
UNIVERSITY OF CALIFORNIA 
IRVINE 

A Connector-Centric Approach to Architectural Access Control 

DISSERTATION 

submitted in partial satisfaction of the requirements 
for the degree of 

DOCTOR OF PHILOSOPHY 

in Information and Computer Science 

by 

Jie Ren 

Dissertation Committee: 
Professor Richard N. Taylor, Chair 

Professor Debra J. Richardson 
Professor David F. Redmiles 

2006 



© 2006 Jie Ren



 

The dissertation of Jie Ren 

is approved and is acceptable in quality 

and form for publication on microfilm: 

___________________________ 

___________________________ 

___________________________ 

Committee Chair 

University of California, Irvine 

2006 

ii 



 

DEDICATION 

To 

my mother, Jingze Zhang  

and  

my father, Zugen Ren 

iii 



 

TABLE OF CONTENTS 

LIST OF FIGURES viii 
ACKNOWLEDGMENTS x 

CURRICULUM VITAE xi 
ABSTRACT OF THE DISSERTATION xiv 

1 Introduction 1 

1.1 Problem Summary 1 

1.2 Approach 5 

1.3 Hypotheses and Validation 8 

1.4 Contributions 12 

1.5 Overview of Dissertation 15 

2 Background and Related Work 17 

2.1 Security Overview 17 

2.2 Security Models 18 
2.2.1 Access Control Models 18 
2.2.2 Information Flow Models 23 

2.3 Formal Foundations for Composition 24 
2.3.1 Abadi-Lamport Composition in Alpern-Schneider Framework 25 
2.3.2 Integrity 26 
2.3.3 Confidentiality: Information Flow Security 29 

2.4 Component Specifications of Software Security 35 
2.4.1 Computer Security Contract 36 
2.4.2 cTLA Contract 39 
2.4.3 Discussion 41 

2.5 Architectural Approaches to Software Security 42 
2.5.1 Object-Oriented Labeling 42 
2.5.2 UML-based Security Modeling 45 
2.5.3 ASTER 45 
2.5.4 System Architecture Model 48 
2.5.5 Connector Transformation 51 
2.5.6 SADL 55 
2.5.7 Law-Governed Architecture 59 
2.5.8 Discussion 61 

3 Basic Modeling Concepts and an Analysis Algorithm 63 

iv 



 

3.1 Architectural Access Control 63 
3.1.1 Subject 63 
3.1.2 Principal 64 
3.1.3 Resource 65 
3.1.4 Permission, Privilege and Safeguard 65 
3.1.5 Policy 66 

3.2 A Secure Software Architecture Description Language 67 
3.2.1 Overview of xADL 67 
3.2.2 Overview of XACML 68 
3.2.3 Constructs of Secure xADL 71 
3.2.4 Rationales for Language Design 74 

3.3 The Central Role of Architectural Connectors 76 
3.3.1 Components: Supply Security Contract 77 
3.3.2 Connectors: Regulate and Enforce Contract 78 

3.4 Context for Architectural Access Control 80 
3.4.1 Nearby Components and Connectors 80 
3.4.2 Types 83 
3.4.3 Containing Sub-architecture 84 
3.4.4 Complete System 86 

3.5 An algorithm to Check Architectural Access Control 87 
3.5.1 Algorithm for Single Architectural Access 87 
3.5.2 Extend to Complete Architecture 92 
3.5.3 Validity of the Algorithm 95 

4 Advanced Modeling Concepts 99 

4.1 Handling Large Scale Access through Roles 99 
4.1.1 Basic Role-based Access Control 99 
4.1.2 Hierarchical Roles and Separation of Duty 100 
4.1.3 RBAC Support in XACML 101 
4.1.4 Roles as Principals in Secure xADL 102 

4.2 Handling Heterogeneous Access through Trust Management 105 
4.2.1 Trust and Delegation in Decentralized Systems 105 
4.2.2 Role-based Trust Management in Secure xADL 107 
4.2.3 Trust Boundary and Architectural Connector 109 

4.3 Handling Content-based Access 111 

4.4 Handling Architectural Execution 114 
4.4.1 Architectural Instantiation 114 
4.4.2 Architectural Connection 115 
4.4.3 Message Routing 115 

4.5 Summary of Modeling Concepts 117 

5 Tools Support 119 

5.1 Evaluation Engine of Access Control Models 119 

v 



 

5.1.1 Implementing Role-based Access Control 119 
5.1.2 Integrating Role-based Trust Management 121 
5.1.3 Integrating with SunXACML 122 

5.2 Overview of ArchStudio 123 

5.3 Design-time Support 124 
5.3.1 Integrating the XACML Policy Editor 124 
5.3.2 Access Control Analysis 126 

5.4 Run-time Support 128 
5.4.1 Policy Decision Point and Policy Enforcement Point 128 
5.4.2 The c2.fw.secure Framework 129 
5.4.3 The Secure Architecture Controller 130 
5.4.4 Sources and Defaults of Policies 131 
5.4.5 Architectural Instantiation 131 
5.4.6 Architectural Connection 132 
5.4.7 External Message Routing 133 
5.4.8 Internal Message Routing 134 
5.4.9 A Connector’s Role in Secure Architectural Execution 135 

6 Case Studies 137 

6.1 Coalition 138 
6.1.1 The Original Architecture 138 
6.1.2 An Architecture with Two Secure Connectors 141 
6.1.3 An Architecture with a Single Secure Connector 144 

6.2 Impromptu 147 
6.2.1 Overview of Project Impromptu 147 
6.2.2 Architectural Components and Connectors 149 
6.2.3 Connector Using IP Address Authentication 151 
6.2.4 Standard-Compliant Composite Connector 154 

6.3 Firefox Component Security 157 
6.3.1 Firefox Architecture 157 
6.3.2 Platform Technologies: XPCOM, JavaScript, and XPConnect 159 
6.3.3 Trust Boundary between Chrome and Content 160 
6.3.4 Trust Boundary between Contents from Different Origins 161 
6.3.5 Principals 162 
6.3.6 Container: Document and Window 163 
6.3.7 DOM Node 164 
6.3.8 Enforcing Security: Security Manager 165 
6.3.9 Transport: URI, Channel, Protocol Handler 169 
6.3.10 XPConnect as the Architectural Connector 171 
6.3.11 Discussions 175 

