquire privileges from

multiple sources. The component can possess privileges itself. It can also get

privileges from its type (Section 3.4.2). It can obtain privileges from the

containing sub-architecture (Section 3.4.3) and the complete architecture

(Section 3.4.4).

More complexly, privileges can also propagate to the accessing component

through connected components and connectors, probably subject to the privilege

propagation capability of the connectors (Section 3.4.1). When a privilege needs

to propagate from one interface of one constituent to another directly connected

interface of another constituent, we assume this propagation is always successful,

since such connection between the interfaces, named link in xADL, does not

possess semantics beyond pure connection.

However, when a privilege tries to propagate from an incoming interface

of a constituent to an outgoing interface of the same constituent, the constituent

can decide how the privilege can traverse through the constituent. In the most

common case, where the constituent does not provide any special specifications,

we assume that the incoming interface and the outgoing interface are connected,

and we also assume that the privilege can propagate between them unmodified.

This covers the majority of the specifications.

The constituent can change this default behavior. It can decide that there

is no connection between the incoming interface and the outgoing interface, thus

89

the privilege cannot be propagated. It can also decide that the privilege should

not be propagated, and thus remove it from the privileges at the outgoing

interface. Figure 3-4 illustrates how a procedure call connector can stop

propagating the WritePasswordFile privilege from the Caller interface to the

Callee interface. Finally, the connector can decide that the privilege should be

replaced by another privilege. All these choices can be expressed using a policy

written in XACML. The privilege propagation policies can be acquired from the

constituent, the type, the container, and the complete architecture, just like other

security policies.

<connector id="PC Connector 2"
 xsi:type="SecureConnector">
 <type href="#ProcedureCallConnector_type" />
 <security>
 <subject>System<subject/>
 <policies>
 <PolicySet PolicyCombiningAlgId="deny-overrides">
 <Policy RuleCombiningAlgId="deny-overrides">
 <Rule Effect="Deny">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>Caller
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>Callee
 <AttributeDesignator>resource-id
 <ActionMatch MatchId="string-equal">
 <AttributeValue>WritePasswordFile
 <AttributeDesignator>action-id
 <Rule Effect="Permit" />
 </Policy>
 </PolicySet>
 </policies>
 </security>
</connector>

Figure 3-4, Policy for Privilege Propagation

The accessed components can acquire safeguards from similar sources.

One notable difference in acquiring safeguards is that this process does not

90

involve the connected constituent context, and thus does not go through a

propagation process.

Input: an outgoing interface, Accessing,
 and an incoming interface, Accessed

Output: grant if the Accessing can access
 the Accessed, deny if the Accessing
 cannot access the Accessed

Begin
 if (there is no path between Accessing
 and Accessed)
 return deny;
 if (Accessing and Accessed are connected
 directly)
 DirectAccessing = Accessing;
 else
 DirectAccessing = the constituent
 nearest to Accessed in the path;
 Get AccumulatedPrivileges for
 DirectAccessing from the owning
 constituent, the type, the containing
 sub-architecture, the complete architecture, and the
 connected constituents;
 Get AccumulatedSafeguards for Accessed
 from the owning constituent, the type,
 the containing sub-architecture, and the
 complete architecture;
 Get AccumulatedPolicy for Accessed from
 similar sources;
 if (AccumulatedPolicy exists)
 if (AccumulatedPolicy grants access)
 return grant;
 else
 return deny;
 else
 if (AccumulatedPrivileges contains
 AccumulatedSafeguards)
 return grant;
 else
 return deny;
End;

Figure 3-5, Algorithm 1: Access Control Check

91

To make a decision whether to allow such access, the simplest decision is

to check whether the accumulated privileges of the accessing constituent covers

the accumulated permissions of the accessed constituent. However, the accessed

constituent can choose to use a different policy, and the sources of the policy can

be from the accessed constituent, the type of the constituent, the sub-architecture

containing it, and the complete architecture.

The architectural access control check algorithm is described in Figure 3-5.

It first checks whether the accessing interface and the accessed interface is

connected in the architecture topology. If not, the algorithm then denies the

architectural access. If they are connected, the algorithm proceeds to find the

interface in the path that is nearest to the accessed interface. If the accessing

interface and the accessed interface are directly connected, this direct accessing

interface is the same as the accessing interface. Then, the privileges of the direct

accessing interface are accumulated, using various contexts, so are the safeguards

and policies of the accessed interface. If a policy is explicitly specified by the

architect, then the policy is consulted to decide whether the accumulated

privileges are sufficient for the access. If there is no explicit policy, then the

access is granted if the accumulated privileges contain the accumulated

safeguards as a subset.

3.5.2 Extend to Complete Architecture
The proposed algorithm to check architectural access control is applied to

a pair of interfaces. Extending it to the complete architecture description is

straightforward. We can just enumerate each pair of interfaces and apply the

algorithm to each pair.

92

A useful optimization is to calculate a topological order between the

interfaces first, so the first constituent in this order has no other constituents that

it can obtain privileges from. Then the algorithm uses this order to compute the

privileges that each architectural constituent can obtain from its connected

constituents. During the computation a constituent can get its accumulated

privileges by simply applying the connector’s privilege propagation capability to

the accumulated privileges of other constituents connected to the connector.

There is no need to do more expensive non-local computation to obtain

propagated privileges.

After getting the accumulated privileges from the connected constituents

context, the algorithm computes the accumulated privileges, safeguards, and

policies using various contexts. Finally the algorithm can check each pair of

interfaces. Depending on the completeness of the specifications, there probably

does not exist non-trivial checks between certain pairs of interfaces. However, the

algorithm can be used incrementally during the process of developing the full

specification for the complete system.

When sub-architecture is involved, the algorithm gets more complex. In a

xADL specification, there is a set of types that can be used to describe the

architecture, and there is also a set of possibly independent architecture

structures (the archStructure xADL element). A sub-architecture is

implemented by connecting a component type or a connector type to one

architecture structure, and map the signatures of the component type or the

connector type to interfaces of the components and connectors of the architecture

structure. Thus, one sub-architecture can be contained within another sub-

93

architecture, if one type using the former sub-architecture is used to instantiate a

component or a connector in the latter sub-architecture. The sub-architecture

that is not contained by any other sub-architecture becomes the top level

architecture. However, the top level architecture can be later used in a newly

added architecture structure, and thus becomes a sub-architecture.

To apply the algorithm of checking access control between two interfaces

in a complex architectural description that contains layers of architecture

structures, the algorithm first checks whether the two interfaces belong to the

same architecture structure. If so, then the algorithm uses that architecture

structure to check access control. If the two interfaces do not belong to a common

architecture structure, then the common architecture structure that contains

both of them or the top level architecture can be used as the architecture

structure to check access control, depending on the choice of the architect.

Once the suitable architecture structure is found, it needs to be translated

into a plain graph that the Algorithm 1 in Figure 3-5 can be applied. Since the

architecture structure might contain internal architecture structures, it needs to

be flattened such that only primitive interfaces of the primitive architecture

constituents are connected with each other. Two types of processing are

necessary during this step. Firstly, if a sub-architectured type, S, is used to

instantiate multiple instances, such as C1 and C2, in a containing architecture

structure, then multiple copies of the sub-architecture of S should be generated

and properly named with prefixes of the containers. The renaming is essential to

avoid name conflicts when multiple instances of interface I can only be

differentiated as C1.I and C2.I. Secondly, the signature of a sub-architectured

94

type, O, that maps to an interface, I, within the sub-architecture is used to

propagate privileges unmodified between them, similar to the links between

architecture constituents in architecture structures. This algorithm is described

in Figure 3-6.

Input: an outgoing interface, Accessing,
 and an incoming interface, Accessed

Output: grant if the Accessing can access
 the Accessed, deny if the Accessing
 cannot access the Accessed

Begin
 if (Accessing and Accessed belong to the same
 architecture structure)
 container = the architecture structure
 else if (use top level architecture)
 container = top level architecture
 else
 container = least common container
 if (container contains other architecture structures)
 {
 replace constituents of sub-architectured types
 with the sub-architecture;
 rename the constituents of the sub-architectures
 if there are multiple instances of them;
 connect the outer signatures and the
 inner interfaces as privilege preserving
 }
 calculate the reachability closure of the expanded
 container interface graph
 return Algorithm1(Accessing, Accessed)
End;

Figure 3-6, Algorithm 2: Sub-architecture Access Control Check

3.5.3 Validity of the Algorithm
To validate our third hypothesis, that with a Secure xADL description,

the access control check algorithm can check the suitability of

accessing interfaces, we give an informal proof to show that the algorithm can

95

be mapped to a well known graph reachability problem, and thus solutions for

that problem can be used to decide the result of the algorithm.

Informal Proof. The validity of the algorithm can be established in a

constructed privilege graph. For each privilege of an outgoing interface a node is

drawn. Similarly, for each safeguard of an incoming interface a node is also

drawn. Edges connecting these nodes are derived from the architectural topology

and different types of contexts. For example, if a connector can propagate a

privilege form one of its interfaces to another interface, then an edge is drawn

between these two nodes. Viewing from a graph theory viewpoint, the algorithm

executes reachability analysis, deciding whether necessary privileges can reach

where they are needed. If there exists a path between the safeguard nodes and

privilege nodes, then the architectural access is granted, otherwise the access is

denied. Thus our algorithm can utilize any standard solution to the path finding

problem to make decisions on granting or denying access. End of Proof.

What separates our algorithm from a normal reachability analysis is that

the privileges can come from different contexts. It can come not only from the

connected components and connectors, but also from types, containing sub-

architectures, and the global architecture. In addition to the regular architectural

topology graph, where constituents are nodes and their connections are edges,

there are overlay graphs such as a type graph (a constituent node connected to its

type node) and a containment graph (a constituent node connected to its

container node). The policy against which these privileges are evaluated can also

come from different sources. It can be either an explicitly specified policy or the

96

accumulated safeguards of the accessed interface. Both of them can come from

either the architectural topology graph or the overlay graphs.

The algorithm assumes an acyclic graph. With an arbitrary graph,

standard algorithms for loop detection can be applied, and the architect needs to

decide whether such loops are allowed. One possible solution to handle a loop is

to partition the graph into architecturally meaningful acyclic sub graphs. Such

partition could change the security implications for the original architecture,

though. Determining such implications and extending the algorithm to handling

arbitrary loops remains a future research question.

There might exist multiple paths from one interface to another interface.

Under such cases, the algorithm depends on the architect to pick one path, and it

allows the architect to enumerate all paths to inspect whether there exists one

permissive path, and whether all paths are permissive. An architect has the

flexibility in making the ultimate architectural choice.

The algorithm depends on degree of the completeness of the secure

architecture description. In the architectural design phase, an architect can

incrementally change the access control specifications of privileges and policies,

and investigate their effects. If an intended access is not satisfied by the current

specification, the architect can change the specification to meet the need.

Both the privileges and the policy can involve elements that can only be

decided at run-time. For example, in the role-based access control model [124], a

user can selectively activate different roles, thus acquiring different privileges.

One future research problem is to employ our algorithm in these dynamic

97

situations, probably with the help of the necessary enforcement infrastructure

(Section 7.2.4).

98

4 Advanced Modeling Concepts
The previous chapter lays the foundation of architectural access control by

defining the basic concepts, establishing relevant contexts, and outlining

checking algorithms. This chapter builds on these foundations to cover advanced

concepts necessary in modeling architectural access control in more complex

situations. We first introduce the Role-based Access Control model to support

large number of subjects. Then we incorporate a trust management model that

enables access control across organizational boundaries. After that, we discuss

the need to inspect beyond interfaces for finer degree of access control. We will

then elaborate how run-time architectural access control can be modeled. This

chapter concludes with a summary of the modeling concepts and language

constructs of Secure xADL.

4.1 Handling Large Scale Access through Roles

4.1.1 Basic Role-based Access Control
The Role-based Access Control Model (RBAC) [124] is a more recent

development to address two problems that are not well handled by the classic

access control model. Firstly, a user needs to have different permissions under

different capacities, even though the identity of the user remains the same.

Secondly, in a large organization where there are tens of thousands of users,

managing their access control permissions could be a daunting task. When some

permission should be added or removed from users with the same capacity, the

operation would have to be repeatedly performed for each user.

99

An extra level of indirection, role, is introduced to solve these problems.

Roles become the entities that are authorized with permissions. Instead of

authorizing a user’s access to an object directly, the authorization is expressed as

a role’s permissions to an object, and the user can be assigned to the

corresponding role. A user can take different roles under different situations to

acquire different permissions, no longer being limited to a single set of

permissions. A user can even posses several roles simultaneously to perform

operations that demand those roles jointly. Also, when some permission needs to

be added or removed from thousands of users, if all involved users can all take

one role, then the permission can be added or removed from that role, and the

system will assure that each user obtains or loses that permission. The RBAC

model thus eases management of access control in large-scale organizations.

Figure 4-1 depicts this indirection.

Figure 4-1, Role-based Access Control, from [122]

4.1.2 Hierarchical Roles and Separation of Duty
RBAC allows roles to form a hierarchy. In such a hierarchical RBAC model,

a senior role can inherit from a junior role. Every user that takes the senior role

100

can also take the junior role, thus obtaining all the permission associated with the

junior role. A senior role can actually inherit from multiple junior roles, thus

forming a lattice among the roles. In a lattice formation the inheritance

relationship is more properly termed as “dominance”, where a senior role

dominates a junior role. The hierarchical RBAC model resembles the single and

multiple inheritance relationships in programming languages.

Another important concept in Role-based Access Control is the notion of

separation of duty. The notion specifies that several sensitive tasks should not be

performed by the same user. More formally, it requires that the user cannot

perform those roles simultaneously. For example, a person cannot act as both the

treasurer and the cashier at the same time so that embezzlement would at least

require collusion of two people.

4.1.3 RBAC Support in XACML
XACML supports Core and Hierarchical RBAC through a profile. This

support of RBAC through defining a profile over the core framework, without

introducing unnecessary overheads, contributes to our choice of adopting

XACML as the base policy language.

The RBAC profile defines roles as additional attributes of subjects and

resources. To support making permit or deny decisions on requests involving

roles, the profile utilizes two types of policy sets. Policy sets are the top level

container in XACML, and generally only one set is needed. The two sets for RBAC

are a role policy set (RPS) and a permission policy set (PPS). The role policy set

restricts that it only matches the subject with the intended roles. It does not

restrict on resources and actions. The permission policy set does not restrict the

101

subject. It only limits what resources and actions will result in a permit decision.

The role policy set references the permission policy set. To evaluate whether a

request should be permitted or denied, the PDP should not use the permission

policy set directly, since it does not limit subjects and any subjects, no matter

whether they have the correct roles, will be granted permissions. Instead, the

PDP should use the role policy set to exclude those subjects without the correct

roles, and then use the permission policy set to decide whether the requested

action on the resource should be allowed.

To support Hierarchical RBAC, the XACML RBAC profile lets the

permission policy set of a senior role reference the permission policy set of a

junior role. Thus, when a request reaches the senior set, it also includes

permission from the junior set.

The XACML RBAC profile adopts a close policy. Each request that is not

explicitly permitted in existing policy sets should be denied. Generally a PDP will

return a result of Not Applicable if it cannot find a matching rule for the

request. This constraints how Secure xADL policies should be expressed to

achieve the desired result.

4.1.4 Roles as Principals in Secure xADL
RBAC has recently been standardized [5]. The standard contains four

components: Core RBAC, Hierarchical RBAC, Constrained RBAC with static

separation of duty, and Constrained RBAC with dynamic separation of duty. We

support the RBAC model for its advanced capability in handling large scale access

control. At this stage Secure xADL only supports both Core RBAC and

Hierarchical RBAC.

102

Figure 4-2 depicts the conceptual framework of the Hierarchical RBAC

model. There are four sets of entities: USERS (each element is a user), SESSIONS

(each element is a session that a user is participating), ROLES (each element is a

role), and PERMS (the set of permissions, whose elements are permissions about

operations (members of the OPS set) on objects (members of the OBS set)).

There are three important relationships: PA (the permission assignment between

a role and its associated permissions), UA (the user assignment where a user is

assigned associated roles and thus acquires related permissions through the PA

relation), and RH (the role hierarchy where a senior role inherits from a junior

role and obtains its permissions)

Figure 4-2, Hierarchical RBAC

Secure xADL uses principals to represent roles. As discussed in Section

3.1.2, principals are summary credentials used for access control. Since a role is

the entity that is granted permissions in the RBAC model, we choose to use a

principal to specify a role for a component or a connector.

103

 In Secure xADL, each component or connector has one subject that

designates the user the component or connector executes for, and it uses

principals to designate the roles the user can take. Since a user might take

multiple roles, there can be multiple principals associated with a component or a

connector. These principals can be selectively activated or deactivated during

system execution.

In the access control check algorithm (Section 3.5.1), principals are

obtained and propagated like privileges, following the same contexts: the access

path, the type of the component or the connector, the container, and the

complete system architecture.

Figure 4-3 specifies a RBAC policy that uses only the Core RBAC model.

The connector executes as the US subject and takes a NATO role (expressed as a

NATO principal). Note the policy set with a PolicySetId "RPS:NATO". The

specially formatted PolicySetId is the Secure xADL notation to signify a role

policy set for a role. In this case the policy set is the role policy set for the role

NATO. Similarly, the “PPS:NATO” policy set is the permission policy set for the

NATO role, and is referenced by the role policy set through the

PolicySetIdReference. Also note that the policy set with a PolicySetId

“UA”. This is the Secure xADL notation to specify the user assignment relation for

the RBAC model. The example assignment specifies that a user US can take the

role NATO, adopting the XACML RBAC Profile action with the id of

urn:oasis:names:tc:xacml:2.0:actions:enableRole.

104

<connector id="UStoFranceConnector"
 xsi:type="SecureConnector">
 <type href="#BridgeConnector_type" />
 <security>
 <subject>US<subject/>
 <principals>
 <principal>NATO</principal>
 <policies>
 <PolicySet PolicySetId="RPS:NATO">
 <PolicySetIdReference>PPS:NATO
 </PolicySet>
 <PolicySet PolicySetId="PPS:NATO">
 </PolicySet>
 <PolicySet PolicySetId="UA">
 <Policy RuleCombiningAlgId="permit-overrides">
 <Rule Effect="Permit">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>US
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>NATO
 <AttributeDesignator>resource-id
 <ActionMatch MatchId="anyURI-equal">
 <AttributeValue>
 urn:oasis:names:tc:xacml:2.0:actions:enableRole
 <AttributeDesignator>action-id
 </PolicySet>
 </policies>
 </security>
</connector>

Figure 4-3, A Core RBAC Policy

4.2 Handling Heterogeneous Access through Trust
Management

4.2.1 Trust and Delegation in Decentralized Systems
In a decentralized software system, where components and connectors

execute for different owners, they have their own autonomous security

administrative domains, and each of these domains decides who can access their

services independently. Decentralization makes using a centrally managed

subject and role hierarchy difficult, if not entirely impossible. The classic access

105

control model and the role-based access control model are insufficient in these

situations. Trust management schemes [130, 143] have been developed to

provide a decentralized approach to address these issues.