6.4 DCOM 179 
6.4.1 DCOM Architecture 179 
6.4.2 Anonymous, Local, Remote, Activate, Launch, and Access 181 
6.4.3 Impersonation and Delegation 185 

vi 



 

6.4.4 DCOM and Internet 185 

7 Conclusion 188 

7.1 Summary 188 

7.2 Future work 194 
7.2.1 Different Types of Connectors 194 
7.2.2 Different Mechanisms to Construct Connectors 194 
7.2.3 Security as an Aspect 194 
7.2.4 Reflective Architectural Model 195 
7.2.5 Dynamic Architecture 195 
7.2.6 Policy Conflict Resolution 196 

Bibliography 197 

vii 



 

LIST OF FIGURES 

Figure 1-1, Vulnerabilities reported to CERT 1 
Figure 1-2, Incidents reported to CERT 2 
Figure 1-3, IIS Rearchitecting, from  [146] 4 
Figure 2-1, Access Control Matrix 19 
Figure 2-2, Dominance Lattice 20 
Figure 2-3, Information Flow Properties, from [85] 31 

Figure 2-4, Active Interface, from [73] 37 
Figure 2-5, System Architecture Model, from [29] 49 
Figure 2-6, Connector Transformation, from [131] 53 
Figure 2-7, Secure Software Architecture, from [48] 55 
Figure 3-1, Secure xADL schema 72 
Figure 3-2, A Secure Connector with Subject and Policy 73 
Figure 3-3, Privilege Propagation Connectors 82 
Figure 3-4, Policy for Privilege Propagation 90 

Figure 3-5, Algorithm 1: Access Control Check 91 
Figure 3-6, Algorithm 2: Sub-architecture Access Control Check 95 
Figure 4-1, Role-based Access Control, from [122] 100 
Figure 4-2, Hierarchical RBAC 103 
Figure 4-3, A Core RBAC Policy 105 
Figure 4-4, A Trust Management Policy 110 
Figure 4-5, Content-based Access Control 113 
Figure 4-6, Policy for Architectural Connection 116 
Figure 5-1, Core RBAC Interface 120 
Figure 5-2, Hierarchical RBAC Interface 120 
Figure 5-3, RBTM Interface 121 
Figure 5-4, Policy Editor in ArchEdit 125 

Figure 5-5, Policy Editor in Archipelago 125 
Figure 5-6, Menu for Access Control Check 126 
Figure 5-7, Architectural Connection Failure 133 
Figure 6-1, Coalition in Execution 139 
Figure 6-2, Original Coalition 140 

viii 



 

Figure 6-3, Coalition with Two Secure Connectors 141 
Figure 6-4, Type Policy and Instance Policy 143 
Figure 6-5, Coalition with One Secure Connector 144 
Figure 6-6, Role-based and Content-based Routing 146 
Figure 6-7.Impromptu User Interface 148 
Figure 6-8, Impromptu Architecture 149 
Figure 6-9, Secure WebDAV Connector 152 

Figure 6-10, Composite Secure WebDAV Connector 156 
Figure 6-11, Firefox Architecture, from [88] 157 
Figure 6-12, Firefox Security Policy 172 
Figure 6-13, Firefox Component Security Architecture 173 

Figure 6-14, DCOM Architecture 180 
Figure 6-15, DCOM Authentication and Authorization 183 
Figure 6-16, DCOM for XP SP2 184 
Figure 6-17, DCOM with Delegation 186 

ix 



 

ACKNOWLEDGMENTS 

First and foremost I would like to thank my advisor, Professor Richard N. 
Taylor. His insights, encouragement, and feedback are invaluable. Thanks also to 
Professor Debra J. Richardson, Professor David F. Redmiles, and Professor Paul 
Dourish, whom I had the honor to work with and receive indispensable guidance 
and help.  

Special thanks to Eric Dashofy, whose incredible work on xADL and 
ArchStudio form the foundations for this research, and whose insights and 
humor have made graduate school  an enjoyable experience. 

Thanks to my officemates, Yuzo Kanomata and Justin Erenkrantz. Not 
only have they provided priceless technical information, but they also have taught 
me numerous other lessons. 

Other members of the C2 group, including Hazel Asuncion, Joe Feise, 
John Georgas, Michael Gorlick, Scott Hendrickson, Girish Suryanarayana and 
Debra Brodbeck, have provided valuable help in various forms. 

Members of the Swirl group, including Rogerio DePaula, Xianghua Ding, 
Ben Pillet, Jennifer Rode, and Roberto Silva Filho, have greatly helped in 
developing the Impromptu system. Kari Nies, who is also the author of the 
original Coalition application, is worth special thanks. 

Thor Larholm, Oliver Lavery, and Geoff Shively of PivX Solutions 
introduced me to the industry side of software security. That experience is 
irreplaceable. 

I would also like to thank Professor Ninghui Li from Purdue University for 
allowing me to use the code for the RBTM framework, thank Professor Gregorio 
Martinez and Professor Antonio Skarmeta from University of Murcia for 
permission to integrate the XACML editor, and thank Seth Proctor and Anne 
Anderson from Sun for useful discussions on SunXACML and RBAC.  

This work was supported in part by the National Science Foundation 
under grants 0133749, 0205724, and 0326105, a grant from the Intel 
Corporation, and a UC Irvine Dissertation Fellowship.  
 

 
 

x 



 

CURRICULUM VITAE 

Jie Ren 

Education 

1999.9-2006.1 Ph.D. Information and Computer Science, University of 
California, Irvine 

1992.9-1995.7 M.Sc.     Department of Computer Science, Fudan University 
1988.9-1992.7 B.Sc.     Department of Computer Science, Fudan University 

Working Experience 

2004.6-2004.9 PivX Solutions, Inc., Intern Security Researcher 
2002.7-2002.9 Endeavors Technology Inc., Intern Quality Assurance 

Engineer 
1998.9-1999.7 Department of Computer Science, Fudan University, Lecturer 
1996.9-1998.8 Department of Computer Science, Fudan University, Assistant 

Lecturer 
1995.7-1996.8 ZTE Corporation, China, Software Engineer 

Teaching Experience 

• Reader, ICS 142, Compilers and Interpreters, Winter 2004  

• Reader, ICS 121, Software Tools and Methods, Fall 2003   

• Teaching Assistant, ICS 52, Introduction to Software Engineering, Spring 
2003   

• Reader, ICS 125, Project in Software System Design, Winter 2003   

• Teaching Assistant, ICS 123, Software Architectures, Distributed Systems, 
and Interoperability, Fall 2002   