PolicyMaker [16] is the first system that uses trust management, which

combines authentication and authorization in their policy definitions, to

implement decentralized access control. A local decision maker uses credentials

presented to it by a remote party to make the access control decision. The

credential is generally a certificate signed by the local decision maker, signifying

the trust of the local party on the remote party. It unifies local and remote access

control by treating a local policy also as a credential signed by the local decision

control maker. Several later systems, such as KeyNote [15, 17] and SD3 [67],

adopts a similar approach that uses logic and signed certificates as the basis for

making access control decisions [143].

A concept related to trust is delegation. Entity A can make entity B as its

delegate, so if an entity C trusts entity A then it will also allow the entity B to act

on behalf of entity A [80, 152]. The delegation can propagate further and form a

delegation chain, thus multiple entities are involved in a trust-based access

control decision. The granted delegation can also be revoked, if entity A decides

entity B should no longer act as entity A [51].

From a trust management perspective, the standard Java access control

algorithm for stack walk [50] (discussed in Section 3.4.1) treats the different

protection domains on a stack as a chain of trust and delegation. The system

libraries, which are callees at the bottom of the stack, virtually grant their trust on

the callers at the top of the stack, when the libraries invoke the

106

doAsPrivileged method to perform operations requested by the callers. This

trust chain is on the opposite direction of the call chain. When a less privileged A

entity calls a more privileged entity B, entity B should trust entity B before it

honors the call. Such trust and delegation, exhibited in the form of the

doAsPrivileged method call, should be exercised carefully.

4.2.2 Role-based Trust Management in Secure xADL
So far we have discussed the classic access control model (Section 2.2.1),

the role-based access control model (Section 4.1), and the trust management

model (Section 4.2.1). Several efforts have been made to provide a more unified

view of these models [123, 140]. Such a unified view provides the theoretical

foundation for our architectural treatment of access control models. As we have

discussed in Section 3.1.1, the Subject concept captures the user on whose behalf

software executes. Section 3.1.2 suggests that principals provide indirection and

abstraction necessary for more advanced access control models. In the classic

model, the indirection is unnecessary, and a principal becomes synonymous to

the subject. In the role-based model, the principal expresses the different roles a

user can perform, and is essential to the access control decision. In the trust

management model, a remote subject’s principal can be public key credentials or

certificates signed by the local subject, so that a local subject can use these

principals to decide whether a request should be permitted or denied.

Secure xADL adopts the role-based trust management (RBTM) framework

[81] as its base for support of trust management. The framework has a theoretical

semantics based on logic and set theory, which makes it a natural fit since other

parts of Secure xADL is also based on similar theoretical foundations. The

107

framework uses roles as the basis for granting trust, so it integrates with the

RBAC support of Secure xADL easily.

In a decentralized environment, there are different autonomous

administrative domains. The most basic rule of the role-based trust management

framework specifies that a role R1 defined in a domain D1 grant its trust on the

role R2 defined in the domain D2, so that each user from the domain D2 who can

perform the R2 role can acquire permissions in the domain D1 that are granted to

the role R1. The authors of the RBTM framework formally express this as R1.D1

R2.D2, signifying a trust relationship from D1 to D2. (The framework is backed by

logic programming, so the arrow in the formal rule points in a direction that

implies logic derivation.)

From a Role-based Access Control perspective, the trust grant rule is

similar to the relationship between a senior role and a junior role in the

Hierarchical RBAC model. There a senior role obtains all permissions of the

junior role. Here a role from a remote domain acquires the permissions granted

on a local role in the local domain. The RBTM framework views the trust

management relationship as the set containment relationship between

independently defined roles.

From a trust management perspective, the trust grant rule is a credential

that a remote can present to the local entity for access control. If the remote

entity can convincingly deliver the credential (for example, the credential is

signed by the local entity), then the local entity will grant the permissions

associated with the role.

108

Architectural constituents of Secure xADL use the trust grant rule to

define what trust locally defined roles will grant on remotely defined roles.

Syntactically this is expressed along with other Role-based Access Control

policies.

Figure 4-4 is an example of a Secure xADL trust management policy. Note

the “TM:deault” policy set, which is the Secure xADL notation to signify a trust

management policy. The rule specifies that the US role from the US domain

(specified by the subject attribute with an id of urn:xadl:domain:name) trusts

(specified by the urn:xadl:action:Trust action) the France role from the

France domain (specified by the urn:xadl:domain:name resource attribute).

Compared to the RBAC policy in Figure 4-3, each role in this policy is explicitly

specified with the autonomous domain under which it is defined. In the previous

RBAC policy, the same default domain is assumed for each role defined.

4.2.3 Trust Boundary and Architectural Connector
While the term trust management was recently coined to handle

decentralized access control, trust has long been a central concept in security

research [121]. From a software architecture viewpoint, a trust boundary

delineates the trust relationship among components and connectors. All

components and connectors within a boundary trust each other, and thus no

security checks would be necessary. However, any access crossing a boundary

should be very carefully monitored and checked. Software architecture

descriptions could provide an appropriate means to describe and analyze these

trust boundaries.

109

<connector id="UStoFranceConnector"
 xsi:type="SecureConnector">
 <type href="#BridgeConnector_type" />
 <security>
 <subject>US<subject/>
 <policies>
 <PolicySet PolicySetId="TM:default">
 <Policy RuleCombiningAlgId="permit-overrides">
 <Rule Effect="Permit">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>US
 <AttributeDesignator>subject-id
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>default
 <AttributeDesignator>urn:xadl:domain:name
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>France
 <AttributeDesignator>resource-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>France
 <AttributeDesignator>urn:xadl:domain:name
 <ActionMatch MatchId="string-equal">
 <AttributeValue>urn:xadl:action:Trust
 <AttributeDesignator>action-id
 </Policy>
 </PolicySet>
 </policies>
 </security>
</connector>

Figure 4-4, A Trust Management Policy

Secure xADL arguments traditional software architecture descriptions

with trust information to clearly delineate where trust starts and ends within a

complex software system. Traditional boundaries are laid around components,

connectors, and the containing sub-architectures. Secure xADL overlays these

boundaries with trust information. Thus, when a component executing for one

subject needs to access another connector executing as a different subject, a cross

trust domain access control check should be performed. The two subjects

generally are defined within a single administrative domain, so the cross-subject

110

trust boundaries in this case still lie within that administrative domain. When a

component from one autonomous administrative domain tries to access another

connector in another autonomous domain, the trust management policy should

be consulted to check whether the cross-domain trust boundaries should be

allowed to cross.

Connectors can play an important role in checking accesses crossing trust

boundaries. When a connector connects two trust boundaries in the architectural

topology, the connector can propagate and delegate trust in accordance with the

trust policy. The necessary trust credentials, such as the subject and principals of

the accessing component, can propagate along the connectors, subject to whether

the delegation is allowed and whether the accessing role is trusted. Thus at the

other end of the connector the accessed component can utilize such trust

information to decide whether the access request is allowed.

4.3 Handling Content-based Access
Previously, we have established interfaces of components and connectors

as a basic unit for access control protection. The interfaces are protected by

safeguards. The accessing components and connectors need to have sufficient

privileges for these safeguards before they can access the protected interfaces.

This interface-based access control scheme is based on the dominant design in

component-based software engineering and software architecture, where

interfaces are the key encapsulations for provided and required services.

However, depending on how an interface is designed, the interface might

not always provide all information necessary for making an access control

decision. For example, a file system component usually provides interfaces for

111

creating, reading, writing, and removing files. These interfaces remain the same

for accessing both ordinary and sensitive files within the component, but the

results would differ depending on not only the accessing component but also on

the parameters passed to these interfaces.

In certain architectural styles, there are only limited types of interfaces.

For example, in the classic Unix pipe-and-filter architecture style, each pipe and

each filter has a standard input interface to receive byte stream inputs and a

standard output interface to send byte stream outputs. The interface itself does

not differentiate one input stream from another input stream, or differentiate one

output stream from another output stream. The simplicity and uniformity of the

interfaces provide great flexibility in composing larger architectures from smaller

building blocks, but it does not provide enough information to control access. To

provide access control for architecture styles that utilize generic interfaces,

Secure xADL enables content-based access control that allows access control to

be based on the content passing through these interfaces.

For example, in the message-based C2 style [138], each component and

connector has a top interface and a bottom interface, and all top interfaces and all

bottom interfaces within an architecture are of the same type. This generic

interface type is used to send and receive all requests and notifications. We adopt

the xADL message extension [58] to describe the content of a C2 message,

including its type (whether it is a request or a notification), its source and

destination component and connector, and the names and values of the

parameters of the message. XACML provides a facility to allow inspecting the

content of the resource as part of the generic rule matching process, in addition

112

to matching attributes of a subject, an action, and a resource. Combining the

message extension and the content inspection facility, Secure xADL allows

architectural access control decisions based on not only the interfaces of

components and connectors but also the content that passes through these

interfaces. For example, an architect can limit the delivery of a notification from

the bottom interface of a connector to the top interface of another connector only

to notifications that has a certain value for a certain parameter.

<connector id="UStoFranceConnector"
 xsi:type="SecureConnector">
 <type href="#BridgeConnector_type" />
 <security>
 <subject>US<subject/>
 <policies>
 <PolicySet PolicyCombiningAlgId="deny-overrides">
 <Policy RuleCombiningAlgId="deny-overrides">
 <Rule Effect="Deny">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>UStoFranceConnector
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>RouteMessage
 <AttributeDesignator>resource-id
 <ActionMatch MatchId="string-equal">
 <AttributeValue>urn:xadl:action:RouteMessage
 <AttributeDesignator>action-id
 <Condition FunctionId="not">
 <Apply FunctionId="string-is-in">
 <AttributeValue>Secret</AttributeValue>
 <AttributeSelector
 RequestContextPath="//context:ResourceContent
 <Rule Effect="Permit" />
 </Policy>
 </PolicySet>
 </policies>
 </security>
</connector>

Figure 4-5, Content-based Access Control

113

Figure 4-5 depicts a sample policy for content-based access control. When

the connector routes a message (an action with the id of

urn:xadl:action:RouteMessage), it will deny the routing if it finds

inappropriate messages when it inspects the content of the message. The content

of the message to inspect is described with an XPath [141] expression beginning

with “//context:ResourceContent”. XACML uses this path as an

AttributeSelector to retrieve the content of the resource from the request.

4.4 Handling Architectural Execution
To effectively enforce secure architectural access, we also need to provide

necessary run-time support for architectural execution of an architecture

described in Secure xADL. Two most basic types of operation for architectural

execution are architectural instantiation and architectural connection. Most

architecture styles need these two types of architectural operations. For message-

based architecture styles like C2, providing message routing support is also

essential to architectural execution.

4.4.1 Architectural Instantiation
The first architectural operation is instantiation, namely creating the

components and connectors based on the architecture description. This has not

been well studied by previous work [145]. A sample instantiation policy can

specify that the components and connectors should not be created unless there

are public key certificates present, since merely creating the component or the

connector could be dangerous enough. This is the policy adopted by recent

versions of Internet Explorer for ActiveX Controls.

114

Secure xADL uses urn:xadl:action:AddBrick to specify the

architectural instantiation operation, as depicted in Figure 3-2.

4.4.2 Architectural Connection
The second architectural operation is connection, namely binding the

interfaces of components and connectors together. When binding a component

and a connector, the policies of both the component and the connector should be

consulted. If either of them rejects such a connection, then the connection

operation should not be allowed. A connection operation can involve more than

just immediate connections. For example, when using a connector to connect a

component with another component, the policies of the connector and the two

components all should be consulted. This is an example of the nearby constituent

context (Section 3.4.1).

Figure 4-6 specifies a policy for architectural connection. The operation for

making an architectural connection is specified by the Secure xADL action

urn:xadl:action:AddWeld. Note the resource match uses the XACML

regexp-string-match method, which matches strings with regular

expression. In this case the value to be matched is “.*”, thus every connection

request will be permitted.

4.4.3 Message Routing
For a message-based architecture styles like C2, when a system described

in the style executes, each component and connector only communicates with

each other through passing messages. Thus, providing support for message

routing will complete the support of executing such software systems: first

115

instantiating components and connectors, then connecting components with

connectors, and finally messaging events among them. Secure xADL supports

routing messages according to specified policies. Such support can utilize the

content-based access control facility discussed in Section 4.3.

<connector id="UStoFranceConnector"
 xsi:type="SecureConnector">
 <type href="#BridgeConnector_type" />
 <security>
 <subject>US<subject/>
 <policies>
 <PolicySet PolicyCombiningAlgId="permit-overrides">
 <Policy RuleCombiningAlgId="permit-overrides">
 <Rule Effect="Permit">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>SecureManagedSystem
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="regexp-string-match">
 <AttributeValue>.*
 <AttributeDesignator>resource-id
 <ActionMatch MatchId="string-equal">
 <AttributeValue>urn:xadl:action:AddWeld
 <AttributeDesignator>action-id
 </Policy>
 </PolicySet>
 </policies>
 </security>
</connector>

Figure 4-6, Policy for Architectural Connection

In C2, there are two types of message routing. The external message

routing occurs when messages are sent from one interface of a component to

another interface of a connector. The internal message routing happens when a

message received from one interface of the connector is forwarded to another

interface of the same connector. The standard C2 semantics for a connector is to

unconditionally route such messages. However, this might leak sensitive

information, if any receiver at the receiving end is untrustworthy. Thus, a more

116

discreet policy could be adopted by the system or the connector that permits only

routing safe messages to appropriate interfaces.

4.5 Summary of Modeling Concepts
This section summarizes the modeling concepts proposed in Chapter 3

and Chapter 4. These concepts can be used for checking architectural access

control using the algorithms defined in Section 3.5.

Secure xADL is based on a unified access control model that incorporates

the classic discretional access control model [78], the role-based access control

model [124], and the role-based trust management model[81]. The latter two

models can be viewed as extensions to the classic model. Such a unified model

can cover access control requirements for a large class of software systems.

Secure xADL extends two base languages based on XML. One language,

our extensible architecture description language, xADL [27], provides basis for

describing different architectural constructs, such as components, connectors,

types, sub-architectures, and the complete architecture. The other language, the

XACML language [106], supplies a logic and set theory based policy language

utilizing matching subjects, actions, and resources to rules and policies. Both

languages support modular extension.

Secure xADL extends descriptions of architectural constituents

(components, connectors, types, sub-architectures, and the global architecture)

with constructs necessary to model access control: subject, principal,

permission, resource, privilege, safeguard, and policy. Subject is the

user on whose behalf software constituents execute. A subject can take multiple

principals. Each principal encapsulates a credential that the subject possesses

117

to acquire permissions. It is the synonym as subject in the classic access control

model, a role in the role-based model, and a decentralized role in the trust

management model. A permission is an allowed operation on a resource. A

resource is an entity whose access should be protected. A resource can be

passive, like files, or it can be active, like components and connectors. A

privilege describes permissions components and connectors possess, depending

on the executing subject. A safeguard describe permissions required to access

the protected interfaces of components and connectors. A policy ties all these

concepts together, and specifies what access is allowed and what access should be

denied.

118

5 Tools Support
In this chapter we describe support tools we have developed for the

connector-centric approach to software architectural access control. We first

describe the evaluation engines we have developed for this approach. These

engines, while being an integral part of our approach, can also be used separately.

Then we give an overview of the base architecture design environment,

ArchStudio [27]. After that we illustrate the design-time tools we have developed

for the environment, including editors and analyzers. Finally, we discuss the run-

time tools that we have developed to fully support secure execution of event-

based software systems.

5.1 Evaluation Engine of Access Control Models

5.1.1 Implementing Role-based Access Control
Because Secure xADL supports the Core RBAC and the Hierarchical RBAC

parts of the RBAC standard [5], we write a Java class library to implement these

parts. The RBAC standard is specified as a set of functions, but Java prefers

object-oriented design. Thus we provide a procedural interface for the set of

classes. The RBAC standard also requires that each part should be able to be

deployed and utilized independently, thus we choose to let the Hierarchical RBAC

part inherit from the Core RBAC part so the Core part can be used standalone

and the Hierarchical part does not need to duplicate unnecessary code.

For the Core part, we design a set of interfaces and classes: User, Role,

Operation, Object, Permission, and Session, just as specified by the

119

standard. An RBACCoreImpl implements all functions specified by the standard,

and can be accessed by the following procedure-oriented interface:

public interface RBACCore {
 User addUser(Name User);
 Role addRole(Name Role);
 void assignUser(User aUser, Role aRole);
 void deassignUser(User aUser, Role aRole);
 void grantPermission(Operation p, Object b, Role r);
 void revokePermission(Operation p, Object b, Role r);
 void checkAccess(Session s, Operation p, Object b);
 Set assignedUsers(Role aRole);
 Set assignedRoles(User aUser);
 Set roelPermissions(Role aRole);
 Set userPermissions(User aUser);
 ...
}

Figure 5-1, Core RBAC Interface

The RBAC Hierarchical part is based on the RBAC Core part, and adds the

classes and interfaces in Figure 5-2 to provide access for the role-inheritance

relationships. In Hierarchical RBAC, adding an inheritance relationship between

two roles can trigger a wide propagation of permissions, because the newly added

relationship could bridge two large existing role hierarchies.

public interface RoleHierarchical extends Role {
 void addAscendant(RoleHierarchical ascendant);
 void addDescendant(RoleHierarchical descendant);
 void addJunior(RoleHierarchical junior);
 void addSenior(RoleHierarchical senior);
 ...
}
public interface RBACHierarchical extends RBACCore {
 void addInheritance(RoleHierarchical a, d);
 void deleteInheritance(RoleHierarchical a, d);
 Set authorizedRoles(User aUser);
 Set authorizedUsers(Role aRole);
 ...
}

Figure 5-2, Hierarchical RBAC Interface

120

5.1.2 Integrating Role-based Trust Management
The Role-based Trust Management (RBTM) framework was implemented

by its author, Ninghui Li [81]. We adapt it to suit our own needs. The original

framework answers two types of queries: which roles (foreign or local) an entity is

allowed to have, and to which entities (foreign or local) a role is granted. We limit

the inter-autonomous domain trust relationships to roles of domains, and use the

previously developed RBAC engine to query the role-user relationships within an

autonomous domain. A RoleDecentralized role maintains to which domain it

belongs. Each domain’s RBAC engine uses a trust manager to manage its trust

relationships with other domains. It informs the trust manager what roles from

other domains it trusts and revokes the established trust relationships when

appropriate. The trust manager for a domain is queried for these relationships

and decides whether an access from a foreign role should be allowed.

public interface RoleDecentralized
 extends RoleHierarchical {
 void setDomain(Domain owning);
 ...
}
public interface RBACDecentralized
 extends RBACHierarchical {
 void setDomain(Domain domain);
 void setTrustManager(RBTM trustManager);
 ...
}
public interface RBTM {
 void grantTrust(RoleDecentralized l,RoleExpression r)
 void revokeTrust(RoleDecentralized, RoleExpression r)
 Set getTrustedForeignRoles(RoleDecentralized local);
 Set getTrustingForeignRoles(RoleDecentralized l);
 boolean checkAccess(Name localUser, Name localDomain,
 Name foreignDomain,Name operation, Name object);
 ...
}

Figure 5-3, RBTM Interface

121

5.1.3 Integrating with SunXACML
We use the SunXACML [135] open source library as the underlying policy

decision engine. SunXACML provides a SimplePDP that reads a policy and a

request that are both described in XACML, tries to find a rule from the policy that

matches the request, and returns a permit or deny answer based on the found

matching rule and the rule combination algorithm.