• Teaching Assistant, ICS 121, Software Tools and Methods, Spring 2000   

• Teaching Assistant, ICS 125, Project in Software System Design, Winter 
2000   

• Teaching Assistant, ICS 125, Project in Software System Design, Fall 1999   

• Co-Instructor, Advanced Software Engineering, Fudan University, Spring 
1999   

• Co-Instructor, Advanced Software Engineering, Fudan University, Spring 
1998   

xi 



 

Publications 

Jie Ren, Richard Taylor, A Secure Software Architecture Description Language, 
Proceedings of the Workshop on Software Security Assurance Tools, 
Techniques, and Metrics, held in conjunction with the 20th IEEE/ACM 
International Conference on Automated Software Engineering, Long 
Beach, California, USA, November 7-11, 2005. 

Jie Ren, Richard Taylor, Automatic and Versatile Publications Ranking for 
Research Institutions and Scholars, to appear in the Communications of 
the ACM.  

Rogerio de Paula, Xianghua Ding, Paul Dourish, Kari Nies, Ben Pillet, David 
Redmiles, Jie Ren, Jennifer Rode, Roberto Silva Filho, In the Eye of the 
Beholder: A Visualization-based Approach to Information System 
Security, International Journal of Human-Computer Studies (IJHCS), Vol. 
63, No. 1-2, pp. 5-24, July 2005. 

Rogerio de Paula, Xianghua Ding, Paul Dourish, Kari Nies, Ben Pillet, David 
Redmiles, Jie Ren, Jennifer Rode, Roberto Silva Filho, Two Experiences 
Designing for Effective Security, Proceedings of the 2005 Symposium On 
Usable Privacy and Security, pp. 25-34, Pittsburgh, PA, July 6-8, 2005. 

Jie Ren, Richard Taylor, Paul Dourish, David Redmiles, Towards An 
Architectural Treatment of Software Security: A Connector-Centric 
Approach, Proceedings of the Workshop on Software Engineering for 
Secure Systems, held in conjunction with the 27th International 
Conference on Software Engineering, St. Louis, Missouri, USA, May 15-16, 
2005. 

Jie Ren, Richard Taylor, Utilizing Commercial Object Libraries within Loosely-
Coupled, Event-Based Systems, Proceedings of the 8th IASTED 
International Conference on Software Engineering and Applications , pp. 
192-197, Cambridge, Massachusetts, USA, November 9-11, 2004.  

Jie Ren, Richard Taylor, An Automatic and Generic Framework for Ranking 
Research Institutions and Scholars based on Publications, Technical 
Report UCI-ISR-04-5, June 2004. 

Jie Ren, Modular Security: Design and Analysis, Technical Report UCI-ISR-04-
4, June 2004. 

Jie Ren, Richard Taylor, Visualizing Software Architecture with Off-The-Shelf 
Components, Proceedings of the 15th International Conference on 
Software Engineering & Knowledge Engineering, pp. 132-141, San 
Francisco, California, USA, July 1-3, 2003.  

Jie Ren, Richard Taylor, Incorporating Off-The-Shelf Components with Event-
based Integration, Proceedings of the ISCA 12th International Conference 
on Intelligent and Adaptive Systems and Software Engineering, pp. 188-
191, San Francisco, California, USA, July 9-11, 2003.  

xii 



 

Jie Ren, Richard Taylor, Incorporating Off-The-Shelf Components with Event-
based Integration, Technical Report UCI-ISR-03-2, April 2003. (This is a 
longer version of the above paper.)  

Jie Ren, Internet-scale Event Notification: Architecture Alternatives, position 
paper for Workshop on Evaluating Software Architectural Solutions, 
Irvine, California, USA, May 8-9, 2000.  

Junfeng Wang, Xiaobin Qi, Kuanli Xia, Jie Ren, Design Patterns and UML, 
Application Research of Computers, vol. 16, no.5, pp. 27-30, May 1999. In 
Chinese. 

Shengxin Zhang, Jie Ren, Leqiu Qian, Investigation and Research on 
Components Matching Methods, Computer Engineering, vol. 25, no. 3, pp. 
8-10, March 1999. In Chinese. 

Jie Ren, Wenyun Zhao, Yongxue Sun, Leqiu Qian, Research on Domain-Specific 
Software Architecture, Computer Engineering, vol. 23, Special Issue, pp. 
222-224, December 1997. In Chinese. 

Jie Ren, Leqiu Qian, The Object-Oriented Development of C Coding Tool, 
Proceedings of 5th Chinese National Conference on Software Engineering, 
Shanghai, China, December 1993. In Chinese. 

xiii 



 

ABSTRACT OF THE DISSERTATION 

A Connector-Centric Approach to Architectural Access Control 

By 

Jie Ren 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 2006 

Professor Richard N. Taylor, Chair 

An important problem is the architectural access control question: how 

can we describe and check access control issues at the software architecture level? 

We propose a connector-centric approach for software architectural access 

control. Our approach is based on a unified access control model incorporating 

the classic model, the role-based model, and the trust management model.  

We design a secure software architecture description language, Secure 

xADL, that extends the xADL language with constructs necessary to describe 

access control issues. Secure xADL extends descriptions of components, 

connectors, their types, sub-architectures, and the global architecture with 

subject, principal, permission, resource, privilege, safeguard, and policy. We use 

the XACML language as the basis for architectural security policy modeling. Four 

types of contexts for architectural access control are also identified: 1) the nearby 

constituents of components and connectors, 2) the types of components and 

connectors, 3) the containing sub-architecture, and 4) the global architecture. 
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We present an algorithm to check architectural access control: given a 

secure software architecture description written in Secure xADL, if a component 

A wants to access another component B, should the access be allowed?  

Tool support is provided as part of the ArchStudio architecture 

development environment, including an editor, a checker, the secure architecture 

controller, and a run-time framework enabling important architectural 

operations: instantiating components and connectors, connecting components to 

connectors, and message routing.  

Connectors play a central role in our approach. They can propagate 

privileges within the architecture, decide whether architectural connections can 

be made, and route messages according to their security policies. 