Based on the SimplePDP, we develop our own policy evaluation engine.

Our PDP is constructed with a set of current polices and a set of potential policies.

A policy finder is developed to retrieve potential polices when referred to by the

current polices.

The XACML RBAC Profile specifies how policy sets can be used to

implement RBAC (Section 4.1.3), but it does not specify where the policy sets can

be found. Using our PDP, we supply the role policy set as the current policy, and

the permission policy set as the potential policy. This not only solves the problem

of locating policy, but also avoids directly evaluating using the permission set,

which is prohibited by the XACML RBAC Profile.

Because we already have a RBAC engine and a RBTM engine, we decide to

reuse them to both save efforts and avoid inconsistencies. We design three classes:

RBACHierarchicalWithXACML, RBACDecentralizedWithXACML, and

RBTMWithXACML. These classes read role-based and trust management policies

specified in Secure xADL (Section 4.1.4 and Section 4.2.2), and evaluate against

an XACML request. Internally they populate the existing engines with

information from the XACML policies. A role attribute finder is developed to find

the correct role policy set using specified principals or the original RBAC engine.

122

5.2 Overview of ArchStudio
ArchStudio [27] is an architecture development environment. It supports

designing software architectures specified in xADL, and executing them if they

architectures are in the C2 architecture style.

ArchStudio has two editors that an architect can use to construct and

modify architectures. The first one, ArchEdit, is a syntax-directed, text-based

editor. It can automatically inspect xADL extensions and provide means to add

constructs introduced the extensions. The second editor, Archipelago, is a

powerful graphical editor. It gives an intuitive view of the architecture.

Tron is the analysis framework of ArchStudio. Tron supports many types

of architectural analysis, such as checking each component has a unique

identifier and each interface is of the correct type.

ArchStudio is a C2 style application and written with the c2.fw framework.

The framework is a class library that eases developing C2 style software. It

provides support for both components and connectors (termed Brick in the

framework). A broadcasting connector is the standard connector for c2.fw, as

required by the C2 style.

When given a xADL description of a C2 style architecture, ArchStudio

instantiates a ManagedSystem to execute the architecture. The

ManagedSystem uses an ArchitectureController to control the execution.

The controller consists of three parts: an ArchitectureManager that creates

bricks and links them together, an ArchitectureEngine that manages the

running threads of the bricks, and a MessageHandler that delivers messages

from one interface of a brick to another interface of another brick.

123

5.3 Design-time Support
At design-time a security architect needs to specify the security properties

of an architecture and check whether the specification meets intended accesses.

The editor and checker of ArchStudio enable these activities.

5.3.1 Integrating the XACML Policy Editor
No extra effort is needed to support editing the subject, principals,

privileges, and safeguards of Secure xADL in ArchEdit, because the constructs

follow the established pattern used by pervious extensions, and ArchEdit’s

syntax-directed capability automatically supports editing these elements.

Editing the XACML policy requires more integration. We need to perform

three changes. Firstly, each XACML PolicySet is exposed to other parts of

ArchStudio as a string, even though internally it is a complex XML document.

Secondly, we adopt the UMU-XACML-Editor developed by University of Murcia

(UMU), and make it to read and write a policy in the string form. The editor

provides a syntax-directed manner to construct a correct XACML policy. It

adopts the same tree-based user interface design as employed by ArchStudio

components, making integrating it seamless from a user perspective. Finally, we

supply the editor with Secure xADL’s subjects, resources, and actions to ease

constructing a Secure xADL related policy. The integrated editor can be used to

edit policies for components, connectors, their types, and architecture structures.

The policy editor integration is reused in the graphical editor, Archipelago.

To support editing other constructs of Secure xADL, a context menu plug-in is

written, and is invoked when the editing focus is on secure components and

connectors.

124

Figure 5-4, Policy Editor in ArchEdit

Figure 5-4 depicts the policy editor in ArchEdit. Figure 5-5 shows the

editor in Archipelago. Notice that the external editor is visually well integrated

with other user interface components.

Figure 5-5, Policy Editor in Archipelago

125

5.3.2 Access Control Analysis
Figure 5-6 illustrates how in the Archipelago graphical editor the security

architect can access the architectural access control algorithm specified in Section

3.5. The architect specifies both an interface of an accessing component or

connector and an interface of an accessed component or a connector. The

algorithm checks whether the accessing component or connector has sufficient

privilege to access the accessed interface and reports the result. If the result is not

as the intended, the architect can check the involved components and connectors

along the access path and modify their security properties (using editors of

Section 5.3.1) to achieve the desired consequence. The check can be performed on

any pairs of interfaces within the architecture. This access control check can also

be invoked through the other editor, ArchEdit.

Figure 5-6, Menu for Access Control Check

126

When given a Secure xADL description, the algorithm implementation

first checks whether the accessing interface and the accessed interface belong to

the same architecture structure. If they are, the implementation constructs an

interface graph for that structure, where each node represents an interface, and

each link in the Secure xADL description becomes an edge. An edge is also drawn

between an incoming interface and an outgoing interface of a connector.

If the accessing interface and the accessed interface do not belong in the

same structure, then the implementation uses the top level architecture as the

common container, flattens that architecture by replacing each contained

structure with an interface graph for the contained structure, possibly renaming

duplicated architectures and linking mapped interfaces with edges.

With such a connected interface graph, the algorithm implementation

finds a path between the accessing interface and the accessed interface. The

algorithm uses the standard Floyd’s algorithm [26] to find a shortest path, if such

a path exists. This step takes O(n3) time, where n is the number of interfaces

contained in the constructed interface graph.

With this path, the implementation retrieves the privileges of the accessing

interface and the safeguards of the accessed interface, from the interface, the

containing connector, the type of the containing connector, and the containing

architecture structure. Then the implementation propagates the privileges along

the path. During this propagation process, each connector can decide whether a

privilege can be propagated through it, based on its policy. This step uses the

evaluation engine (Section 5.1.3). Finally, the implementation checks whether the

privileges eventually reaching the accessed interface satisfy the safeguards.

127

The privilege propagation step takes O(m) time, where m is the length of

the path. At each step, by default the privilege will propagate. But if the connector

supplies a policy, then the XACML-based evaluation engine is executed. This

execution needs memory resource and execution time because of the XML usage.

Overall, the static analysis provides satisfactory performance for interactive usage

by an architect at design-time.

5.4 Run-time Support

5.4.1 Policy Decision Point and Policy Enforcement Point
To effectively enforce secure architectural access, we need to provide

necessary run-time support. The language from which we base our policy

description, XACML, uses an enforcement and decision framework. In this

framework, when a policy enforcement point (PEP) needs an access control

decision about whether the access should be granted, it constructs a request and

sends the request to the policy decision point (PDP). The PDP retrieves the

applicable policies and uses them to calculate a response of permission or denial.

Then the response is sent back to the PEP, and the PEP can either permit or deny

the original access request.

Within this framework, the important design questions are: 1) What

operations should be controlled? 2) Where is the PEP located? 3) Where is the

PDP located? 4) Where should the PDP retrieve the relevant policies? Section 4.4

has answered the first questions: the controlled architectural operations should

include architectural instantiation, architectural connection, and message routing

for message-based architecture styles. Section 3.2 and Section 3.4 have answered

the last question: architectural access control policies should come from all

128

relevant sources: the components, the connectors, their types, their containing

architectures, and the complete architecture. Thus, the unanswered questions are

about the locations for the PDP and the PEP.

Because ArchStudio is written in the c2.fw framework, and a c2.fw-based

application is executing under the control of the Managed System and the

Architecture Controller, the natural choice is to combine the PDP and PEP

together, and use both the individual bricks of the c2.fw framework and the

controller as the combined enforcement/decision point. An individual brick can

handle more local access control decisions, and the architecture controller can

handle more global decisions. We stress that each of them can retrieve policies

from all relevant sources, and an architectural operation could involve both of

them. The next two subsections describe the framework and the controller,

respectively.

5.4.2 The c2.fw.secure Framework
In the c2.fw framework, the basic class is Brick, which can be either a

component or a connector. The c2.fw.secure framework is an extension of the

c2.fw framework. The Brick class is extended to a SecureBrick class in the

c2.fw.secure framework. The SecureBrick class stores the subject for which it

executes, the principals of the subject, and the associated privileges. More

importantly, SecureBrick has the capability to maintain a PDP. This PDP is

consulted during various points of architectural execution, as we will see in the

following sections on architectural operations.

129

The original c2.fw framework defines an Interface class to describe the

top and bottom interfaces. This class is extended into a SecureInterface class

in the c2.fw.secure framework. A SecureInterface carries safeguards to

protect the interfaces of bricks.

5.4.3 The Secure Architecture Controller
There are three parts of an architecture controller: the engine, the

architecture manager, and the message handler. The latter two are related to

secure execution of C2 systems, and are extended to the Secure Architecture

Manager and the Secure Message Handler, respectively. Each of them can

maintain a PDP, and the PDP is populated with a policy obtained from the

security property of the global architecture. This policy controls how various

architectural operations are performed, as we shall see.

The secure architecture manager and the secure message handler will raise

security exceptions if some operations are rejected because of security reasons.

To minimize the change on other parts of ArchStudio, the exception is a subtype

of the unchecked run-time Java exception, so other parts do not have to handle

the exception. The exception is caught and handled by the

SecureManagedSystem.

While both the SecureBrick and the secure manager/handler can obtain

and enforce security policies, the advantage of placing policy enforcement at the

secure architecture controller is that existing applications do not need to be

rewritten to benefit from the secure execution. Many policies can be specified and

enforced at the architecture structure level. Of course, a SecureBrick provides

130

more capabilities and offers finer controls for developing more advanced secure

applications.

5.4.4 Sources and Defaults of Policies
In executing a secure C2 application, the security polices can come from

different sources of a Secure xADL description: the brick, the type, and the

architecture. The security architect should decide where the proper scope is to

enforce a security policy.

Another important issue is to choose a default policy between an “open

policy” [116] (where any requests that are not explicitly denied will be permitted)

and a “close policy” (where any requests that are not explicitly permitted will be

denied). For a single desired effect, both can be utilized, but the syntax is

different. It is their implications for unspecified operations that would surprise

an unscrupulous architect. The architect should carefully explore and inspect the

effects of the specified policy.

5.4.5 Architectural Instantiation
Having discussed the placement of policy decision and policy enforcement,

in the remaining part of this section we will discuss how the Secure Architecture

Controller and the c2.fw.secure framework implement the different types of

architectural operations.

The first architectural operation is instantiation, creating the components

and connectors based on the architecture description. This is managed by the

Secure Architecture Manager. Because at this stage the C2 brick is to be created,

the Secure Architecture Manager is in full control of whether to create the brick

or not, using a policy similar to the one specified in Section 4.4.1.

131

After the manager decides the component or the connector can be created,

it creates the component or the connector using the implementation specified in

its type, collects relevant policies from the brick, the type, and the architecture,

and supplies these policies to the newly created brick so the brick can finish its

own initialization, including creating the brick PDP.

5.4.6 Architectural Connection
The second architectural operation is connection, binding the interfaces of

components and connectors together. This is also handled by the Secure

Architecture Manager.

When binding a component and a connector, since both bricks should

have been created, the Secure Architecture Manager consults each of them to

check whether any brick’s policy will reject the connection. Such policy is

specified as in Section 4.4.2. By doing this the architecture manager gives the

involved bricks the capability to control their own connections. If either of them

rejects such a connection, then the connection operation should not be allowed.

The Secure Architecture Manager can also inspect the globally policy

associated with the global architecture for operations that involve more than just

the immediate connections. For example, when using a connector to connect a

component with another component, the architectural policy is the most natural

place to specify whether such connections should be allowed. This is an example

of the nearby constituent context.

If the connection operation is rejected because of security reasons, the

Secure Architecture Manager reports such problems. The Tron analysis tool of

ArchStudio displays the unsuccessful connection attempts, as shown in Figure

132

5-7. Similar failures in architectural instantiation are also reported by the Tron

tool. Some failed connection attempts are actually caused by failures in early

failures of instantiating bricks. The architect can inspect the involved bricks and

the global architecture to decide the reasons for the rejection and take

appropriate actions.

Figure 5-7, Architectural Connection Failure

5.4.7 External Message Routing
In C2, external message routing occurs when messages are sent from one

interface of a component to another interface of a connector. This task is

processed by the Secure Message Handler. During external message routing, the

message handler can use architectural information on the message, such as the

source interface and the destination interface to decide whether the message

133

should be delivered. The message handler can also inspect more deeply into the

content of the message to decide whether the message should be delivered, as

discussed in Section 4.3 and Section 4.4.3.

Since evaluating a request against an XACML policy is a potentially

computationally expensive task and the message handler is delivering all external

messages in the system, requiring the handler to inspect each message before

delivery could be very costly on performance. The current secure message

handler only inspects a message in two occasions: when the message is delivered

between a normal C2 brick and a secure C2 brick, and when the message is

delivered between two secure C2 bricks that belong to different subjects. While

this decision is a made as a tradeoff between security and performance, there is

also a security rationale: a trust boundary is crossed in these two situations, so

the access must be carefully inspected and regulated, as discussed in Section

4.2.3.

5.4.8 Internal Message Routing
In C2, internal message routing refers to when a message received from

one interface of the connector is forwarded to another interface of that connector.

The standard C2 semantics is to unconditionally route such messages. However,

this might leak sensitive information, if any receiver at the receiving end is

untrustworthy. Thus, a more discreet policy can be adopted by the connector,

only routing safe messages to appropriate interfaces. Unlike external message

routing, where the message handler is the PDP/PEP, in this case the local

connector decides what it should do, since the message routed is completely

under its control.

134

As in the case of external message routing, the connector can inspect both

the architectural information and the message content to decide whether the

message should be forwarded. Since the message is under full control of the

connector, it is tempting to treat the message as simply traveling from one

internal interface of the routing connector to another interface of the same

connector, without consideration of larger contexts. However, depending on the

application requirements and the capability of the messaging system, sometimes

it is desirable to retain the original contextual information of a message that the

message has before the message reaches the incoming interface. Since a C2

connector has only one top interface and all notifications come from this

interface, whatever the sender of the message is, loosing the contextual

information makes it difficult to differentiate between the sources of these

messages. This would be undesirable, since the source of a message could play

important roles even in internal message routing.

5.4.9 A Connector’s Role in Secure Architectural Execution
In our connector-centric approach to software architectural access control,

a secure connector plays two important roles in securely executing C2 style

software: it participates in deciding whether architectural connections should be

made, by rejecting inappropriate connections when the architecture manager

consults it before the connection; and it assists in determining whether a message

should be routed to the intended recipient, by discarding improper messages

routed through it.

135

The secure connector makes these decisions based on the specified

security policies and the message. It can inspect both the architectural properties

of the message and the content of the message to make a decision on delivery.

136

6 Case Studies
In this chapter we present four case studies to assist in validating our

connector-centric approach to software architectural access control. The first case

study, Coalition, shows that our approach can describe how two parties that do

not fully trust each other can share data without revealing more sensitive

information, and how our tools support executing such a system with a secure

routing connector to exchange shared data. The second case study uses a

composite secure connector to connect various off-the-shelf components to

construct a secure file sharing application for a local area network. The third case

study models the component security architecture of the Firefox web browser,

and demonstrates that our connector-centric approach can describe how Firefox

security manager maintains trust boundaries and improves security through

connector enhancement. The last case study illustrates Microsoft Distributed

Component Object Model and shows how our approach can model its handling of

architectural access control operations and its growth through various types of

connectors to handle evolving security requirements.

These cases studies have helped validating three research hypotheses:

Hypothesis 1: An architectural connector may serve as a

suitable construct to model architectural access control.

Hypothesis 2: The connector-centric approach can be applied to

different types of componentized and networked software systems.

Hypothesis 4: In an architecture style based on event routing

connectors, our approach can route events in accordance with the

secure delivery requirements.

137

6.1 Coalition
In this section, we illustrate the use of the connector-centric approach with

a coalition application. We present three architectures, each has its own software

and security characteristics. We also describe how to specify related architectural

execution policies.

The software architecture is in the C2 architecture style. The coalition

application allows two parties to share data with each other. However, these two

parties do not necessarily fully trust each other, thus the data shared should be

subjective to the control of each party.

The two parties participating in this application, depicted in Figure 6-1,

are US and France. Each of them can operate independently, displaying the

messages they receive from their own information collection devices. They can

also share messages necessary to achieve a coalition mission. In Figure 6-1, US

sends messages to France so France can display the additional messages. France

also sends messages to US. One message about hostile air defense missile is

especially important, and the US side would reconfigure the flight path of its

planes after receiving the message.

6.1.1 The Original Architecture
Figure 6-2 illustrates the original coalition architecture, using our

Archipelago architecture editor [27]. In this architecture, US and France each has

its own process. US is on the left side, and France is on the right. The squares are

components, and the regular rectangles are connectors.

138

Message from

US

Message from

France

Figure 6-1, Coalition in Execution

The US Radar Filter Connector sends all notifications downward. The US

to US Filter Component forwards all such notifications to the US Filter and

Command & Control Connector. However, US does not want France to receive all

the notifications. Thus it employs a US to French Filter Component to filter out

sensitive messages, and sends those safe messages through the US Distributed

Fred Connector, which connects to the French Local Fred Connector to deliver

those safe messages. (A Fred connector broadcast messages to all Fred

connectors in the same connectors group.) The France side essentially has the

same architecture, using a French to US Filter Component to filter out sensitive

messages and send out safe messages.

139

Figure 6-2, Original Coalition

The advantage of this architecture is that it maintains a clear trust

boundary between US and France. Since only the US to French Filter and the

French to US Filter come across trust boundaries, they should be the focus of

further security inspection. This architecture does have several shortcomings.

Firstly, it is rather complex, This architecture uses 4 Fred connectors (US Local,

US Distributed, French Local, and French Distributed) and 2 components (US to

French Filter, French to US Filter) to implement secure data routing such that

sensitive data only go to appropriate receivers. Secondly, it lacks conceptual

integrity. It essentially uses filter components to perform data routing, which is a

job more suitable for connectors. Thirdly, it lacks reusability, since each filter

component has its own internal logic, and they must be implemented separately.