Our hypotheses are: an architectural connector may serve as a suitable 

construct to model architectural access control; the connector-centric approach 

can be applied to different types of componentized and networked software 

systems; the access control check algorithm can check the suitability of accessing 

interfaces; in an architecture style based on event routing connectors, our 

approach can route events in accordance with the secure delivery requirements. 

To validate these hypotheses, we have performed an informal analysis of 

the algorithm, developed two applications, Secure Coalition and Impromptu, and 

modeled the security architecture of Firefox and DCOM. 
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1 Introduction 

1.1 Problem Summary 
The past decade has seen rapid penetration of information technology into 

every aspect of our society. More organizations and individuals have been 

transforming their work and lives with ever increasing computation power and 

communication capability. Such a trend will continue to change the way that our 

society operates.  

Vulnerabilities
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Figure 1-1, Vulnerabilities reported to CERT 

Unfortunately, such transformation has certain undesirable side effects. 

Rampant security breaches are one of the most prominent examples of these 

unwelcome consequences. More than 3500 vulnerabilities were reported to the 

Computer Emergency Response Team Coordination Center (CERT/CC) each year 

during the past three years (see Figure 1-1). There were about 140,000 security 
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incidents reported to CERT in 2003 (see Figure 1-2). Such incidents have become 

so commonplace that CERT has stopped publishing these statistics since 2004.   
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Figure 1-2, Incidents reported to CERT 

The unsatisfactory situation of software security partly comes from the 

mechanism used to build the software systems and the environment in which 

these systems are deployed and operated. More and more software is built from 

existing components. These components may come from different sources. This 

complicates analysis and composition, even when a dominant decomposition 

mechanism is available. Additionally more and more software is running in a 

networked environment. The fast and permanent network connections open 

possibilities for malicious attacks that were not possible in the past. These 

situations raise new challenges on how we develop secure software.  
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Traditional security research has been focusing on how to provide 

assurance on confidentiality, integrity, and availability [14]. However, with the 

exception of mobile code protection mechanisms, the focus of past research is not 

how to develop secure software that is made of components from different 

sources. Previous research provides necessary infrastructures, but a higher level 

perspective on how to utilize them to describe and enforce security, especially for 

componentized software, has not received sufficient attention from research 

communities so far. Despite occasional cryptology-related attacks [25, 142], most 

security vulnerabilities result from poor software design and implementation, 

such as the ever-lasting buffer overrun bugs. Thus approaches to designing 

secure software, not just from a traditional cryptology viewpoint, but with a 

software engineering perspective, are needed to counter the current 

unsatisfactory situation.  

Software architecture research, which has been an active field in the past 

decade, could provide an appropriate angle for guiding design of secure software. 

The potential of an architecture-guided secure software design approach can be 

illustrated by the rearchitecting of a major web server, Microsoft Internet 

Information Service, whose security has been significantly improved by a 

carefully designed software architecture, without introduction of major 

cryptography features [146]. The Microsoft Internet Information Server (IIS) web 

server was first introduced in 1995. It has gone through several version changes 

during the following years, reaching Version 5.1 in 2001. Along this course, it was 

the source of several vulnerabilities, some of which were high profile and have 

caused serious damages [9]. A major architectural change, as outlined in Figure 
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1-3, was introduced in 2003 for its Version 6.0. This version is much safer than 

previous versions, due to these architectural changes [146]. No major cryptology 

technologies were introduced with this version. Only existing technologies were 

rearchitected for better security. This rearchitecting effort suggests that more 

disciplined approaches to utilize existing technologies can significantly improve 

the security of a complex, componentized, and networked software system. 

 

Figure 1-3, IIS Rearchitecting, from  [146] 

Component-based software engineering and software architecture provide 

the necessary higher-level perspective for system wide security. Security is an 

emergent property, so it is insufficient for a component to be secure. For the 

whole system to be secure, all relevant components must collaborate to ensure 

the security of the system. An architecture model guides the comprehensive 

development of security. Such high-level modeling enables designers to locate 

potential vulnerabilities and install appropriate countermeasures. It facilitates 
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checking that security is not compromised by individual components and enables 

secure interactions between components. An architecture model also allows 

selecting the most secure alternatives based on existing components and 

supports continuous refinement for further development. 

We present a software architecture-based approach that can help design 

and analyze secure software. Specifically, the approach extends traditional 

software architecture descriptions with the capability to describe and check 

access control policies. Access control, which controls how protected 

computational resource can be accessed, is arguably the most dominant security 

assurance mechanism. We are trying to answer the following architectural 

access control question: how can we describe and check access control 

issues at the software architecture level?  

Answering this question can bring deeper and more comprehensive 

modeling of architectural security, and help software architects detect 

architectural vulnerabilities and support correct access control at the architecture 

level. While such an answer cannot fully solve the general software security 

problem, it can complement and possibly guide other solutions that operate on 

the mathematical properties and low-level implementations to collectively 

provide the comprehensive solution that is necessary for a complex, 

componentized, and networked software system.  

1.2 Approach 
We propose a connector-centric approach for software architectural access 

control. The approach is based on a unified access control model. The model 

guides the design of a secure architecture description language that can describe 
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architecturally significant operations. The validity of access within software 

architecture is checked by an algorithm that takes different types of architectural 

contexts into consideration. Connectors play a central role in establishing the 

security of these operations. Tools are provided to help software architects use 

this approach for designing and analyzing software security.  

Our approach is based on a unified access control model that incorporates 

the classic access control model, the role-based access control model, and the 

trust management model. The classic model describes access control with a set of 

subjects that have permissions and a set of objects on which these permissions 

can be exercised. The role-based model introduces the concept of roles as an 

indirection to organize the permission assignments to subjects. The trust 

management model provides a decentralized approach to manage subjects and 

delegate permissions. The unified model uses subjects, objects and permissions 

to integrate the three models.  

We design a secure software architecture description language, Secure 

xADL [115], that extends our extensible architecture description language, xADL 

[27], with constructs that are necessary to describe access control issues. Secure 

xADL extends descriptions of architectural constituents (components, connectors, 

their types, sub-architectures, and the global architecture) with the following 

constructs: subject, principal, permission, resource, privilege, 

safeguard, and policy. Subject is the user on whose behalf software 

constituents execute. A subject can take multiple principals. Each principal 

encapsulates a credential that the subject possesses to acquire permissions. A 

permission is an allowed operation on a resource. A resource is an entity 
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whose access should be protected. A resource can be passive, like files, or it can 

be active, like components and connectors. A privilege describes permissions 

that components and connectors possess, depending on the executing subject. A 

safeguard describes permissions required to access the protected interfaces of 

components and connectors. A policy ties all these concepts together, and 

specifies what access is allowed and what access should be denied. We use the 

eXtensible Access Control Markup Language (XACML) [106] as the basis for our 

architectural security policy modeling. 