140

6.1.2 An Architecture with Two Secure Connectors

Figure 6-3, Coalition with Two Secure Connectors

An alternative architecture uses two secure connectors, a US to France

Connector and a France to US Connector. Both are based on the same connector

type, SecureC2Connector_type. The US to France Secure Connector connects

to both the US Filter and Command & Control Connector and the French Filter

and Command & Control Connector. When it receives data from the US Radar

Filter Connector, it always route it to the US Filter and Command & Control

Connector. And if it detects that it is also connected to the French Filter and

Command & Control Connector, and the data is releasable to the French side,

then it also routes the messages to the French Filter and Command & Control

141

Connector. The France to US Secure Connector adopts the same logic. This

architecture simplifies the complexity and promotes understanding and reuse:

Only two secure connectors are used, these connectors perform a single task of

secure message routing, and they can be used in other cases by adopting a

different policy.

Figure 6-4 illustrates the relationship between the policy of a type and the

policy of the instances of the type. The SecureC2Connector_type is specified

with a principal of NATO, and has a policy that denies the instantiation operation

(the AddBrick action) if the NATO principal is not present in the request for the

operation. In the instance UStoFranceConnector’s policy, the type policy is

referenced through PolicySetIdReference. The instance specifies that the

instantiation operation is denied if the US principal is not present. Note that the

policy combination algorithm for the instance’s policy is deny-overrides. Thus,

even if the US principal is present, unless the NATO principal is also present, the

instantiation operation will be rejected by the type policy, and because of the

deny-overrides algorithm, the denial by the type policy suffices to reject the

instantiation operation. The other connector, FrancetoUSConnector, adopts a

similar policy. This relationship between the type policy and the instance policy

allows us to simply remove the type principal, NATO, from the type specification

to disallow instantiation of any instances for this type. This flexibility in

combining the type policy and the instance policy through the policy combination

algorithm is one of the reasons that we choose XACML as the base policy

language for Secure xADL (Section 3.2.4).

142

<connectorType id="SecureC2Connector_type"
 xsi:type="SecureConnectorType">
 <security>
 <principal>NATO</principal>
 <policies>
 <PolicySet PolicySetId="InstantiateConnectorType"
 PolicyCombiningAlgId="deny-overrides">
 <Policy RuleCombiningAlgId="deny-overrides">
 <Rule Effect="Deny">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>SecureManagedSystem
 <AttributeDesignator>subject-id
 <AnyResource />
 <ActionMatch MatchId="string-equal">
 <AttributeValue>urn:xadl:action:AddBrick
 <AttributeDesignator>action-id
 <Condition FunctionId="not">
 <Apply FunctionId="string-is-in">
 <AttributeValue>NATO</AttributeValue>
 <AttributeDesignator>principal
 </Policy>
 </PolicySet>
 </policies>
 </security>
</connectorType>
<connector id="UStoFranceConnector"
 xsi:type="SecureConnector">
 <type href="#SecureConnector_type" />
 <security>
 <principal>US</principal>
 <policies>
 <PolicySet PolicyCombiningAlgId="deny-overrides">
 <Policy RuleCombiningAlgId="deny-overrides">
 <Rule Effect="Deny">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>SecureManagedSystem
 <ActionMatch MatchId="string-equal">
 <AttributeValue>urn:xadl:action:AddBrick
 <AttributeDesignator>action-id
 <Condition FunctionId="not">
 <Apply FunctionId="string-is-in">
 <AttributeValue>US</AttributeValue>
 <AttributeDesignator>principal
 </Policy>
 <PolicySetIdReference>InstantiateConnectorType
</connector>

Figure 6-4, Type Policy and Instance Policy

143

6.1.3 An Architecture with a Single Secure Connector

Figure 6-5, Coalition with One Secure Connector

Figure 6-5 depicts an architecture with a single secure connector. This

simplifies the architecture description further, and has the conceptual clarity that

a single connector is in charge of all communications between two parties that do

not fully trust each other. The connector becomes the center of secure data

sharing. A shortcoming of this architecture is that the secure connector can see

all traffic, thus it is the obvious target for penetration, and its breach leads to

secret leak. An architect should balance all such tradeoffs.

Since the single connector is the single bridge for sharing data, there are

many manners to control the sharing by setting different polices on the connector.

144

The connector can be denied instantiation, thus no sharing will occur. Even if the

connector is instantiated, the connections with other components and connectors

can still be rejected, so no messages can be delivered and sharing still will not

occur. When the connector is instantiated and properly connected with other

constituents, it can still use its policy on internal message routing (Section 5.4.8)

to decide what messages can be delivered.

Figure 6-6 specifies the internal message routing policy of the

UStoFranceConnector. There are three noticeable features in this policy.

Firstly, the policy specifies a Deny rule that matches all requests. The rule

combining algorithm for the policy is permit-overrides. The effect is unless a

message is explicitly permitted to be routed, the connector will not forward the

message. This achieves the “secure by default” effect by using a close policy.

Secondly, the connector uses content-based access control to deliver

messages of certain types. The two rules use an XPath expression to specify that

message routing will only happen when the “type” value of the message is either

“Air Defense Missile” or “Fixed Military Wing”.

Lastly, the policies use roles to control message delivery. Two roles are

defined, the US role and the France role. The “Air Defense Missile” message is

delivered from France to US only when the connector acts as the France role.

Likewise, the “Fixed Military Wing” message is delivered only when the

connector acts as the US role. The connector can act under multiple roles, as is

currently specified in the US and France principal. If the connector only acts as

the US role, then the “Air Defense Missile” message will not be delivered. If the

connector does not play any role, then no message will be routed.

145

<connector id="USFranceConnector"
 xsi:type="SecureConnector">
 <security>
 <principal>France</principal>
 <principal>US</principal>
 <policies>
 <PolicySet PolicySetId="InternalRouting"
 PolicyCombiningAlgId="permit-overrides">
 <Policy RuleCombiningAlgId="permit-overrides">
 <Rule Effect="Deny" />
 <PolicySet PolicySetId="PPS:France"
 PolicyCombiningAlgId="permit-overrides">
 <Policy RuleCombiningAlgId="permit-overrides">
 <Rule Effect="Permit">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>USFranceConnector
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>RouteMessage
 <AttributeDesignator>resource-id
 <ActionMatch MatchId="string-equal">
 <AttributeValue>xadl:action:RouteMessage
 <AttributeDesignator>action-id
 <Condition FunctionId="string-equal">
 <AttributeValue>Air Defense Missile
 <AttributeSelector RequestContextPath=
 "//context:ResourceContent/security:routeMessage/
 messages:namedProperty[messages:name='type']/
 messages:value/text()"/>
 <PolicySet PolicySetId="PPS:US"
 PolicyCombiningAlgId="permit-overrides">
 <Policy RuleCombiningAlgId="permit-overrides">
 <Rule Effect="Permit">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>USFranceConnector
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>RouteMessage
 <AttributeDesignator>resource-id
 <Condition FunctionId="string-equal">
 <AttributeValue>Military Fixed Wing
 <AttributeSelector RequestContextPath=
 "//context:ResourceContent/security:routeMessage/
 messages:namedProperty[messages:name='type']/
 messages:value/text()"/>
</connector>

Figure 6-6, Role-based and Content-based Routing

146

6.2 Impromptu
This section uses Project Impromptu, an application for sharing files in a

local area network, to illustrate that the connector-centric approach can be used

to develop composite secure connectors for componentized and networked

software. In Section 6.2.1, we give an overview of the project, specifying the

general context in which we make design decisions about security. Section 6.2.2

enumerates software components of the system and establishes security goals.

Section 6.2.3 describes how a secure connector connects these components to

accomplish security goals. Lastly, Section 6.2.4 illustrates how the secure

connector can be replaced by another composite secure connector that are more

secure and standard compliant.

6.2.1 Overview of Project Impromptu
Project Impromptu is a subproject of Project Swirl [31]. The hypotheses of

the Swirl Project are as follows. Firstly, traditional security mechanisms must be

utilized in a user-centered context to provide effective security for users. Secondly,

users make security related decisions within a context. Different contexts require

different degrees of security. Thirdly, users’ perceptions of the context can be

facilitated by visualizing security related events that come from heterogeneous

sources. Finally, perceptions and decisions related to security should be well

integrated with users’ main tasks.

Project Impromptu develops an ad-hoc file sharing application as a test

bed to investigate and evaluate these hypotheses. Each Impromptu user can

share files and decide how the shared files can be accessed by other users. A file

can be “see-only”, which means other users can only know its existence but

147

cannot access its content. A file can be “read-only”, where other users can read its

content but cannot modify it. A file can also be “read-write”, allowing other uses

to read and modify its content. Finally, a file can be “persistent”, which will still

exist for read/write access even after the original owner has left the ad-hoc

sharing group.

Figure 6-7.Impromptu User Interface

148

Figure 6-7 depicts what a user will see when Impromptu launches. The

“pie” designates the entire ad-hoc file sharing group. Each slice of the pie

represents a participant. The participant representing the current executing user

is highlighted by the darker shaded slice. Each dot is a shared file. The position of

the file determines the sharing level for each file. From the outermost ring inward,

each ring represents “see-only”, “read-only”, and “read-write”, respectively. The

center circle collects all “persistent” files.

6.2.2 Architectural Components and Connectors

Figure 6-8, Impromptu Architecture

Internally, the Impromptu application consists of the following

components: the graphical user interface, the Jetty web server, the Impromptu

WebDAV proxy, and the Slide WebDAV repository. The secure WebDAV

connector and the YANCEES [37] event notification connector connect these

components together. The architecture is graphically depicted in Figure 6-8. Jetty

149

and Slide are external open source software components. The user interface

component, the proxy component, the secure WebDAV connector, and the

YANCEES connector are developed by us.

The YANCEES connector provides a high-level event notification channel.

This connector delivers relevant events to interested subscribers. These events

include functionality related events, such as an indication that a file is created,

and security related events, such as that the file’s sharing level has been changed

from “read-only” to “read-write”.

Jetty serves as a dynamic application server that allows an add-on

component to decide what a response will be when Jetty receives a request. Slide

is an add-on component that provides WebDAV [24] repository support.

WebDAV is an HTTP extension that provides Internet-scale resource storage,

retrieval, and modification capability. It is an open standard, easily available in

different platforms, and is thus chosen as the foundation storage for the ad-hoc

file sharing application.

Participants store their own files in their own Slide server. However, this

local storage is not directly seen by the participant. A user only interacts with the

Impromptu proxy, using the Pie GUI depicted in Figure 6-7. The proxy provides

an illusion of a unified, shared file storage work space. When an Impromptu

proxy receives a file operation request, it determines whether the request is

directed at a local file or a remote file belonging to another participant. In the

former case, it retrieves the file from the local Slide server. In the latter case, it

issues a standard WebDAV request against the remote Impromptu proxy, which

will accomplish the operation using its own local Slide server.

150

We designed this application for a relatively friendly, ad-hoc file sharing

environment. The participants are assumed to be not malicious, and the major

risk in such an environment is unintentional disclosure of information. In

traditional file sharing applications, when a user operates on files it is not always

clear to the user what files are shared, how they might be accessed and changed,

and who is currently reading and changing files. However, neither do we want to

require a user to use complex configuration operations to express secure file

sharing intentions. Such complexity might be overwhelming to the user, and thus

affect usability. In summary, the security goals for the Impromptu file sharing

application are 1) make security visible; 2) ease security configuration.

As can be clearly seen from Figure 6-8, the secure WebDAV connector is

the key communication mechanism that connects the Slide server, the

Impromptu proxies, and the GUI. The next two sections outline how two

generations of secure WebDAV connectors achieve these goals.

6.2.3 Connector Using IP Address Authentication
Our first WebDAV security connector employs an IP address-based

authentication scheme and a method-based authorization mechanism. The

connectors connect the local Impromptu proxy and the Slide server, which store

files that should be secured, and also connect the GUI and the remote Proxy,

which access secured files. The security architecture of a single Impromptu

system is described in Figure 6-9, using Secure xADL. The secure WebDAV

connector type extends a base xADL connector type, ConnectorType, using the

extensible feature of the xADL language. Three instances of the secure WebDAV

connector type connect related components.

151

<connectorType type="ConnectorType"
 id="SecureWebDAVConnector">
 <signature id="WebDAVClient"></signature>
 <signature id="WebDAVServer"></signature>
 <description>
 IP-based authentication
 Method-based authorization
 </description>
</connectorType>
<component type="ProxyType" id="Local">
 <principal>me</principal>
</component>
<component type="ProxyType" id="Remote">
 <principal>other</principal>
</component>
<component type="GUIType" id="GUI">
 <principal>me</principal>
</component>
<component type="SlideType" id="Slide">
 <principal>me</principal>
</component>
<connector type="SecureWebDAVConnector"
 id="GUI_Impromptu">
 <interface signature="#WebDAVClient"
 id="GUI"/>
 <interface signature="#WebDAVServer"
 id="Impromptu"/>
</connector>
<connector type="SecureWebDAVConnector"
 id="Impromptu_Impromptu">
 <interface signature="#WebDAVClient"
 id="Remote"/>
 <interface signature="#WebDAVServer"
 id="Local"/>
</connector>
<connector type="SecureWebDAVConnector"
 id="Impromptu_Slide">
 <interface signature="#WebDAVClient"
 id="Local"/>
 <interface signature="#WebDAVServer"
 id="Slide"/>
</connector>

Figure 6-9, Secure WebDAV Connector

The connector connects a WebDAV client and a WebDAV server. It

employs two security facilities. Firstly, the connector uses an IP address-based

152

authentication mechanism to separate a local client from a remote client. When

the connector receives a WebDAV operation request from the client, it

determines, using the IP address of the client, whether the request comes from

the same machine as the server (thus from the local participant), or from a

different machine (thus from a remote participant). In the former case, the client

component will execute as the local principal, “me”. In the latter case, the client

component executes as the remote principal, “other”. For example, in Figure 6-9,

connector GUI_Impromptu connects the GUI and the local Impromptu. The GUI

executes as the “me” principal because it executes on the same machine as the

local Impromptu. The connector Impromptu_Impromptu connects two

Impromptu proxies. The remote Impromptu proxy executes under the “other”

principal because it resides on a different machine than that of the local

Impromptu proxy. Any non local participants will execute as the “other” principal.

This is the Role-based Access Control (RBAC) model discussed in Section 4.1,

where components executing for different remote subjects (participants of the

sharing session) have the same “other” role.

Secondly, the connector uses both the principal and the file sharing level

to decide what WebDAV methods a client can perform against that file. The local

GUI component, executing as the “me” principal, can do anything towards local

files. A remote participant, executing as the “other” principal, is subject to the

sharing level of a file. This decision process is transparent to a user, so there is no

need for the user to finish any complex setups. If a file is shared as “see-only”, the

connector will only allow the WebDAV PROPFIND method to pass from the

client to the server. This method permits other participants to retrieve

153

information about the file such as the creation date, the resource type, etc. For a

“read-only” file the connector permits, in addition to the PROPFIND method, the

WebDAV GET method, enabling a remote participant to get the content of a file.

Finally, the secure connector permits the WebDAV PUT method for a

“read/write” file, so a remote user can store back modifications for a retrieved file.

We have conducted an initial user study to assess whether the proposed

security architecture can achieve the security goals [31]. The preliminary results

of this study suggest that the system gives users a clearer sense of perception and

manipulation of security, and it does not overwhelm users with technical details.

6.2.4 Standard-Compliant Composite Connector
After the initial investigation of Project Impromptu, we have revised the

security architecture to address some issues we encountered during the

investigation.

Firstly, we want to deploy the Impromptu system into handheld devices,

which might require a more secure authentication connector. The current

Impromptu software is a tightly integrated suite of components, some of which

might require too many resources to execute on handheld devices. A possible

solution is to only execute the GUI on the handheld device (so we can still

investigate how users perform their regular and security-related tasks on such

hardware platforms), and deploy the rest of the Impromptu software on more

powerful machines. Under such a configuration, the IP address-based

authentication mechanism is insufficient, because even requests from the owning

participant (who is using a handheld device) actually comes from a different IP

address. We adopt a more secure authentication connector, the HTTP digest

154

authenticator. Such a connector enables deploying the Impromptu system to an

environment that might contain malicious adversaries, and mitigate some

limitations of an address-based authentication mechanism [7].

Secondly, we want to utilize existing authorization mechanisms supported

in Jetty and Slide to enable richer authorization semantics. Utilizing existing

mechanism enables better integration with mechanisms provided by the Jetty

application server and the Slide WebDAV server, and leverages the standard

WebDAV ACL [24] access control features provided by Slide.

Thus, we have developed a second secure connector using standard-

compliant authentication and authorization mechanisms to replace the original

secure WebDAV connector. This new secure connector is a composite connector.

It consists of a digest authentication connector, a standard HTTP authorization

connector using web.xml deployment descriptor [18], and a standard WebDAV

ACL authorization connector. Using the sub-architecture support of Secure xADL,

the composite connector is described in Figure 6-10. This connector will only

allow an HTTP WebDAV request to succeed when all the constituent connectors

grant permissions for the request. That is, the request will only succeed when it

can pass the authentication challenge from the Digest Authenticator, when the

requested method is allowed in the web.xml connector, and when the requested

resource is permitted by WebDAV ACL permissions.

One architectural advantage enabled by this new connector is that the

standard-compliant connector allows the Jetty/Slide repository to be accessed by

the built-in WebDAV file system support in Windows XP and Mac OS X, so now

users can share arbitrary files and manipulate the shared files through any

155

applications, such as text editors that do not know how to directly handle

WebDAV requests. In the first secure connector architecture, users can only share

and change files that can be manipulated by WebDAV-aware applications, such

as recent versions of Microsoft Office.

<archStructure id="composite">
 <connector id="DigestAuthenticationConnector">
 <interface id="DA_input" />
 <interface id="DA_output" />
 </connector>
 <connector id="WebXMLAuthorizationConnector">
 <interface id="WebXML_input" />
 <interface id="WebXML_output" />
 </connector>
 <connector id="WebDAVACLConnector">
 <interface id="DAVACL_input" />
 <interface id="DAVACL_output" />
 </connector>
 <link>
 <point id="#DA_output">
 <point id="#WebXML_input">
 </link>
 <link>
 <point id="#WebXML_output">
 <point id="#DAVACL_input">
 </link>
</archStructure>
<connectorType id="SecureWebDAVConnector">
 <signature id="client" />
 <signature id="server" />
 <subArchitecture>
 <archStructure href="#composite" />
 <signatureInterfaceMapping>
 <outerSignature href="client" />
 <innerInterface href="DA_input" />
 </signatureInterfaceMapping>
 <signatureInterfaceMapping>
 <outerSignature href="server" />
 <innerInterface href="DAVACL_output" />
 </signatureInterfaceMapping>
 </subArchitecture>
</connectorType>

Figure 6-10, Composite Secure WebDAV Connector

156

6.3 Firefox Component Security
Firefox is an open source web browser first released in November 2004.

Its development started in 2002, shortly after the first official release of the

Mozilla Application Suite, which had been under development since 1998. Firefox

is a simplified version of the browser from the suite, but its enormous success has

made it to replace the application suite as the main product produced from the

Mozilla organization.

Firefox is a very large open source project. The source code consists of

about 10 thousand C/C++/JavaScript files. The files include about 5 million lines

of code. This section demonstrates how our approach can be applied to model the

component security architecture of this very complex, componentized and

networked software system.