In addition to the access control policies locally specified in components 

and connectors, we use context to designate those additional relationships 

involved in architectural access control for the components and connectors. Such 

contexts change how access control is regulated. There are four types of contexts: 

1) the nearby constituents of components and connectors, 2) the types of 

components and connectors, 3) the explicitly modeled sub-architecture that 

contains components and connectors, and 4) the global architecture. These 

contexts are integrated in policy modeling through the XACML policy 

combination mechanism.  

We present an algorithm to check architectural access control at design-

time: given a secure software architecture description written in 

Secure xADL, if a component A wants to access another component B, 

should the access be allowed? Our algorithm is based on graph reachability 

analysis. The algorithm obtains necessary privileges, retrieves relevant policies 

from the established contexts, and makes a decision based on the privileges and 

the policies. 
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Tool support for the approach is also provided, as part of the ArchStudio 

architecture development environment [27]. An editor allows an architect to 

specify the architectural access control policies. A checker statically checks that 

the given component can access an interface of another component. A run-time 

framework enables applications to perform important architectural operations: 

instantiating components and connectors, connecting components to connectors, 

routing messages from one component to another connector, and forwarding 

messages between interfaces of a connector.  

Connectors play a central role in our approach. Depending on their types, 

connectors can propagate privileges within the architecture, decide whether 

architectural connections can be made, and route messages according to its 

security policies.  

1.3 Hypotheses and Validation 
The hypotheses for this research are that:  

Hypothesis 1: An architectural connector may serve as a 

suitable construct to model architectural access control.  

Hypothesis 2: The connector-centric approach can be applied to 

different types of componentized and networked software systems. 

Hypothesis 3: With a Secure xADL description, the access 

control check algorithm can check the suitability of accessing 

interfaces. 

Hypothesis 4: In an architecture style based on event routing 

connectors, our approach can route events in accordance with the 

secure delivery requirements. 
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To validate these hypotheses, we have analyzed the validity of the 

algorithm by mapping it to a well known graph reachability problem, and we 

have also developed two applications and analyzed two third party software 

systems. 

The first application developed was a secure coalition application. It is a 

C2-style application that uses events as the communication mechanism. Our 

approach enables architects to decide how the components are connected and 

how such connections can be used to deliver events according to the desired 

security requirements.   

The second application developed was Impromptu, a peer-to-peer file 

sharing application that allows different users to share files freely and securely. 

The application visualizes security relevant events so users can make better 

informed decisions on security issues. This application uses the Jetty 

HTTP/Servlet server and the Apache Slide WebDAV server. A secure WebDAV 

proxy is developed to connect communicating peers. Users can use off-the-shelf 

standard-compliant applications to access and manipulate those shared files.  

In addition to designing these two applications, we also have analyzed two 

existing systems. The first analyzed system was the Firefox open source web 

browser. Compared to another popular web browser, Internet Explorer, Firefox 

does not support ActiveX but makes extensive use of JavaScript. The script 

segments from a web page are executed by the script engine, subject to access 

control policies. We analyzed how this access control is enacted by various 

architectural connectors. 
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The second system analyzed was Microsoft’s DCOM. DCOM provides 

network invocable services between clients and servers. The services can have 

different levels of authentication and authorization properties. An intermediate 

server can also act on behalf of a client to access a third server. We modeled 

DCOM’s role as a secure connector between clients and servers using our 

approach. 

Through these analysis, design and modeling activities, we have validated 

our four hypotheses, and illustrated the feasibility of our connector-centric 

approach. 

Firstly, we have demonstrated that an architectural connector may 

serve as a suitable construct to model architectural access control. 

Connectors propagate privileges that are necessary for access control decisions. 

They regulate architectural connections between components. And they can also 

coordinate message routing securely. 

Secondly, we have established that the connector-centric approach 

can be applied to different types of componentized and networked 

software systems. Impromptu demonstrates that our approach can be applied 

to develop a system composed of externally developed components connected 

through secure connectors. The modeling of Firefox shows the applicability of our 

approach in handling security of untrustworthy components. Modeling DCOM 

demonstrates that our approach can model a large and complex network 

application that has complex access control requirements. 

These studies demonstrate that our approach is applicable to different 

types of software systems. The secure coalition application is based on an 
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internally developed Java framework. Impromptu is a Java-based application 

that extensively reuses existing components. Firefox is a third party 

C/C++/JavaScript-based cross-platform application. DCOM is a third party 

C/C++-based Windows application. The diversity of these systems shows that our 

approach can support heterogeneous environments. 

The studies demonstrate that our approach can be applied to both 

designing a new component-based application and analyzing an existing-

component-based application. We have developed the secure coalition 

application with an internally developed framework. We have also developed 

Impromptu with many existing components. Both Firefox and DCOM are third 

party applications. We have modeled their component-based architectures and 

investigated the security implications of architectural choices. 

The studies demonstrate that our approach can handle security 

properties of different types of software connectors. The secure coalition 

application uses a C2 style broadcast connector. Impromptu composes several 

connectors into a composite connector. Firefox is a host-based application whose 

operations are mostly limited to a client’s machine. Different components 

interact with each other through traditional API connections, in the form of a 

cross-language connector. DCOM is an application based on a network protocol. 

The components of this application, the clients and the servers, interact through 

the protocol. The various types of connectors (event routing connector, local 

procedure call connector, network application protocol connector, and their 

composites) illustrate that our approach is capable of modeling access control 

properties of different software connection mechanism.  
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Thirdly, we have shown that with a Secure xADL description, the 

access control check algorithm can check the suitability of accessing 

interfaces. We transform a Secure xADL architecture description into a graph, 

where the nodes stand for privileges and safeguards, and the edges represent 

connections permitted by policies of connectors. We have shown that permitting 

an architectural access between a pair of interfaces roughly equals to finding a 

path in the constructed graph, and thus any standard solution to the reachability 

problem can be used.  

Finally, we have illustrated that in an architecture style based on 

event routing connectors, our approach can route events in 

accordance with the secure delivery requirements. The secure coalition 

application, in the event-based C2 style, can use different types of message 

routing connectors to route messages that only one party deems secure to share 

with the other party. These connectors, being part of an application framework, 

can also be used in constructing other C2 style applications.  

1.4 Contributions 
Our research contributions include a design and analysis method for 

security in software architecture research, a formal language to model access 

control at the architecture level, an algorithm to check the correctness of such 

models, a technique to compose secure connectors from existing connectors,  and 

a suite of support tools. This approach contributes to deeper and more 

comprehensive modeling of architectural security, and facilitates checking correct 

access control and detecting vulnerabilities at the architecture level. 

More specifically, the contributions of this research are as follows: 
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A novel approach to the design and analysis of the access 

control property for software architectures. We address the access 

control problem from an architectural viewpoint and use an architecture model 

to guide the design and analysis of architectural access control in software 

systems. Access control is a very important security property at the architecture 

level. We provide a comprehensive treatment of this property. The treatment 

employs architectural contexts such as neighboring constituents, types, 

containing sub-architecture, and global architecture, to facilitate the design and 

analysis of access control. Our approach combines researches from software 

architecture and security, and it is the first approach that addresses the access 

control problem from an architectural level. The feasibility of our approach is 

illustrated through our design and analysis of four significant case studies.  

A usable formalism for modeling and reasoning about 

architectural access control. We propose a secure architecture description 

language that can unify related security concepts, such as subject, principal, 

permission, resource, privilege, safeguard, and policy, at the architecture level. 

This language combines our base extensible architecture description language, 

xADL, with another extensible security policy language, XACML. This formalism 

is suitable for security design and analysis.  We have illustrated this by designing 

two significant in-house applications, a secure coalition application and a secure 

file sharing application, and by analyzing two large-scale third party applications, 

Firefox and DCOM. These applications adopt different types of access control 

policies. Our validations demonstrate that our approach can be utilized for a wide 

range of security properties.  
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An algorithm for checking whether the architectural model 

maintains proper access control at design-time. Based on the modeling of 

access control properties at the architectural level, we have developed an 

algorithm that can check whether a componentized and networked software 

system violates specified security policies for the constituents and the 

architecture at design-time.   

A novel approach to constructing secure connectors. Our 

treatment of access control at the architectural level is centered around 

connectors. We provide one type of secure connector that can securely route 

events to appropriate components when used in event-based software, like the C2 

style. This connector has been used in one of our significant case studies, the 

secure coalition application. We also provide one type of composite connector 

that can achieve the conjunction of the access control properties of its constituent 

connectors. This type of connector has been used in another case study, the 

Impromptu file sharing application. Our treatment of connectors extends existing 

understanding and techniques of connectors and provides techniques and 

notations for handling richer connector semantics.  

A suite of usable tools to design and analyze secure software. 

We supply a suite of usable tools to support our approach. We have extended our 

base architecture development environment, ArchStudio, with editors that allow 

architects to design access control properties and analysis tools that can check 

the proper access control. We have provided a framework that can be used to 

write secure software in the C2 architecture style. We have also provided run-

time support tools for executing software written using this framework. Both the 

14 



 

framework and the run-time support tools have been used in developing the 

secure coalition application.   

1.5 Overview of Dissertation 
The remaining part of the dissertation is organized as following. 

Chapter 2 introduces the basic notions of security, discusses the classic 

security models, and surveys how previous software mechanisms have attempted 

to describe, analyze, and enforce security with a focus on component 

specifications and architectural approaches.  

Chapter 3 defines the basic concepts of architectural access control, gives 

an overview of the proposed secure architecture description language, Secure 

xADL, discusses the central roles that connectors play in our approach, 

establishes the different architectural contexts that are involved in making access 

control decisions, and presents an algorithm that can check whether the intended 

architectural access should be granted within the given contexts.  

Chapter 4 extends the previous chapter to handle large scale access 

through the role-based access control model, to handle heterogeneous access 

through trust management, and to handle content-based access among interfaces. 

It also outlines how dynamic architectural execution, including instantiation, 

connection, and message routing, can be controlled. 

Chapter 5 illustrates the tool support. It first presents our 

implementations of the evaluation engines for the various access control models. 

After presenting an overview of the base architecture development environment, 

ArchStudio, the chapter elaborates on how design-time and run-time support is 

built into this environment. 
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Chapter 6 presents four case studies to illustrate and help validate the 

hypotheses: the development of the C2-based secure coalition application and the 

Impromptu file sharing application, as well as the analysis of Firefox and DCOM.  

Finally, Chapter 7 summarizes the research and discusses future work. 
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2 Background and Related Work 
In this chapter we introduce the basic notions of security, discuss the 

classic security models, and survey how previous software mechanisms has 

attempted to describe, analyze and enforce security, with a focus on component 

specifications and architectural approaches.  

2.1 Security Overview 
Because security is a very broad subject, this section only gives a brief 

overview of basic security concepts. For other security topics, Bishop provides a 

comprehensive and recent overview [14]. 

The main security properties are confidentiality, integrity, and 

availability [90]. Confidentiality refers to that there is no improper information 

disclosure. Integrity refers to that there is no improper information modification. 

Availability refers to that there is no improper denial of service to legitimate users. 

The focus of this research is integrity, which is usually enforced by controlling 

access to protected resources.  

The terms of security policy, security model, and security 

mechanism are defined as follows. Security policies define what rules are to be 

enforced and what goals are to be achieved. A security model provides a formal 

representation of security policies. Security mechanisms are hardware devices 

and software functions used to implement security policies [122].  

The most basic type of security mechanism to enforce secure access, 

solidly established ever since the seminal work of Anderson [4], is a reference 

monitor. The reference monitor is a trusted computing base (TCB) that is 
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trusted to intercept every possible access from external subjects to the secured 

resources and assure that the access does not violate any established policy. 

Widely accepted practices require a reference monitor to be tamper-proof, non-

bypassable, and small. A reference monitor should be tamper-proof so that no 

alteration of it is possible. It should be non-bypassable so that each access is 

mediated by the reference monitor. It should be small so that it can be thoroughly 

verified. A more comprehensive and deeper treatment of reference monitors can 

be found at [14]. 