6.3.1 Firefox Architecture

Figure 6-11, Firefox Architecture, from [88]

Figure 6-11, from [88], gives a high-level picture of the Firefox architecture.

This diagram is only one possible representation of the complex internal

157

interactions, and it is highly simplified. As can be seen from this architectural

overview, the browser has two major halves: the front end on the right and the

back end on the left. The front end handles presentation of the visible content

loaded from the Internet and interacts with the user through events. The back

end deals with the underlying services, such as reading files and storing user

privacy information.

Roughly speaking, the component security architecture modeled in this

section handles how to prevent the front end, which originates from Internet

sources that are not necessarily trustworthy, from unduly accessing the back end,

where important user information is kept. The problem here is an architectural

access control problem, and our approach can be used to model how the Firefox

solution works. The component security architecture touches the constituent

blocks in the above diagram that are marked with stars: DOM, Frames, URL,

JavaScript, XPConnect, XPCOM, Security, and Components.

The Firefox security architecture contains another part, the Public Key

Infrastructure (PKI) support. This case study chooses not to model that part,

since the part mostly handles cryptography and digital certificates. Firefox also

suffers from usual buffer overrun vulnerabilities. Most of these vulnerabilities

come from the mail handler and the image processing component. Such

vulnerabilities are not modeled by this case study, either.

In the following subsections, we first present the platform technologies of

Firefox, and then we delineate the most important boundaries in browser security:

the boundary between the chrome and the content and the boundary between

contents from different origins. After that, we establish the principals as the

158

foundation of Firefox component security, and how they are represented in top

level containers and individual DOM nodes. Then we outline the security policies,

and inspect how they are enforced by the script security manager. We also brief

how security is handled in URI protocol handlers. Finally, we summarize the

modeling of architectural access control with our connector-centric approach,

and discuss some noteworthy issues.

6.3.2 Platform Technologies: XPCOM, JavaScript, and XPConnect
Firefox/Mozilla intends to be not just an application but also a

development platform on which more third-party applications can be built. There

are three core architectural technologies for this platform [52]: XPCOM,

JavaScript, and XPConnect.

XPCOM is a cross platform component model. It maintains binary

compatibility with the Microsoft COM component model, but is portable across

different operating systems. Major functional components of Firefox, such as

networking and layout, are built with this model. Each component has a

component type. A component type’s interfaces are described by a cross platform

interface definition language, XPIDL. Each component should only be accessed

by other components through these well defined interfaces. Many component

types have only one instance, and this instance is running as a service in the

platform. Other components can request a service to perform actions.

JavaScript [39] has long been used by web developers for authoring

dynamic web pages. Firefox uses JavaScript extensively in programming different

functionalities of the browser, especially the user interface elements, such as

dialogs and drag-n-drop handling. Third party extensions for Firefox are also

159

mostly developed in JavaScript. Unlike Java, the language definition of

JavaScript does not specify how security should be handled, so the security

features implemented in Firefox must balance how various language features

interact with security requirements.

XPConnect provides bidirectional communication capabilities between

XPCOM and JavaScript. It allows a component built by XPCOM, the native

component, to be accessed as a JavaScript object. It also permits a JavaScript

object to be accessed by a native XPCOM component as an ordinary XPCOM

component. As we shall see, this is the architectural connector where security

check is conducted.

6.3.3 Trust Boundary between Chrome and Content
When a user uses the Firefox browser to browse the web, the visible

window contains two areas. The chrome, which consists of decorations of the

browser window, such as the menu bar, the status bar, and the dialogs, are

controlled by the browser. The browser needs to perform arbitrary actions to

accomplish the intended task, and it is also trusted to perform such actions.

Borrowing the chrome term that originally refers to the user interface elements,

the browser’s code is called the chrome code. Such code can perform arbitrary

actions. Any installed third party extensions also become chrome code.

The other area, the content area, is contained within the browser chrome.

The content area contains content coming from different sources that are not

necessarily trustworthy. Some contents contain active code that leads to

executing JavaScript scripts. Such content code should not be allowed to

perform arbitrary actions unconditionally and must be confined accordingly.

160

Otherwise they could abuse the unlimited privileges to damage users. This

boundary between the chrome code and the content code is the most important

trust boundary in Firefox.

Because of the architectural choice of using XPCOM, JavaScript, and

XPConnect to develop the Firefox browser and extensions, both chrome code and

content code written in JavaScript can use XPConnect to access interfaces of

XPCOM components that interact with the underlying operating system services.

The XPCOM components are represented as the global Components collection

in JavaScript. This access process is the architectural access control process

discussed in Section 3.1. XPConnect, as the connector between the possibly

untrustworthy accessing code and the accessed XPCOM components, should

protect the XPCOM interfaces and decide whether the access should be permitted.

6.3.4 Trust Boundary between Contents from Different Origins
Another trust boundary is between contents coming from different origins.

The origin of content is defined by the protocol, the host name, and the port used

to retrieve the content. Contents differ in either the protocol, the host name, or

even the port would be considered of different origins. Users generally browse

many different sites, and any page can contain contents from different origins.

The content coming from one origin should only be able to read or write content

coming from the same origin. This is called the same-origin policy. Otherwise, a

malicious page from one origin could use this cross domain access to retrieve or

modify sensitive information for another origin, such as the password that the

user uses for authentication with the other origin. This process is another

architectural access control process, where interfaces of one content component

161

from one origin should not be unduly accessed by another content component

from another origin.

The trust boundary between the chrome code and the content code and the

trust boundary between the content code and contents of different origins are the

main trust boundaries maintained by the Firefox browser. Such boundaries can

be loosened by users. Users can grant the UniversalXPConnect privilege to

signed content code, essentially giving such content code full privileges as chrome

code. User can also fine tune what accesses content code from different origins

can have on different interfaces of XPCOM components.

6.3.5 Principals
Since the JavaScript language does not specify how security should be

handled, the Firefox JavaScript implementation defines a principal-based

security infrastructure to support enforcing the trust boundaries. There are two

types of principals. When a script is accessing an object, the executing script has a

subject principal, and the object being accessed has an object principal.

Firefox uses principals to identify code and content coming from different

origins. Each unique origin is represented by a unique principal. The principal in

Firefox corresponds to the Subject construct in Secure xADL (Section 3.1.1), and

such Subjects are used to regulate in architectural access control, as will be

discussed in Section 6.3.8.

There is one special subject principal, the system principal. All chrome

code components and resources are identified by the system principal. A special

case of the system principal is the null principal, where a principal cannot be

found. This null principal is treated as equivalent of the system principal. Code

162

executing under the system principal, i.e. chrome code, can perform arbitrary

actions.

6.3.6 Container: Document and Window
When a user browses the web, generally the Firefox browser loads each

HTML document into a window. This document/window pair performs a very

important role in executing content JavaScript code. The JavaScript language

definition defines an execution context that specifies the semantics of

executing JavaScript programs. Firefox’s implementation of this context is called

JSContext. Among other things, the context maintains a run-time stack for

executing JavaScript functions. The role of this stack will be discussed in Section

6.3.8. An execution context maintains a scope chain for each object. This scope

chain decides how identifiers referenced through the object are resolved. At the

end of the scope chain is the global object, where predefined types in the

JavaScript language, such as Object and Date, are defined, and thus all references

to Object and Date will be eventually resolved by the global object. In the Firefox

JavaScript definition, both the execution context and the global object are

attached to the document/window pair.

The document in the window is also the ultimate source of the security

credentials for the loaded content. In the principal-based security infrastructure

of Firefox, the document (thus the window) maintains a principal that is

constructed based on the origin URI of the document.

A special type of window is the frame window, when an HTML document

uses a frame set to include a set of frames, and each frame window can contain an

HTML document that comes from a different origin. A frame window, even

163

contained within another window, has its own principal that is based on the

origin of the document that it contains. This principal may be different than the

principal of the top level window. A frame window can further contain its own

frame sets, so the frames within a top level window form a containment hierarchy.

6.3.7 DOM Node
When a browser loads an HTML document and presents it in a window, it

creates a document object model (DOM) tree internally. Each element contained

within the HTML document is represented by a node. JavaScript scripts

contained within these documents manipulate the nodes to achieve their

purposes. Some other functionalities of the browser, such as the navigation

history and the top level window, are also represented as DOM nodes, so the

JavaScript code can uniformly manipulate them. Specially, the underlying native

XPCOM components of Firefox are represented as the global Components

JavaScript collection. Writing to one property of one node could result in

significant changes. For example, changing the location property of a window

object to a new URI will instruct the window to load a new document from the

URI into that window, and manipulating through Components is actually

operating on the underlying operating system services.

From a security viewpoint, each node has a principal that identifies the

origin of the node. If the principal is not explicitly specified for a node, then the

node will inherit the principal from the top level container.

Each DOM node belongs to a class. For example, all nodes created for

HTML form elements belong to the Form class. The classes of DOM nodes can be

used to fine tune the same origin policy. Firefox allows user to define whether

164

scripts from an origin can set or read different properties of various classes of

DOM nodes.

Each class has a DOMClassInfo that represents relevant information for

accessing the properties of the nodes. For example, since changing the location

property of document and window nodes results in navigating to a different place,

the DOMClassInfo for the Window and Document classes advertise that these

changes should be checked for security. DOMClassInfo provides a general

mechanism that architectural components can present their security

requirements. It is similar to the secure bricks of the c2.fw.secure framework

defined in Section 5.4.2, where the existence of a secure brick can be used to

trigger the decision on whether a security check is needed (Section 5.4.7).

6.3.8 Enforcing Security: Security Manager
To ensure the proper trust boundaries in the architectural access control

operations, the XPConnect architectural connector uses a security manager to

control both the access between content code and chrome code and the access

between content code of one origin and content nodes of other origins. In this

subsection we first investigate how the security manager discovers relevant

principals, and then discuss how the security manager controls different types of

architectural operations: access of DOM properties and functions, instantiation

through creation, and instantiation through loadURI.

Discover Object Principals and Subject Principals. Each JavaScript

object in Firefox is associated with an object principal that specifies the creator of

the object. Each top level window has a principal, which is created based on the

URI that is used to load the document and create the top level window. Each

165

DOM node contained within the window can also be tagged with a principal. If

the node does not have an explicit principal, then it will inherit the principal of its

container. For most nodes this will be the principal of the top level window. For

nodes contained within a frame window, this principal is the principal that is

associated with the frame window. The node’s principal is the object principal

that is used when the properties of this node are read or written.

One special type of object principal, the principal associated with a

function object, is the subject principal that designates the subject executing the

function. To find the subject principal at run-time, the security manager inspects

the run-time stack of the JSContext, and uses the principal from the inner most

stack frame. If a principal cannot be found at the inner most stack frame, then

the search follows the stack frame chain to find the outer calling frames. Since the

stack frame chain of a JSContext always ends up with the principal of the global

object, in most cases this principal, associated with the document/window pair, is

the subject principal of the executing code. If this principal is the system

principal, then the code is assumed to be chrome code. If no such principal can be

found, it is assumed that the chrome code, possibly native C++ components, is

executing and has not set up a principal yet.

DOM Access. When some code tries to read a property of a DOM node,

write a property of a DOM node, or call a function of a DOM node, the security

manager discovers both the object principal and the subject principal and decides

whether the access should be granted. Because of the integration supported by

XPConnect, the accessing components could be actually either JavaScript or C++,

166

and the accessed component could be either simple DOM node or wrappers of

native XPCOM services.

If the subject principal is either a system principal or an equivalent null

principal, then the security manager allows the DOM access. If the subject

principal is a regular principal, and this principal is granted the

UniversalXPConnect privilege, then the access is also granted. Otherwise, the

security manager inspects the object principal, and only grants the access if both

the subject principal and the object principal are the same. Since a regular

principal differs from the system principal and regular principals for different

origins differ from each other, the security manager uses the principal

infrastructure to effectively enforce both the trust boundary between chrome

code and content code and the trust boundary between contents of different

origins.

Instantiation by Creation. To further protect accessing XPCOM native

components, the security manager also checks the following types of access

attempted by a JavaScript script: when the script tries to get a service, when the

script tries to create an instance of a XPCOM component type, and when the

script tries to create a wrapper to such an instance. The operations of getting a

service, creating an instance, and creating a wrapper are all architectural

instantiation operations (Section 4.4.1), and the security manager decides

whether the attempted architectural components should be created for the

running architecture so the JavaScript script can accomplish its intended tasks.

The security manager inspects the subject principal of the script to decide

whether the attempted instantiations should be permitted. Chrome components

167

that execute as the system principal are always allowed. Content components

signed by digital certificates are also granted such permissions if the user

approves the signed scripts and grant the UniversalXPConnect privilege to

the specific regular principal.

Instantiation by LoadURI. Before a window can load the content from

one URI, a security check is performed by the security manager on whether such

loading is allowed, based on the target URI and the loader’s URI. Because of the

open nature of Web, generally any loading should be permitted. Specially,

loading a URI of one scheme within a window that is originally loaded from the

same scheme is always allowed by the security manager. However, loading from

different schemes might be limited or rejected depending on the schemes and the

loading situation. For example, a web page loaded through an http URI cannot

load a pop3 or imap URI, because the pop3 or imap URI could encode deleting a

folder and blindly loading them would damage users.

This check on loading URI is used in many places in the browser. Part of

the Firefox browser is written directly in JavaScript, contained in the browser.js

file. The file has three types of security checks: checking whether a URI can be

loaded when loading an image, checking whether a dialog can load a URI, and

check whether a URI can be loaded when it is dropped onto the browser. The

JavaScript code in browser.js uses XPConnect to get the security manager, and

consults it to see whether the URI can be loaded.

From an architectural access control viewpoint, loadURI is similar to the

architectural instantiation operation discussed in Section 4.4.1. When such a URI

is permitted to load, Firefox essentially create a new component with a new

168

principal and a new JavaScript execution context in the existing architecture. The

security manager of the XPConnect connector decides whether such

architecturally important operations should be allowed.

A special type of LoadURI occurs when loading documents in frames.

Each document, whether is contained directly in a top-level window or contained

in a frame window, is contained in a DocShell. The DocShell has methods

that check whether it can load a URI or a set of URIs in a frame set. Because of

historical reasons, the script within one frame can get a reference to another

frame that is contained under the same root DocShell. The security manager

monitors this reference to prevent possible exploits. For example, when the script

within Frame A tries to load contents into Frame B using the reference, the

principal of Frame A must be the same as that of Frame B, or be the same as the

principal of any of the ancestors of Frame B in the frame containment hierarchy.

This policy is different than the typical loading policy, where generally a source

can load any target. It resembles the same origin policy used with DOM access.

6.3.9 Transport: URI, Channel, Protocol Handler
One service of the Firefox browser, the IO service, manages the network

transportation of retrieving content from the Internet. When given an URI, the

IO service analyzes the URI, uses the scheme to locate a protocol handler that can

handle the URI, and asks the protocol handler to create a channel for the URI.

The IO service then uses the channel to finish loading the content.

There are many types of protocol handlers. Besides the most obvious ones,

such as protocol handlers for http, https, and ftp, Firefox also uses other types of

pseudo handlers to accomplish other tasks. For example, there are a “view-

169

source” protocol to view the source of a loaded HTML document and a “wyciwyg”

protocol (“what you cache is what you get”) to retrieve the cached copy of a

rendered content.

From the security viewpoint, there are two interesting types of pseudo

protocol handlers. One type is the “about” protocol. An “about:config” URI allows

a user to change the configuration of Firefox, and an “about:credits” URI lists the

contributors to the open source project. When a window is first initialized, it

generally has the “about:blank” URI, which maintains no special privileges. The

different about URIs are handled by different about protocol modules. Each

module redirects the about URI to a real URI. For example, the “about:config”

URI is redirected to a chrome page where user can use the chrome code to change

the configurations of the browser. Some of the redirections lead to chrome pages,

but the corresponding about module drops the chrome privilege by setting the

owner of the about channel to the principal based on the URI redirected to, so

future content loaded in the same window will not accidentally obtain

unnecessary privileges.

Another interesting protocol handler handles the “javascript” pseudo

protocol. In such a URI, the scheme is followed by a JavaScript snippet. When a

javascript URI is loaded (or navigated to), instead of retrieving some regular

contents, the JSProtocolHandler creates a JSChanenl, and the JSChannel

uses a JSThunk to actually evaluate the script specified in the URL. So, if a URI

supplied by content is used by the chrome code and the chrome code blindly

loads the URI without first checking whether such a URI is a javascript URI, then

a malicious hacker can supply a javascript URI and the JavaScript will be loaded

170

and thus executed by the chrome code, with full chrome privileges. This is the

reason for vulnerabilities reported in [45].

6.3.10 XPConnect as the Architectural Connector
As have been seen, XPConnect is an architectural connector in Firefox,

and the security manager coordinates critical architectural operations: it

regulates the access by scripts running as one principal to objects owned by

another principal (if the subject principal is not the system principal, then both

principals should be the same for the access to be allowed), it decides whether a

native service can be created, obtained, and wrapped (one type of architectural

instantiation operation), and it also arbitrates whether a URI can be loaded by in

a window (another type of architectural instantiation operation).

The Firefox trust boundary policies can be specified using Secure xADL as

in Figure 6-12. Each component has a subject, which is decided by the origin URI

of the component. Each component also has a principal (the Secure xADL

principal) to specify its role. There are two basic roles, the chrome role and the

content role. The first policy specifies that a component executing as the chrome

subject and the chrome role can perform any actions over any resources. The

second policy specifies that a component executing as the content role can only

access components of the same subject, which are components from the same

URI. The policy also specifies that signed content components, executing under a

signed content subject, can be granted the chrome role. This is a type of Role-

Based Access Control policy (Section 4.1.2), where a role can be played by

different subjects. In Firefox both chrome components and signed content

components can act as the chrome role.

171

<component id="ChromeCode">
 <security>
 <subject>ChromeCode</subject>
 <principal>Chrome</principal>
<component id="ContentCode">
 <security>
 <subject>URI</subject>
 <principal>Content</principal>
<component id="SignedContentCode">
 <security>
 <subject>SignedURI</subject>
 <principal>Chrome</principal>
<connector id="XPConnectSecurityManager"
 xsi:type="SecureConnector">
 <security>
 <policies>
 <PolicySet PolicySetId="PPS:Chrome"
 PolicyCombiningAlgId="permit-overrides">
 <Policy RuleCombiningAlgId="permit-overrides">
 <Rule Effect="Permit">
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>ChromeCode
 <AttributeDesignator>subject-id
 <Subject>
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>SignedURI
 <AttributeDesignator>subject-id
 <AnyResource />
 <AnyAction />
 <PolicySet PolicySetId="PPS:Content"
 PolicyCombiningAlgId="deny-overrides">
 <Policy RuleCombiningAlgId="deny-overrides">
 <Rule Effect="Permit">
 <SubjectMatch MatchId="string-equal">
 <AttributeValue>URI
 <AttributeDesignator>subject-id
 <ResourceMatch MatchId="string-equal">
 <AttributeValue>URI
 <AttributeDesignator>resource-id
 <ActionMatch MatchId="string-equal">
 <AttributeValue>AccessDOM
 <AttributeDesignator>action-id
 <Rule Effect="Deny">
</connector>

Figure 6-12, Firefox Security Policy

172

Using our connector-centric approach, the Firefox component security

architecture can be described with the architectural description shown in Figure

6-13. Interfaces of the native XPCOM components, executing with the chrome

role, are accessible from other chrome components but should be protected from

other content components. The XPConnect connector maintains this boundary

between content code and chrome code. The content components from one origin,

including the containing window or frame and the DOM nodes contained within

them, form one sub-architecture (Section 3.4.3). Their interfaces can be

manipulated by chrome components, but should be protected from content

components from other origins. The XPConnect connector maintains this

boundary of same origin.