Security policy composition, which occurs when multiple sub-policies 

coming from different sources are combined into an integral policy, has been 

extensively studied [19, 66]. The study has investigated questions such as what 

operations are available, how to decide whether to grant or reject an access 

request, and how to resolve conflicts between sub-policies.  

2.2 Security Models 
There are different types of security models. Two most common types are 

access control models and information flow models. 

2.2.1 Access Control Models 
Two dominant types of access control models are discretionary access 

control (DAC) models and mandatory access control (MAC) models. In a 

discretionary model, access is based on the identity of the requestor, the accessed 

resource, and the permission that the requestor has on the resource. The 

permission can be granted or revoked at will by the owner of the resource. 

However, in a mandatory model, the access decision is made according to a policy 

by a central authority.  
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Figure 2-1, Access Control Matrix 

The Access Matrix Model, depicted in Figure 2-1, is the most common 

discretionary access control model. It was first proposed by Lampson [79] and 

later formalized by Harrison, Ruzzo, and Ullmann [55]. In this model, a system 

contains a set of subjects that has privileges (also called permissions) and a set 

of objects on which these privileges can be exercised. A privilege is usually a 

permission to perform an action on an object. An access matrix specifies what 

privileges a subject has on a particular object. The rows of the matrix correspond 

to the subjects, the columns correspond to the objects, and each cell lists the 

allowed privileges that the subject has over the object. The access matrix can be 

implemented directly, resulting in an authorization table. More commonly, it is 

implemented as an access control list (ACL), where the matrix is stored by 

column, and each object has one column that specifies privileges each subject 

possesses over the object. A less common implementation is a capability 
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system, where the access matrix is stored by rows, and each subject has a row 

that specifies the privileges (capabilities) that the subject has over all objects.  

 

Secret 

Classified 

Unclassified 

Top Secret 

Figure 2-2, Dominance Lattice 

Mandatory Access Control models are less common and more stringent 

than discretionary models. They can prevent both direct and indirect 

inappropriate access. The most common types of mandatory models work in a 

multi-level security (MLS) environment, which is typical in a military setting. 

In this environment, each subject (on behalf of a user) and each object is assigned 

a security label. The labels have dominance relationship between each other, 

forming a lattice [30]. For example, in Figure 2-2, the label “top secret” 

dominates the label “secret”, the label “secret” dominates the label “classified”, 

and the label “classified” dominates the label “unclassified”. The label on an 

object specifies the sensitiveness level of the information, and the label on the 

subject identifies the clearance and trustworthiness that the subject has. The 
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subjects/objects with a dominating label are at a higher level, and the 

subjects/objects with a dominated label are at a lower level.  

The most famous MLS MAC model, which is a model for confidentiality, is 

the Bell-LaPadula model [6]. The model specifies two rules that must be 

satisfied by each access to protect confidentiality: 1) no read up (originally called 

simple security): a subject is allowed reading an object only if its security 

clearance dominates the security level of the object. That is, the label of the 

subject is over the label of the object in the lattice. Thus, a low-level subject 

cannot read a high-level object. 2) no write down (originally called *-property) : a 

subject is allowed writing to an object only if its security clearance is dominated 

by that of the object, so a high-level subject cannot write to a low-level object (to 

leak more sensitive information intentionally or unintentionally). These rules 

prevent confidential information of sensitive objects from flowing to less 

trustworthy subjects.  

Another important MLS MAC model is the Biba model [10]. This is a 

model for integrity, and can be considered as a mathematical dual of the Bell-

LaPadula model. The model assigns an integrity label to each subject and object, 

as the confidentiality label of the Bell-LaPadula model. The Biba model has two 

principles. The first is “no read down”: a subject can only read an object whose 

integrity label dominates its own so it can trust the integrity of the object. The 

second is “no write up”: a subject can only write to an object whose integrity label 

is dominated by its own so it won’t violate the integrity of the object. These rules 

prevent information stored in lower level and less reliable objects from flowing to 

and affecting higher level and more reliable objects.  
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Both the Bell-LaPadula model and the Biba model work in a static 

environment, where the security labels of subjects and objects change little, if any. 

The Chinese Wall model [20] can be considered as a dynamic mandatory 

access control model. In this model, objects are assigned to different domains. 

Each domain represents its own interest, and its interest potentially conflicts with 

those of other domains. Initially, a subject can access any domain initially. 

However, once it is granted access to a domain, it is prohibited access of any 

other conflicting domains thereafter. It is essentially limited within the wall of its 

own domain. The Chinese Wall model is a model of dynamic separation of duty, 

and can be mapped to the Bell-LaPadula model if dynamic security labels are 

allowed in the Bell-LaPadula model [118].  

Both the Bell-LaPadula model and the Biba model originate from a 

military setting. They do not fit well in a commercial environment. The Clark-

Wilson model [23] summarizes many common security rules practiced in 

commercial activities. It defines four basic criteria that require authenticating all 

subjects, auditing all activities, allowing only well-formed transactions, and 

separating duties. The model has two types of data items and two types of 

procedures. Data items are either constrained data items or unconstrained data 

items. Procedures are either integrity verification procedures or transaction 

procedures. Constrained data items are the items whose validity is verified by 

Integrity Verification Procedures. These data items can only be changed by 

Transaction Procedures. The model also requires that administrators must certify 

all procedures and the system should enforce these procedures. This model is not 

as formal as other models, though. It is not easy to analyze and enforce.  
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2.2.2 Information Flow Models 
Mandatory Access Control models can prevent overt channels that allow 

inappropriate information flows, but they are still vulnerable to covert channels 

where an information flow exists in a clandestine manner utilizing stealthy 

storage or timing facilities [78]. Information Flow Models are confidentiality 

models that are also called secrecy models. These models are interface models 

that specify how the information should or should not flow between subjects so 

that there are no covert channels. They do not suggest how this can be achieved 

[90].  

There have been many proposals of different information flow security 

properties. Most of them adopt a trace-based viewpoint. In these models, subjects 

are usually called agents. Agents are classified into two categories: low level 

agents and high level agents. A trace is inputs received and outputs generated 

from these agents. The focus of an information flow security model is to prevent 

low level agents from receiving any secret information from high level agents.  

The first information flow security property proposed is Non-Interference 

[49], which requires low level output should not be affected by high level input. 