Figure 6-13, Firefox Component Security Architecture

The XPConnect connector, executing with the chrome role, connects

various components and coordinates accesses to protected sensitive interfaces

173

during normal operations. The XPConnect connector is a privilege retaining

connector, which prohibits content components escalate their privileges to obtain

the status of chrome components. XPConnect does not allow a connector

between content components coming from different origins, thus obeying the

same-origin policy. Our architectural access control check algorithm from Section

3.5 can show that ideally the XPConnect connector does not result in a privilege

escalation exploit, because content DOM node cannot access the protected

interfaces of XPCOM Components, but there exist paths from content code to the

native XPCOM components so the XPConnect connector should carefully

monitor the secure execution of content components [126].

XPConnect is a strategic place to improve the security for the overall

architecture that contains both the browser proper and the extensions. Since

Firefox serves as a platform on which many applications have been developed, it

is insufficient that the browser itself is secure. Any installed extension, which also

runs as chrome code, should also be secure. These extensions can use JavaScript

to access DOM supplied by untrustworthy content pages. If any of these

extensions is not scrupulous, then there could a vulnerability of privilege

escalation.

The XPConnect connector in Firefox 1.5 (released in November 2005)

provides a new regulation feature to improve the security of extensions [46]. The

extension can ask XPConnect for a XPCNativeWrapper that wraps a DOM node

supplied by content pages. The wrapper assures that the property access and

function access on standard DOM interfaces through these wrappers will go to

the standard implementations of these properties and functions supplied by

174

Firefox, and save the extensions from being tricked into using overridden

versions of the properties and functions supplied by content. The

XPCNativeWrapper also assures any properties returned form the wrapper is

also an XPCNativeWrapper, thus the developer can naturally use the properties

of DOM nodes without dangers of violating security.

This regulation feature has several advantages for security development: it

has fixed several existing potential vulnerabilities, simplifies development for

both Firefox and extensions so abiding code can benefit from the improved

connector security automatically, and also prevents those extensions that do not

safely manipulate the untrustworthy content from being exploited [151]. This

improved security demonstrates that having a secure connector to coordinate

secure collaborations and improving the connector could have positive impacts

on the overall security architecture of a complex and componentized software

system.

6.3.11 Discussions
The security manager of Firefox has substantially evolved since its

inception. By the time of the Mozilla 1.0 release the earliest code of the security

manager had almost completely been replaced. The content of the security

manager has changed, so is the way to use it by other components of the browser.

Along the evolution, the security manager has become the central place to make

security related decisions, and more types of security check have been

implemented within it. This requires the security manager to become more

independent of contexts and the invoker to supply sufficient security context

information.

175

We have modeled the component security architecture of the Firefox

browser using our connector-centric approach for architectural access control.

Our illustration shows that Firefox has a well-designed security architecture, and

our approach can model this architecture of such a complex software system.

During our modeling we have observed some issues that are worth

discussions.

Choice of Programming Language. The language used to develop

Firefox browser and extensions, JavaScript, is also the programming language

used by HTML pages to provide dynamic interactivity for the otherwise static

contents. Given that the same language is used by both the browser authors

(who are trusted) and webpage authors (who are not generally trusted by the

browser), and the connection capability to XPCOM-built components enabled by

XPConnect, it is critical to implement proper access control for downloaded

JavaScript code.

The JavaScript language has some special features that can be abused by

exploits. For example, the language allows the setter and getter functions of a

property of an object to be redefined. This feature is intended to support

redefinition of methods in objects that inherit other objects. However, if the

redefinition is done by the content code on properties of objects originally

provided by chrome code, such as those properties of the wrapped native XPCOM

components, then other unsuspicious chrome code, which intends to invoke the

original definitions, would accidentally use the content supplied code and give

these content code undue privileges. The language even allows overriding the

eval function, a function that executes any supplied string as JavaScript. These

176

overrides have caused the critical vulnerability discussed in [44]. Defining and

redefining interfaces on protected resources are security sensitive architectural

operations. The fixes for this vulnerability in the XPConnect connector forbids

such dangerous architectural operations by content code and finds the right

principals to execute content code.

JavaScript allows content code to specify timeout functions, where a

function is executed after a time delay. There is a possibility that the original

context used to specify the timeout function no longer exists when the timeout

occurs and thus the timeout function needs to be executed within a different

context. If the new context is a chrome context and it blindly executes the timeout

function that is originally supplied by a content context, then an undue escalation

of privilege incurs. Thus the timeout function must be associated with the

principal from which the function comes from, and only executes as such

principals even in a different context. Similarly, event handlers should also be

supplied with principals.

The Firefox JavaScript implementation supports pre-compilation of

JavaScript programs. When an event handler is loaded, the JavaScript

implementation could compile it with a principal associated with the handler

function. When the event handler is later executed, the security manage should

use the executing principal, instead of the precompiled principal, in deciding

whether an access should be allowed. Otherwise, an undue access could be

permitted.

Security Manager’s Dependence on JavaScript. The current

security manager is deeply dependent on the JavaScript language definition and

177

its implementation in Firefox. There has been ongoing development work to use

the Python scripting language to develop Firefox applications. Since the

underlying XPCOM platform is independent of scripting languages, it is possible

to factor out the security manager so that it can serve security needs of multiple

scripting languages.

Protocol Handlers. Currently the security manager has directly made

many decisions based on protocols when deciding whether a URI should be

loaded or not. Another possibility regarding loading URI is to let the security

manager inquire each individual protocol handler so that the security manager

can become protocol independent, and the different policy choices can be

centralized for ease of management.

Another issue with protocol handlers is that Firefox treats javascript as a

pseudo protocol and a JavaScript snippet can be supplied where a URI is needed.

While such treatment has long been an industry standard, from a security

viewpoint a JavaScript URI is conceptually different than a normal http URI. The

former results in code execution, and the execution context is determined by the

loader of the URI. The latter mostly loads a passive resource, possibly will not

execute any code, and the security of the http URI can be decided by simply

inspecting its origin. A more prudent inspection of the javascript URI is possibly

necessary.

Principals. Firefox uses principal as the basis for maintaining secure

executions of JavaScript. A JavaScript script, either coming as a javascript

pseudo URI, or as the script element of an HTML document, is associated with

the principal of the containing document. However, when the script is executed,

178

through loading the URI, executing a timeout function, or even retrieving a

cached copy, the executor might be of a different principal, and blindly executing

the script in this new principal could result in security breach. It is vital to track

the principals of the JavaScript components, ideally through all traveling paths of

these components within the browser. Such principal closure tracking feature

was implemented in the classic Netscape browser, but it is missing in the current

Firefox browser [35].

6.4 DCOM
DCOM, the Distributed Component Object Model, was the prominent

object middleware for Microsoft during the 1990s. It keeps playing an important

role in current Windows operating systems. In this section we show how our

approach can model the security architecture of this middleware technology. This

modeling demonstrates that our approach can be applied to a networked

software environment.

6.4.1 DCOM Architecture
DCOM was developed to extend the object-oriented programming model

of the Component Object Model (COM) to a distributed environment. The three

core concepts of classic COM are [34]: interface, class, and component. An

interface is a set of functions. Each interface is designated by a Global Unique

Identifier (GUID). An interface is immutable after its publication. A class

implements a set of interfaces. It is also designated by a Global Unique Identifier.

A component is an instance of a class. When a client needs services from a

component, it gets a reference to the component, in the form of an interface

pointer, through either instantiating a new instance or getting a reference for a

179

running instance. The client can inquire a component whether it supports a

specific interface. COM uses a source interface as a reverse communication

channel from components to clients. A source interface is declared in the

component, but is implemented by the client. When a component processes a call

from a client, it can invoke functions in the source interface and call back to the

client.

Figure 6-14, DCOM Architecture

Figure 6-14 depicts the underlying architecture for this distributed

programming model [63]. The client first tries to get a reference for a component

on the remote server side. Part of the DCOM infrastructure on the client machine,

the service control manager (SCM), contacts its counterpart on the server side.

The server SCM checks whether a satisfactory component is already running. If

not, the server SCM launches a requested component. Otherwise, the server

SCM just creates a reference for the running component and returns the

reference to the client (activates the component for the client). The reference

180

actually consists of a pair of a stub and a proxy. The stub is on the server side, and

the proxy is on the client side. The stub and proxy handle communication details,

such as marling and unmarshaling. Once the client gets the reference back, it can

use the reference to access the functionalities provided by the component.

The protocol utilized by DCOM is called Object Remote Procedure Call

(ORPC). It is an object-oriented extension to the Distributed Computing

Environment Remote Procedure Call (DCE RPC) protocol. DCE RPC can run on

top of different types of network protocol stacks. Various protocols have different

security implications.

Another constituent of the DCOM architecture is the security provider.

DCOM, like many other types of Windows components, supports a provider

interface so different types of security providers can be used to supply various

levels of security for DCOM clients and components.

6.4.2 Anonymous, Local, Remote, Activate, Launch, and Access
The security services provided by DCOM for clients and components

consist of authentication and authorization. There are different levels of

authentication, such as no authentication at all, authentication when a

connection begins, and authentication for each method invocation. Both the

client and the server can specify the intended authentication level, and DCOM

assures that the higher authentication level is used, thus a client and a server can

be assured that they get the authentication level they need. This is a case where

the DCOM connector performs the security coordination between two

architectural components.

181

The authentication information is used to determine whether an

architectural operation request should be granted. As discussed in the last

subsection, a client would ask for permissions on launch, activation, and access.

Generally, at run-time a component has the final decision on whether a request

for an architectural operation from the client should be granted. However,

several other authorities are also involved in the decision making process: the

computer can have a computer wide policy for components that do not explicitly

specify their security requirements, and a component can specify its

requirements statically through registry settings. Thee parties can be viewed as

the different contexts discussed in Section 3.4: component registry settings as the

type context (Section 3.4.2) and machine wide settings as the sub-

architecture/container context (Section 3.4.3).

The decision on launch and activation cannot be programmatically

determined by the component, since launching and activating components are

executed before a component can even get the chance to make any decisions at

run-time. Thus, a component can specify its safeguards on launch and activation

statically through configuring Windows registry, and DCOM uses the settings to

guard launch and activation. Properly enforcing launching and activating

permissions is critical in defending against denial-of-service attacks.

One special type of authentication is anonymous, where a client does not

reveal its identity to the server. It is desirable when a client wants to preserve its

privacy, and it is also necessary sometimes if the component needs to call back to

the originating client through a source interface.

182

Figure 6-15, DCOM Authentication and Authorization

The standard DCOM connector that performs authentication and

authorization between a client and a component, possibly also supports callbacks,

is depicted in Figure 6-15. The top links depict the normal invocation, and the

bottom links show the call backs from the component to the client.

This architecture is not without its problems, though. The MSBlast worm

[96] exploited a buffer overrun vulnerability in DCOM through anonymous

authentication and has caused devastating damages. To reduce such risks,

Microsoft has made several architectural security improvements for DCOM in

Service Pack 2 for Widows XP and Service Pack 1 for Windows Server 2003 [97].

Previously DCOM does not differentiate client requests coming from

different sources. The new architecture separates the local activation requests

from the remote ones. The former comes through Local Remote Procedure Call

(LRPC), a local communication facility used by the Windows kernel. The latter

comes through regular Object RPC (ORPC). Separating the local requests from

183

remote requests in DCOM can be viewed as introducing two different types of

DCOM connectors, as depicted in Figure 6-16. These connectors enable

supporting different security polices based on the origin of requests.

Figure 6-16, DCOM for XP SP2

Launch and activation through anonymous authentication from the

DCOM over ORPC connector is disabled by default in the new DCOM. Unless

administrators specifically permit anonymous authentication to support

functionalities like callbacks, a future worm cannot exploit this capability as it

would be able to.

The last improvement introduced in the new DCOM is about architectural

concept. Previously permissions on activation and access are combined together.

The new DCOM separates the activation permission from the access permission,

and groups the activation permission together with the launch permission. The

rationale is that both launch and activation involve acquiring an interface pointer

184

and thus belong together logically. Viewing from our approach, both launch and

activation are the architectural instantiation operations discussed in Section 4.4.1.

6.4.3 Impersonation and Delegation
When a component executes on behalf of a client, it can use the credentials

of the client to perform necessary actions. When the authentication level

negotiated between the client and the component through DCOM is

impersonation, the component can use the credentials to access resources on the

same machine as the component. When the authentication level is delegation,

then the component can use the credentials to access resources on other

computers through another DCOM interaction. In this delegation scenario, the

intermediate component acts as the client in the second DCOM interaction, as

depicted in Figure 6-17.

The client decides whether it trusts the intermediate to act as a delegate

for it. Essentially, it grants its role to the intermediate component, so the last

component can treat the intermediate as the original client. This can be viewed as

a role-based trust management policy (Section 4.2). The DCOM connectors

essentially propagate the privileges of the client to the last component through

the intermediate component. This propagation occurs when the client allows

delegation, the intermediate cloaks its own identity, and the underlying DCOM

network protocol provides sufficient support.

6.4.4 DCOM and Internet
DCOM was designed in the early 1990s. As the networked software

environment has greatly evolved ever since, some original decisions of DCOM has

made several architectural adaptations necessary.

185

Figure 6-17, DCOM with Delegation

DCOM is based on RPC. Like RPC, DCOM uses its own naming service.

The naming service listens on one port, and dynamically allocates new ports for

DCOM client/server interactions. This makes it harder to deploy DCOM through

firewalls by opening a fixed set of ports, even though DCOM can be configured to

use a limited range of ports.

To mitigate this problem, DCOM can be tunneled through HTTP, a

protocol that is mostly permitted by firewalls. This feature is named COM

Internet Services. The standard DCOM operates above TCP directly. Tunneling

DCOM traffic through HTTP allows it to travel through firewalls. Tunneling is a

useful technology to construct more complex connectors, where one connector,

DCOM, is embedded inside another connector, HTTP.

186

Tunneling DCOM actually uses RPC over HTTP [98], which tunnels

regular RPC traffic over HTTP to pass through firewalls. RPC over HTTP is

necessary because many Windows kernel services run as RPC services and these

services need to pass through firewalls. RPC over HTTP itself has also evolved to

improve security. The later version of RPC over HTTP supports SSL encryption

and mutual authentication, and disallows anonymous authentication, making the

connector more complex yet more secure.

Architecturally, the DCOM over HTTP can be individually disabled, and

the RPC over HTTP can also be turned off completely. In situations where these

services are not needed, disabling them can reduce attack surfaces exploitable by

malicious traffic.

The difficulty of DCOM with firewalls originates from the fact that DCOM

was originally designed as a middleware platform for a corporate environment,

which would be generally within a firewall. Because of this origin, some security

practioners argue to disable DCOM for home users, where the features provided

by DCOM are not generally used.

187

7 Conclusion

7.1 Summary
In this research, we have explored how to describe and enforce access

control at the software architecture level. We combine core concepts from both

software architecture and security into an integrated and coherent modeling

mechanism, develop an algorithm to check the validity of access control, and

implement an associated set of tools to design, analyze, and execute software

modeled with these concepts.

The central question that this research has been trying to answer is the

software architectural access control question: how can we describe

and check access control issues at the software architecture level?

Because the most basic elements of an access control scheme are subjects, objects,

and actions and the most basic elements of an architecture description language

are components and connectors, we combine them to find an answer to this

question.

We identify what objects and actions are to be protected. In an

architecture environment, the objects to be protected are the architectural

constituents, i.e., the components and connectors themselves. In a finer

granularity, the interfaces of components and connectors are the resources that

are protected by safeguards.

We associate components and connectors with subjects that these

components and connectors act for. These subjects represent the executing users,

and ultimately provide the privileges for accessing protected architectural

resources.

188

We have investigated several relationships involved in a software

architecture model and how these relationships affect access control decisions.

We call these relationships architectural contexts. A software component or

connector exists within the following contexts: the nearby architectural

constituents, the type of the constituent, the containing sub-architecture of the

constituent, and the global architecture. All these relationships can affect an

access control decision by supplying privileges and safeguards.

We have extended our base architecture description language, xADL, to

describe these concepts. We have also extended the eXtensible Access Control

Markup Language, XACML, to describe architectural access control policies.

These two extensible languages are combined into a secure software architecture

description language, Secure xADL. We have adopted these languages because

they are extensible, provide excellent tool support, and are flexible enough to be

adapted to suite our needs.

Based on these modeling concepts, we have developed an algorithm to

check whether an accessing interface possesses sufficient privileges to access

another protected interface on an architectural constituent. The algorithm can be

applied to interfaces not directly connected together, and to interfaces that do not

even reside within the same level of an architecture structure.

This is the most basic architectural control scheme. It establishes using

constituents’ subjects to obtain access on these constituents within architectural

contexts. We have added more expressive extensions to this basic scheme.

Firstly, we have explored how the role-based access control model can be

utilized to handle larger scale access control. Roles essentially provide an extra

189

level of indirection between actions and subjects. Subjects can take different roles,

in the form of principals. Each role gives the subject additional capabilities for

performing actions.

Secondly, we have employed the trust management model to deal with the

heterogeneous nature of decentralized software systems. In a modern software

system, the components frequently operate in heterogeneous administrative

domains and do not always fully trust each other. Trust management systems are

introduced to authorize different users in a distributed environment, and to

model the interoperation and delegation relationship among heterogeneous

components. We have explored how each component can express its preference

of protection, and how it will trust foreign components as components

performing roles locally defined in its own domain.

Thirdly, we have extended interface-based access control into content-

based access control. When protected resources cannot be completely described

by interfaces, such as when sensitive messages are routed among generic

interfaces of connectors, we support inspecting the content passing through the

interfaces to accommodate finer access control.

Finally, we support executing run-time actions that are meaningful at the

architectural level. The two basic operations are instantiating components and

connectors and connecting components through connectors. Controlling

instantiation of the architectural constituents restricts what components and

connectors can be created, an essential architecture problem that has been

largely neglected by previous software security research. Regulating connection

of architectural constituents determines what connectors can be deployed and

190

what components can connect to them. For event-based architecture styles, we

have also identified external message routing and internal message routing as

important architectural operations.

Our approach to architectural access control is centered around

connectors. We believe connectors not only provide the essential glue to form an

architectural topology, but are also vital to answering the architectural access

control question: they propagate credentials for decision making, participate in

determining validity of architectural connections, and can route messages in

accordance with established policies.

We have extended our base architecture-based development environment,

ArchStudio, to support modeling and analyzing the access control issues of

software architectures. We have extended its editors to edit architecture policies

textually and graphically, and have developed analysis tools to check the validity

of a software architecture modeled using Secure xADL based on the formerly

mentioned algorithm.

We have also developed a framework that allows constructing software

architecture securely based on the C2 message passing style. This framework

provides new security capabilities to the existing c2.fw framework. A designer can

specify how security sensitive messages should be routed between participants

that are not fully mutually trustful. The secure connector ensures secure

delivering requests and notifications to proper receivers, subject to proper trust

verification and content inspection.

Our research hypotheses are that:

191

Hypothesis 1: An architectural connector may serve as a

suitable construct to model architectural access control.

Hypothesis 2: The connector-centric approach can be applied to

different types of componentized and networked software systems.

Hypothesis 3: With a Secure xADL description, the access

control check algorithm can check the suitability of accessing

interfaces.

Hypothesis 4: In an architecture style based on event routing

connectors, our approach can route events in accordance with the

secure delivery requirements.

To validate hypothesis 3, we have analyzed the algorithm by mapping it to

a well known graph reachability problem. A Secure xADL architecture description

is transformed into a graph, where the nodes stand for privileges and safeguards,

and the edges represent connections permitted by policies of connectors. We

have established that permitting an architectural access between a pair of

interfaces roughly equals to finding a path in the constructed graph, and thus any

standard solution to the reachability problem can be used.

To validate hypotheses 1, 2, and 4, we have applied our modeling concepts

and support tools to conduct four significant case studies. With the first case

study, development of a secure coalition application based on the c2.fw.secure

framework, we have demonstrated how our modeling mechanism and support

tools can be used to fully support describing and executing architectural access

control polices for instantiation, connection, external message routing, and

internal message routing.

192

In our second case study Impromptu, a secure file sharing application, we

have demonstrated how a networked software system can be built from third

party software components using our connector-centric approach. We have also

illustrated how a composite secure connector can be constructed from more

primitive connectors.

In our third case study, analyzing Firefox, we have demonstrated how a

major open source browser’s security model, which includes external components

installed or downloaded from other sources, can be modeled with our technique.

We have shown how the installed/downloaded components can perform their

tasks within the control of the containing browser and not interfere with each

other.

In our last case study, analyzing DCOM, we have demonstrated how

middleware can be modeled through our modeling technique. We illustrate the

delegation feature of the DCOM subsystem and discuss how proper launch and

activation are introduced to mitigate previous vulnerabilities.

In summary, we have proposed a connector-centric approach that helps

answer the architectural access control question, and developed support tools

and an execution framework for software architects to adopt the approach. We

believe our approach can advance the understanding of both software

architecture and access control technologies, and will empower software

developers to develop more secure software for complex, networked,

componentized systems.

193

7.2 Future work
We plan to further investigate our connector-centric approach in the

following areas.

7.2.1 Different Types of Connectors
In this research, our study has been mostly focused on procedure call-

based connectors and message passing connectors. There are other types of

connectors proposed in software architecture literature [95] such as blackboard

and database connectors. We will investigate how security is handled in these

types of connectors, and how these connectors can be architected to further

improve security.

7.2.2 Different Mechanisms to Construct Connectors
Connectors can be composed together to make more complex types of

connectors. We have proposed one method to conjuncture a sequence of

constituent connectors to obtain a composite connector. We plan to expand this

investigation to study other mechanisms for composing secure connectors.

7.2.3 Security as an Aspect
Functional software architecture, expressed as components and

connectors, forms a graph. The trust and access control relationships among

them, expressed and enforced through connectors, can be viewed as an overlay

network on top of this functional topology. We will investigate how this overlay

network interacts with the base network.

Aspect-Oriented Programming [76] has been proposed as an effective

means to address cross-cutting concerns. Access control can be viewed as one

such concern. We plan to explore how access control can be expressed as a

194

concern at the architecture level and how to apply AOP techniques to enhance

our framework, especially how to construct composite connectors from primitive

connectors.

7.2.4 Reflective Architectural Model
When a system maintains an architectural model of itself at run-time, it

has a reflective architectural model. A reflective model enables a component and

a connector to query, and possibly change its architectural context. A reflective

architectural model gives components and connectors, at run-time, additional

information to make security-related decisions based on different types of

contexts. This enables flexibility in decision making and enforcement. In the

meantime, it also creates security issues, since such a model must be properly

protected to ensure that no unauthorized retrieval or modification of that model

happens. We intend to incorporate a reflective architectural model and study how

it facilitates security modeling and enforcement, and how it might enable

applying the algorithm in Section 3.5 at run-time.

Reflective operations generally consume more resources than their non-

reflective counterparts. Such potentially expensive operations should be

monitored to counter denial-of-service attacks. These attacks, along with other

types of attacks, can possibly be detected by a reflection-based intrusion

detection system. The interaction between resource management and security is

another future research area.

7.2.5 Dynamic Architecture
Components and connectors should have an interface that allow their

policies to be changed at run-time, so they can execute new, possibly more secure

195

policies, without a costly shutdown and reboot. Similarly, they can acquire new

subjects or role principals, and thus enable for themselves more access.

Supporting dynamism provides flexibility necessary for changing and evolving

environments. We plan to extend our existing support for architecture dynamism

to handle security dynamism as well.

7.2.6 Policy Conflict Resolution
Our algorithm currently gives only an answer of grant or denial. It does

not identify whether there is any conflict in the policies retrieved from different

contexts, and it does not provide assistance in identifying the source of a grant or

denial decision. We plan to investigate work on policy conflict resolution [8] and

policy change impact [38] to enhance the algorithm.

196

Bibliography
[1] Abadi, M. and Lamport, L., Composing Specifications, ACM Transactions

on Programming Languages & Systems, 15(1): pp. 73-132, 1993.
[2] Allen, R. and Garlan, D., A Formal Basis for Architectural Connection,

ACM Transactions on Software Engineering and Methodology, 6(3): pp.
213-249, 1997.

[3] Alpern, B. and Schneider, F.B., Defining Liveness, Information Processing
Letters, 21(4): pp. 181-5, 1985.

[4] Anderson, J.P., Computer Security Technology Planning Study,ESD-TR-
73-51[NTIS AD-758 206], ESD/AFSC, Hanscom AFB: Bedford, MA, 1972.

[5] ANSI, Role Based Access Control,ANSI INCITS 359-2004, 2004.
[6] Bell, D.E. and LaPadula, L., Secure Computer System: Unified Exposition

and Multics Interpretation,ESD-TR-75-306, ESD/AFSC, Hanscom AFB:
Bedford, MA, 1975.

[7] Bellovin, S.M., Security Problems in the Tcp/Ip Protocol Suite, ACM
SIGCOMM Computer Communication Review, 19(2): pp. 32-48, 1989.

[8] Benferhat, S. and Rania. A Stratification-Based Approach for Handling
Conflicts in Access Control, in Proceedings of the 8th ACM Symposium on
Access Control Models and Technologies, pp.189-195, 2003.

[9] Berghel, H., The Code Red Worm, Communications of the ACM, 44(12):
pp. 15-19, 2001.

[10] Biba, K., Integrity Considerations for Secure Computer Systems,ESD-TR-
76-372, ESD/AFSC, Hanscom AFB: Bedford, MA, 1977.

[11] Bidan, C. and Issarny, V. A Configuration-Based Environment for
Dealing with Multiple Security Policies in Open Distributed Systems, in
Proceedings of the 2nd European Research Seminar on Advances in
Distributed Systems, pp.240-245, 1997.

[12] Bidan, C. and Issarny, V. Security Benefits from Software Architecture, in
Proceedings of the 2nd International Conference on Coordination
Languages and Models, pp.64-80, 1997.

[13] Bieber, P. Security Function Interactions, in Proceedings of the 12th IEEE
Computer Security Foundations Workshop, pp.151-160, 1999.

[14] Bishop, M., Computer Security: Art and Science, Addison-Wesley, 2003.
[15] Blaze, M., Feigenbaum, J., and Keromytis, A.D. Keynote: Trust

Management for Public-Key Infrastructures, in Proceedings of the 6th
International Workshop on Security Protocols, pp.59-63, 1998.

[16] Blaze, M., Feigenbaum, J., and Lacy, J. Decentralized Trust Management,
in Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pp.164-173, 1996.

[17] Blaze, M., Ioannidis, J., and Keromytis, A.D. Experience with the Keynote
Trust Management System: Applications and Future Directions, in
Proceedings of the 1st International Conference on Trust Management,
pp.284-300, 2003.

[18] Bodoff, S., Armstrong, E., Ball, J., Carson, D., Evans, I., and Green, D., The
J2ee™ Tutorial, 2nd ed., Addison-Wesley Professional, 2004.

197

[19] Bonatti, P. and Sabrina, An Algebra for Composing Access Control
Policies, ACM Transactions on Information and System Security, 5(1): pp.
1-35, 2002.

[20] Brewer, D.F.C. and Nash, M.J. The Chinese Wall Security Policy, in
Proceedings of the 1989 IEEE Symposium on Security and Privacy,
pp.206-214, 1989.

[21] Burrows, M., Abadi, A., and Needham, R., A Logic of Authentication, ACM
Transactions on Computer Systems, 8(1): pp. 18-36, 1990.

[22] Caplan, K. and Sanders, J.L., Building an International Security Standard,
IT Professional, 1(2): pp. 29-34, 1999.

[23] Clark, D.D. and Wilson, D.R. A Comparison of Commercial and Military
Computer Security Policies, in Proceedings of the 1987 IEEE Symposium
on Security and Privacy, pp.184-94, 1987.

[24] Clemm, G., Reschke, J., Sedlar, E., and Whitehead, J., Web Distributed
Authoring and Versioning (Webdav) Access Control Protocol, RFC 3744,
2004.

[25] Coppersmith, D., The Data Encryption Standard (Des) and Its Strength
against Attacks, IBM Journal of Research & Development, 38(3): pp. 243-
50, 1994.

[26] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., Introduction to
Algorithms, 2nd ed., MIT Press, 2001.

[27] Dashofy, E.M., Andr, Hoek, v.d., and Taylor, R.N., A Comprehensive
Approach for the Development of Modular Software Architecture
Description Languages, ACM Transactions on Software Engineering and
Methodology, 14(2): pp. 199-245, 2005.

[28] DeLine, R., Avoiding Packaging Mismatch with Flexible Packaging, IEEE
Transactions on Software Engineering, 27(2): pp. 124-143, 2001.

[29] Deng, Y., Wang, J., Tsai, J.J.P., and Beznosov, K., An Approach for
Modeling and Analysis of Security System Architectures, IEEE
Transactions on Knowledge and Data Engineering, 15(5): pp. 1099-1119,
2003.

[30] Denning, D.E., A Lattice Model of Secure Information Flow,
Communications of the ACM, 19(5): pp. 236-43, 1976.

[31] DePaula, R., Ding, X., Dourish, P., Nies, K., Pillet, B., Redmiles, D., Ren, J.,
Rode, J., and Filho, R.S., In the Eye of the Beholder: A Visualization-
Based Approach to Information System Security, International Journal of
Human-Computer Studies, 64(1-2): pp. 5-24, 2005.

[32] Dobson, J.E. and Randell, B. Building Reliable Secure Computing
Systems out of Unreliable Insecure Components, in Proceedings of the
17th Annual Computer Security Applications Conference, pp.164-173, 2001.

[33] Ducasse, S. and Richner, T. Executable Connectors: Towards Reusable
Design Elements, in Proceedings of the 6th European conference held
jointly with the 5th ACM SIGSOFT international symposium on
Foundations of software engineering, pp.483-499, 1997.

[34] Eddon, G.R. and Eddon, H., Inside Com+ Base Services, Microsoft Press,
1999.

198

[35] Eich, B., Fix All Non-Origin Url Load Processing to Track Origin Principals,
2005, https://bugzilla.mozilla.org/show_bug.cgi?id=293363#c10

[36] Feiertag, R., Redmond, T., and Rho, S. A Framework for Building
Composable Replaceable Security Services, in Proceedings of the DARPA
Information Survivability Conference & Exposition, pp.391-402 vol.2,
2000.

[37] Filho, R.S.S., Souza, C.R.B.d., and Redmiles, D.F. The Design of a
Configurable, Extensible and Dynamic Notification Service, in
Proceedings of the 2nd International Workshop on Distributed Event-
based Systems, pp.1-8, 2003.

[38] Fisler, K., Krishnamurthi, S., Meyerovich, L.A., and Tschantz, M.C.
Verification and Change-Impact Analysis of Access-Control Policies, in
Proceedings of the 27th international conference on Software engineering,
pp.196-205, 2005.

[39] Flanagan, D., Javascript: The Definitive Guide, 4th ed., O'Reilly, 2001.
[40] Focardi, R., Analysis and Automatic Detection of Information Flows in

Systems and Networks, Thesis, University of Bologna, Italy, 1998.
[41] Focardi, R. and Gorrieri, R., A Classification of Security Properties for

Process Algebras, Journal of Computer Security, 3(1): pp. 5-33, 1994.
[42] Focardi, R. and Gorrieri, R., The Compositional Security Checker: A Tool

for the Verification of Information Flow Security Properties, IEEE
Transactions on Software Engineering, 23(9): pp. 550-571, 1997.

[43] Focardi, R. and Gorrieri, R., Classification of Security Properties: (Part I:
Information Flow), in Foundations of Security Analysis and Design :
Tutorial Lectures, Lecture Notes in Computer Science Vol. 2171, pp. 331-
396, Springer-Verlag Heidelberg, 2001.

[44] Mozilla Foundation, Mozilla Bug 201132,
https://bugzilla.mozilla.org/show_bug.cgi?id=201132

[45] Mozilla Foundation, Mozilla Foundation Security Advisory 2005-37: Code
Execution through Javascript: Favicons,
http://www.mozilla.org/security/announce/mfsa2005-37.html

[46] Mozilla Foundation, Safely Accessing Content Dom from Chrome,
http://developer.mozilla.org/en/docs/Safely_accessing_content_DOM_f
rom_chrome

[47] Ghosh, A.K. and McGraw, G. An Approach for Certifying Security in
Software Components, in Proceedings of the 21st National Information
Systems Security Conference, 1998.

[48] Gilham, F., Riemenschneider, R.A., and Stavridou, V. Secure
Interoperation of Secure Distributed Databases: An Architecture
Verification Case Study, in Proceedings of the 1999 Wold Congress on
Formal Methods in the Development of Computing Systems, pp.701-717,
1999.

[49] Goguen, J.A. and Meseguer, J. Security Policies and Security Models, in
Proceedings of the 1982 IEEE Symposium on Security and Privacy, pp.11-
20, 1982.

199

http://www.mozilla.org/security/announce/mfsa2005-37.html
http://developer.mozilla.org/en/docs/Safely_accessing_content_DOM_from_chrome
http://developer.mozilla.org/en/docs/Safely_accessing_content_DOM_from_chrome

[50] Gong, L., Ellison, G., and Dageforde, M., Inside Java 2 Platform Security:
Architecture, Api Design, and Implementation, 2nd ed., Addison-Wesley,
2003.

[51] Hagstrom, A., Jajodia, S., Parisi-Presicce, F., and Wijesekera, D.
Revocations -a Classification, in Proceedings of the 14th IEEE Computer
Security Foundations Workshop, pp.44-58, 2001.

[52] Hallaraker, O. and Vigna, G. Detecting Malicious Javascript Code in
Mozilla, in Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computer Systems, pp.85-94, 2005.

[53] Halpern, J. and O'Neill, K. Secrecy in Multiagent Systems, in Proceedings
of the 15th IEEE Computer Security Foundations Workshop, pp.32-46,
2002.

[54] Halpern, J.Y. and Weissman, V. Using First-Order Logic to Reason About
Policies, in Proceedings of the 16th IEEE Computer Security Foundations
Workshop, pp.187-201, 2003.

[55] Harrison, M.A., Ruzzo, W.L., and Ullman, J.D., Protection in Operating
Systems, Communications of the ACM, 19(8): pp. 461-471, 1976.

[56] Heckman, M.R. and Levitt, K.N. Applying the Composition Principle to
Verify a Hierarchy of Security Servers, in Proceedings of the 31st Hawaii
International Conference on System Sciences, pp.338-347 vol.3, 1998.

[57] Hemenway, J.A. and Fellows, J. Applying the Abadi-Lamport
Composition Theorem in Real-World Secure System Integration
Environments, in Proceedings of the 10th Annual Computer Security
Applications Conference, pp.44-53, 1994.

[58] Hendrickson, S.A., Dashofy, E.M., and Taylor, R.N. An Approach for
Tracing and Understanding Asynchronous Architectures, in Proceedings
of the 18th IEEE International Conference on Automated Software
Engineering, 2003.

[59] Herrmann, P. Information Flow Analysis of Component-Structured
Applications, in Proceedings of the 17th Annual Computer Security
Applications Conference, pp.45-54, 2001.

[60] Herrmann, P. Formal Security Policy Verification of Distributed
Component-Structured Software, in Proceedings of the 23rd IFIP WG 6.1
International Conference on Formal Techniques for Networked and
Distributed Systems, pp.257-272, 2003.

[61] Hinton, H.M. Under-Specification, Composition and Emergent Properties,
in Proceedings of the 1997 New Security Paradigms Workshop, pp.83-93,
1997.

[62] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985.
[63] Horstmann, M. and Kirtland, M., Dcom Architecture, 1997,

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomarch.asp

[64] Humenn, P., The Formal Semantics of Xacml, Syracuse University, 2003.
[65] Inverardi, P. and Tivoli, M., Deadlock-Free Software Architectures for

Com/Dcom Applications, Journal of Systems and Software, 65(3): pp.
173-183, 2003.

200

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp

[66] Jaeger, T., Zhang, X., and Cacheda, F., Policy Management Using Access
Control Spaces, ACM Transactions on Information and System Security
6(3): pp. 327-364, 2003.

[67] Jim, T. Sd3: A Trust Management System with Certified Evaluation, in
Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pp.106-115, 2001.

[68] Johnson, D.M. and Thayer, F.J. Security and the Composition of
Machines, in Proceedings of the 1st IEEE Computer Security Foundations
Workshop, pp.72-89, 1988.

[69] Joshi, J.B.D., Bertino, E., and Ghafoor, A., An Analysis of Expressiveness
and Design Issues for the Generalized Temporal Role-Based Access
Control Model, IEEE Transactions on Dependable and Secure Computing,
2(2): pp. 157-175, 2005.

[70] Jürjens, J. Umlsec: Extending Uml for Secure Systems Development, in
Proceedings of the 5th International Conference on The Unified Modeling
Language, pp.412-425, 2002.

[71] Katara, M. and Katz, S. Architectural Views of Aspects, in Proceedings of
the 2nd international conference on Aspect-oriented software
development, pp.1-10, 2003.

[72] Khan, K., Han, J., and Zheng, Y. A Framework for an Active Interface to
Characterise Compositional Security Contracts of Software Components,
in Proceedings of the 2001 Australian Software Engineering Conference,
pp.117-126, 2001.

[73] Khan, K.M. and Han, J., Composing Security-Aware Software, IEEE
Software, 19(1): pp. 34-41, 2002.

[74] Khan, K.M. and Han, J. A Security Characterisation Framework for
Trustworthy Component Based Software Systems, in Proceedings of the
27th Annual International Computer Software and Applications
Conference, pp.164-169, 2003.

[75] Khan, K.M., Han, J., and Zheng, Y. Security Characterisation of Software
Components and Their Composition, in Proceedings of the 36th
International Conference on Technology of Object-Oriented Languages
and Systems, pp.240-249, 2000.

[76] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.M., and Irwin, J. Aspect-Oriented Programming, in Proceedings of the
11th European Conference on Object-Oriented Programming, pp.220-42,
1997.

[77] Lamport, L., The Temporal Logic of Actions, ACM Transactions on
Programming Languages and Systems, 16(3): pp. 872-923, 1994.

[78] Lampson, B.W., A Note on the Confinement Problem, Communications of
the ACM, 16(10): pp. 613-15, 1973.

[79] Lampson, B.W., Protection, ACM SIGOPS Operating Systems Review, 8(1):
pp. 18-24, 1974.

[80] Li, N., Grosof, B.N., and Feigenbaum, J., Delegation Logic: A Logic-Based
Approach to Distributed Authorization, ACM Transactions on
Information and System Security, 6(1): pp. 128-171, 2003.

201

[81] Li, N. and Mitchell, J.C. Rt: A Role-Based Trust-Managemant
Framework, in Proceedings of the DARPA Information Survivability
Conference & Exposition III, pp.201-212, 2003.

[82] Lodderstedt, T., Basin, D.A., J, and Doser, r. Secureuml: A Uml-Based
Modeling Language for Model-Driven Security, in Proceedings of the 5th
International Conference on The Unified Modeling Language, pp.426-441,
2002.

[83] Lopes, A., Wermelinger, M., and Fiadeiro, J.L., Higher-Order
Architectural Connectors, ACM Transactions on Software Engineering
and Methodology, 12(1): pp. 64-104, 2003.

[84] Magee, J. and Kramer, J. Dynamic Structure in Software Architectures, in
Proceedings of the 4th ACM SIGSOFT symposium on Foundations of
software engineering, pp.3-14, 1996.

[85] Mantel, H. On the Composition of Secure Systems, in Proceedings of the
2002 IEEE Symposium on Security and Privacy, pp.81-94, 2002.

[86] Marks, D.G., Sell, P.J., and Thuraisingham, B.M., Momt: A Multilevel
Object Modeling Technique for Designing Secure Database Applications,
Journal of Object-Oriented Programming, 9(4): pp. 22-9, 1996.

[87] McCullough, D. Noninterference and the Composability of Security
Properties, in Proceedings of the 1988 IEEE Symposium on Security and
Privacy, pp.177-186, 1988.

[88] McFarlane, N., Rapid Application Development with Mozilla, Prentice
Hall PTR, 2003.

[89] McLean, J. A General Theory of Composition for Trace Sets Closed under
Selective Interleaving Functions, in Proceedings of the 1994 IEEE
Symposium on Security and Privacy, pp.79-93, 1994.

[90] McLean, J., Security Models, in Encyclopedia of Software Engineering,
Vol., 1994.

[91] McLean, J., A General Theory of Composition for a Class of "Possibilistic"
Properties, IEEE Transactions on Software Engineering, 22(1): pp. 53-67,
1996.

[92] McLean, J. Twenty Years of Formal Methods, in Proceedings of the 1999
IEEE Symposium on Security and Privacy, pp.115-116, 1999.

[93] Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., and Robbins, J.E.,
Modeling Software Architectures in the Unified Modeling Language,
ACM Transactions on Software Engineering and Methodology, 11(1): pp.
2-57, 2002.

[94] Medvidovic, N. and Taylor, R.N., A Classification and Comparison
Framework for Software Architecture Description Languages, IEEE
Transactions on Software Engineering, 26(1): pp. 70-93, 2000.

[95] Mehta, N.R., Medvidovic, N., and Phadke, S. Towards a Taxonomy of
Software Connectors, in Proceedings of the 22nd International
Conference on Software Engineering, pp.178-187, 2000.

[96] Microsoft, Buffer Overrun in Rpc Interface Could Allow Code Execution,
http://www.microsoft.com/technet/security/Bulletin/MS03-026.mspx

[97] Microsoft, Dcom Security Enhancements in Windows Xp Service Pack 2
and Windows Server 2003 Service Pack 1,

202

http://www.microsoft.com/technet/security/Bulletin/MS03-026.mspx

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomarch.asp

[98] Microsoft, Using Http as an Rpc Transport,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/using_http_as_an_rpc_transport.asp

[99] Millen, J. 20 Years of Covert Channel Modeling and Analysis, in
Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp.113-
114, 1999.

[100] Milner, R., Communication and Concurrency, Prentice Hall, 1989.
[101] Minsky, N.H. Should Architectural Principles Be Enforced?, in

Proceedings of the Computer Security, Dependability and Assurance:
From Needs to Solutions, pp.89-102, 1998.

[102] Minsky, N.H. and Ungureanu, V. Unified Support for Heterogeneous
Security Policies in Distributed Systems, in Proceedings of the 7th
USENIX Security Symposium, pp.131-42, 1998.

[103] Moriconi, M., Qian, X., and Riemenschneider, R.A., Correct Architecture
Refinement, IEEE Transactions on Software Engineering, 21(4): pp. 356-
372, 1995.

[104] Moriconi, M., Qian, X., Riemenschneider, R.A., and Gong, L. Secure
Software Architectures, in Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pp.84-93, 1997.

[105] Myers, A.C. and Liskov, B., Protecting Privacy Using the Decentralized
Label Model, ACM Transactions on Software Engineering & Methodology,
9(4): pp. 410-42, 2000.

[106] OASIS, Extensible Access Control Markup Language (Xacml),
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-
spec-os.pdf

[107] Olawsky, D., Payne, C., Sundquist, T., Apostal, D., and Fine, T. Using
Composition to Design Secure, Fault-Tolerant Systems, in Proceedings of
the 3rd IEEE International High-Assurance Systems Engineering
Symposium, pp.29-32, 1998.

[108] Olawsky, D., Payne, C., Sundquist, T., Apostal, D., and Fine, T. Using
Composition to Design Secure, Fault-Tolerant Systems, in Proceedings of
the DARPA Information Survivability Conference & Exposition, pp.380-
390 vol.2, 2000.

[109] Owre, S., Rushby, J.M., and Shankar, N. Pvs: A Prototype Verification
System, in Proceedings of the 11th International Conference on Automated
Deduction, pp.748-52, 1992.

[110] Payne, C.N., Jr. Using Composition and Refinement to Support Security
Architecture Trade-Off Analysis, in Proceedings of the 22nd National
Information Systems Security Conference, pp.238-44, 1999.

[111] Peri, R.V., Wulf, W.A., and Kienzle, D.M. A Logic of Composition for
Information Flow Predicates, in Proceedings of the 9th IEEE Computer
Security Foundations Workshop, pp.82-94, 1996.

[112] Ray, I., France, R., Li, N., and Georg, G., An Aspect-Based Approach to
Modeling Access Control Concerns, Information and Software Technology,
46(9): pp. 575-587, 2004.

203

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/using_http_as_an_rpc_transport.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/using_http_as_an_rpc_transport.asp
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

[113] Ren, J., Modular Security: Design and Analysis,UCI-ISR-04-4, Institute
for Software Research, University of California, Irvine, 2004.

[114] Ren, J., Taylor, R., Dourish, P., and Redmiles, D. Towards an
Architectural Treatment of Software Security: A Connector-Centric
Approach, in Proceedings of the Workshop on Software Engineering for
Secure Systems, held in conjunction with the 27th International
Conference on Software Engineering, 2005.

[115] Ren, J. and Taylor, R.N. A Secure Software Architecture Description
Language, in Proceedings of the Workshop on Software Security
Assurance Tools, Techniques, and Metrics, held in conjunction with the
20th IEEE/ACM International Conference on Automated Software
Engineering, 2005.

[116] Ribeiro, C., Zúquete, A., Ferreira, P., and Guedes, P. Spl: An Acess Control
Language for Security Policies with Complex Constraints, in Proceedings
of the 2001 Network and Distributed System Security Symposium, pp.89-
107, 2001.

[117] Ryan, P., McLean, J., Millen, J., and Gligor, V. Non-Interference, Who
Needs It?, in Proceedings of the 14th IEEE Computer Security
Foundations Workshop, pp.237-238, 2001.

[118] Ryan, P.Y.A., Mathematical Models of Computer Security, in Foundations
of Security Analysis and Design : Tutorial Lectures, Lecture Notes in
Computer Science Vol. 2171, pp. 1-62, Springer-Verlag Heidelberg, 2001.

[119] Ryan, P.Y.A. and Schneider, S.A. Process Algebra and Non-Interference,
in Proceedings of the 12th IEEE Computer Security Foundations
Workshop, pp.214-227, 1999.

[120] Sabelfeld, A. and Myers, A.C., Language-Based Information-Flow
Security, IEEE Journal on Selected Areas in Communications, 21(1): pp.
5-19, 2003.

[121] Saltzer, J.H. and Schroeder, M.D., The Protection of Information in
Computer Systems, Proceedings of the IEEE, 63(9): pp. 1278-308, 1975.

[122] Samarati, P. and Vimercati, S.d.C.d., Access Control: Policies, Models, and
Mechanisms, in Foundations of Security Analysis and Design : Tutorial
Lectures, Lecture Notes in Computer Science Vol. 2171, pp. 137-196,
Springer-Verlag Heidelberg, 2001.

[123] Sandhu, R. and Munawer, Q. How to Do Discretionary Access Control
Using Roles, in Proceedings of the 3rd ACM Workshop on Role-based
Access Control, pp.47-54, 1998.

[124] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., and Youman, C.E., Role-Based
Access Control Models, Computer, 29(2): pp. 38-47, 1996.

[125] Santen, T., Heisel, M., and Pfitzmann, A. Confidentiality-Preserving
Refinement Is Compositional - Sometimes, in Proceedings of the 7th
European Symposium on Research in Computer Security, pp.194-211,
2002.

[126] Schmidt, J., Chrome-Plated Holes, 2005,
http://www.heise.de/security/artikel/61652/0

[127] Schneider, F.B., Enforceable Security Policies, ACM Transactions on
Information and System Security 3(1): pp. 30-50, 2000.

204

http://www.heise.de/security/artikel/61652/0

[128] Schneider, F.B., Morrisett, G., and Harper, R., A Language-Based
Approach to Security, in Informatics. 10 Years Back, 10 Years Ahead,
Lecture Notes in Computer Science Vol. 2000, pp. 86-101, Springer-Verlag,
2001.

[129] Sewell, P. and Vitek, J. Secure Composition of Untrusted Code: Wrappers
and Causality Types, in Proceedings of the 13th IEEE Computer Security
Foundations Workshop, pp.269-284, 2000.

[130] Sini, R. and Kutvonen, L. Trust Management Survey, in Proceedings of
the 3rd International Conference on Trust Management, pp.77-92, 2005.

[131] Spitznagel, B. and Garlan, D. A Compositional Approach for Constructing
Connectors, in Proceedings of the 2nd Working IEEE/IFIP Conference on
Software Architecture, pp.148-157, 2001.

[132] Spitznagel, B. and Garlan, D. A Compositional Formalization of
Connector Wrappers, in Proceedings of the 25th International Conference
on Software Engineering, pp.374-384, 2003.

[133] Stavridou, V., Dutertre, B., Riemenschneider, R.A., and Saidi, H. Intrusion
Tolerant Software Architectures, in Proceedings of the DARPA
Information Survivability Conference & Exposition II, pp.230-241 vol.2,
2001.

[134] Stavridou, V., Riemenschneider, R.A., and Gilham, F. Sdtp: A Verified
Architecture for Secure Distributed Transaction Processing, in
Proceedings of the DARPA Information Survivability Conference &
Exposition, pp.369-379 vol.2, 2000.

[135] SunXACML, Sunxacml, http://sunxacml.sourceforge.net
[136] Sutherland, D. A Model of Information, in Proceedings of the 9th National

Computer Security Conference, pp.175-183, 1986.
[137] Szyperski, C., Component Software - Beyond Object-Oriented

Programming, 2nd ed., Addison-Wesley, 2002.
[138] Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J., Jr.,

Robbins, J.E., Nies, K.A., Oreizy, P., and Dubrow, D.L., A Component- and
Message-Based Architectural Style for Gui Software, IEEE Transactions
on Software Engineering, 22(6): pp. 390-406, 1996.

[139] Tisato, F., Savigni, A., Cazzola, W., and Sosio, A. Architectural Reflection.
Realising Software Architectures Via Reflective Activities, in Proceedings
of the 2nd International Workshop on Engineering Distributed Objects,
pp.102-15, 2000.

[140] Tripunitara, M.V. and Li, N. Comparing the Expressive Power of Access
Control Models, in Proceedings of the 11th ACM conference on Computer
and communications security, pp.62-71, 2004.

[141] W3C, Xml Path Language (Xpath) 2.0, http://www.w3.org/TR/xpath20/
[142] Wang, X., Yu, H., and Yin, Y.L. Efficient Collision Search Attacks on Sha-0,

in Proceedings of the 25th Annual International Cryptology Conference
Advances on Cryptology, pp.1-16, 2005.

[143] Weeks, S. Understanding Trust Management Systems, in Proceedings of
the 2001 IEEE Symposium on Security and Privacy, pp.94-105, 2001.

205

http://sunxacml.sourceforge.net/
http://www.w3.org/TR/xpath20/

[144] Wijesekera, D. and Jajodia, S., A Propositional Policy Algebra for Access
Control, ACM Transactions on Information and System Security, 6(2): pp.
286-325, 2003.

[145] Win, B.D., Engineering Application-Level Security through Aspect-
Oriented Software Development, Thesis, Katholieke Universiteit Leuven,
2004.

[146] Wing, J.M., A Call to Action: Look Beyond the Horizon, IEEE Security &
Privacy, 1(6): pp. 62-67, 2003.

[147] Wittbold, J.T. and Johnson, D.M. Information Flow in Nondeterministic
Systems, in Proceedings of the 1990 IEEE Symposium on Security and
Privacy, pp.144-61, 1990.

[148] Zakinthinos, A., On the Composition of Security Properties, Thesis,
University of Toronto: Toronto, Ontario, 1996.

[149] Zakinthinos, A. and Lee, E.S. Composing Secure Systems That Have
Emergent Properties, in Proceedings of the 11th IEEE Computer Security
Foundations Workshop, pp.117-122, 1998.

[150] Zaremski, A.M. and Wing, J.M., Specification Matching of Software
Components, ACM Transactions on Software Engineering and
Methodology, 6(4): pp. 333-369, 1997.

[151] Zbarsky, B., Stop Sharing Dom Object Wrappers between Content and
Chrome, 2005,
https://bugzilla.mozilla.org/show_bug.cgi?id=281988#c27

[152] Zhang, L., Ahn, G.-J., and Chu, B.-T., A Rule-Based Framework for Role-
Based Delegation and Revocation, ACM Transactions on Information and
System Security, 6(3): pp. 404-441, 2003.

206

	Introduction
	Problem Summary
	Approach
	Hypotheses and Validation
	Contributions
	Overview of Dissertation

	Background and Related Work
	Security Overview
	Security Models
	Access Control Models
	Information Flow Models

	Formal Foundations for Composition
	Abadi-Lamport Composition in Alpern-Schneider Framework
	Integrity
	Confidentiality: Information Flow Security

	Component Specifications of Software Security
	Computer Security Contract
	cTLA Contract
	Discussion

	Architectural Approaches to Software Security
	Object-Oriented Labeling
	UML-based Security Modeling
	ASTER
	System Architecture Model
	Connector Transformation
	SADL
	Law-Governed Architecture
	Discussion

	Basic Modeling Concepts and an Analysis Algorithm
	Architectural Access Control
	Subject
	Principal
	Resource
	Permission, Privilege and Safeguard
	Policy

	A Secure Software Architecture Description Language
	Overview of xADL
	Overview of XACML
	Constructs of Secure xADL
	Rationales for Language Design

	The Central Role of Architectural Connectors
	Components: Supply Security Contract
	Connectors: Regulate and Enforce Contract

	Context for Architectural Access Control
	Nearby Components and Connectors
	Types
	Containing Sub-architecture
	Complete System

	An algorithm to Check Architectural Access Control
	Algorithm for Single Architectural Access
	Extend to Complete Architecture
	Validity of the Algorithm

	Advanced Modeling Concepts
	Handling Large Scale Access through Roles
	Basic Role-based Access Control
	Hierarchical Roles and Separation of Duty
	RBAC Support in XACML
	Roles as Principals in Secure xADL

	Handling Heterogeneous Access through Trust Management
	Trust and Delegation in Decentralized Systems
	Role-based Trust Management in Secure xADL
	Trust Boundary and Architectural Connector

	Handling Content-based Access
	Handling Architectural Execution
	Architectural Instantiation
	Architectural Connection
	Message Routing

	Summary of Modeling Concepts

	Tools Support
	Evaluation Engine of Access Control Models
	Implementing Role-based Access Control
	Integrating Role-based Trust Management
	Integrating with SunXACML

	Overview of ArchStudio
	Design-time Support
	Integrating the XACML Policy Editor
	Access Control Analysis

	Run-time Support
	Policy Decision Point and Policy Enforcement Point
	The c2.fw.secure Framework
	The Secure Architecture Controller
	Sources and Defaults of Policies
	Architectural Instantiation
	Architectural Connection
	External Message Routing
	Internal Message Routing
	A Connector’s Role in Secure Architectural Execution

	Case Studies
	Coalition
	The Original Architecture
	An Architecture with Two Secure Connectors
	An Architecture with a Single Secure Connector

	Impromptu
	Overview of Project Impromptu
	Architectural Components and Connectors
	Connector Using IP Address Authentication
	Standard-Compliant Composite Connector

	Firefox Component Security
	Firefox Architecture
	Platform Technologies: XPCOM, JavaScript, and XPConnect
	Trust Boundary between Chrome and Content
	Trust Boundary between Contents from Different Origins
	Principals
	Container: Document and Window
	DOM Node
	Enforcing Security: Security Manager
	Transport: URI, Channel, Protocol Handler
	XPConnect as the Architectural Connector
	Discussions

	DCOM
	DCOM Architecture
	Anonymous, Local, Remote, Activate, Launch, and Access
	Impersonation and Delegation
	DCOM and Internet

	Conclusion
	Summary
	Future work
	Different Types of Connectors
	Different Mechanisms to Construct Connectors
	Security as an Aspect
	Reflective Architectural Model
	Dynamic Architecture
	Policy Conflict Resolution

	Bibliography