This assures that a low level agent cannot get information about the high level 

inputs.  

Other properties have also been proposed. Non-Deducibility on Input [136] 

utilizes information functions to require that low level agents cannot deduce 

information about high level agents. Restrictiveness [87] requires that low level 

agents cannot differentiate between possible states after certain state transitions. 

Correctability [68] requires that a trace after a perturbation (adding or removing 
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an input) and a correction (adding or removing an output) is still a valid trace. 

Non-Deducibility on Strategy [147] specifies that a low level agent cannot tell a 

high level agent from a process formed from the composition of the high level 

agent and a strategy, where a strategy is a process that computes inputs to the 

high level agent based on previous histories.  

These models can be applied differently, depending on whether the 

secrecy is intended for high-level inputs only or both inputs and outputs, whether 

synchrony is required, whether non-determinism is allowed, and whether 

probability, instead of possibility, is considered. 

However, the programming language community looks at the problem of 

information flow security in a different manner [120]. Instead of focusing on 

prevention of any possible information flow, a less stringent but more realistic 

approach is taken to track the more explicit information flow. An example is 

given by Sewell and Vitek [129], where an intentional approach for information 

flow security is proposed, unlike the traditional extensional trace-based approach. 

This intentional approach assigns an agent “colors”, which designate subjects 

that have causally affected the agent. The colors can be considered as the type of 

the agent, and a type theory calculus is used to check the validity for information 

flow security. 

2.3 Formal Foundations for Composition 
In this section we survey how the problem of describing and analyzing 

security property for composite software systems is handled by the formal 

methods community. The definitions and theorems form the theoretical 

foundation for further study. 
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2.3.1 Abadi-Lamport Composition in Alpern-Schneider Framework 
In the formal method field, the theory of Abadi and Lamport serves as the 

foundation for composition. While the theory can deal with integrity adequately, 

it is insufficient for confidentiality.  

Abadi and Lamport proposes a general composition principle and a proof 

rule that compose concurrent specifications in a modular manner [1]. The 

composition works within the safety/liveness framework first proposed by Alpern 

and Schneider [3].  

In this composition framework, a state is represented by assignments to 

state variables. A trace is a set of state transitions caused by agents. A system 

specification describes all possible traces of the system. A property is a predicate 

that defines a set of traces. A property can also be viewed as the set of traces thus 

defined. There are two types of properties. A safety property defines the initial 

state and valid state transitions. A liveness property (also called progress 

property) specifies that the state transitions eventually occur. The specification of 

a system consists of the conjunction of various safety and liveness properties. 

Because systems, properties, and specifications can all be viewed as sets of traces, 

a system satisfies a property if the set of traces for the system is a subset of the 

traces for the property. The environment in which the system behaves can be 

specified in a similar manner, and a system’s specification is valid only when the 

environment satisfies its constraints.  

Reasoning about composite behaviors under this framework comprises 

two steps. The composition step uses the proof rule to establish under what 

conditions the properties of the subsystems can be connected together in the 
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composite environment. The refinement step finds a mapping under which the 

conjunctions of subsystem properties will imply the composite property. 

Informally, a composition decides when subsystems can be composed together, 

and a refinement ensures the composed system implements the needed 

composite system.  

The Abadi-Lamport composition/refinement rule provides a solid 

foundation for the general divide-and-conquer approach. However, because 

security properties are not functionalities, these properties are not preserved by 

standard notions of refinement or composition. This results in that assurance 

gained from formal proofs at one level of abstraction cannot necessarily be 

transferred to a more concrete level [92]. The reason, suggested in [91], is that 

general functional properties are sets of traces. Security properties, on the other 

hand, are sets of sets of traces, or power sets of traces. It is believed that luckily 

integrity, and hopefully availability, is mostly preserved under refinement and 

composition. However, confidentially is generally not preserved [125], because 

refinement into components can bring new chances of interaction and 

observation that are not possible in a monolithic system. This makes the security 

composition problem a hard problem. 

2.3.2 Integrity 
There have been many efforts that use Abadi-Lamport theory to directly 

verify security. Generally the security under consideration is integrity, and the 

problem will be reduced to prove the safety and liveness of the system. Some 

prominent examples found in literatures are summarized below.  
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Heckman and Levitt verifies the correct enforcement of access control 

policies by a set of distributed servers [56]. The verified system consists of two 

server processes, each implementing one system call. Both the safety property 

and the liveness property of the composite system are verified. A Higher Order 

Logic theorem prover is used to assist the proof. Of the 23000 lines of code for 

the proof, about 7% is about composition proof, 24% is for the refinement of 

safety, and 69% is for the refinement of liveness.  

Hemenway and Fellows apply the composition theorem with the Formal 

Development Methodology tools [57]. A system consisting of a workstation, the 

IPC communication, and the network communication is modeled. The 

enforcement of a mandatory access control policy is verified.  

Bieber uses a state machine to model the imperative properties and adopts 

temporal logic to describe declarative properties [13]. Even though he tries to 

handle information flow properties, the approach still mainly verifies safety.  

Composability for Security Systems (CSS) [107, 108] is another logic-based 

method to reason about security of components and their composition. It uses 

PVS [109] to prove theorems, with a custom developed proof strategy. It mainly 

investigates integrity of composite systems. 

The features of the CSS framework are: 1) it makes agents, which performs 

actions, explicit to support security analysis; 2) composing components will 

invoke environmental constraints automatically; 3) it does not support 

quantifiers, simplifying proofs at the cost of some expressiveness.  

The CSS framework provides two lessons for using logic in security 

verification. The first is the elimination of state translators. Previously a 
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translator between the states of components and the state of their composition 

was employed. This complicated the property proof. CSS instead uses a single 

common state that has a field for each component state. A theorem about the 

configuration of the system is also added. Both the common state and the 

configuration theorem simplify the proof. Secondly, they discover that a 

refinement proof is easier to perform than a property proof. To prove a lower 

level specification is secure, instead of following the more difficult route to prove 

the property on the specification itself directly, it is easier to first prove the 

security on a higher-level specification and then prove that refining from the 

higher level specification to the lower level specification preserves the security. 

This is a common theme in logic-based security design and analysis approaches 

[29, 48].  

The CSS framework is used to prove that a file manager always returns a 

secure file handle to a process manager [110]. The components are developed and 

different approaches to compose them are investigated to compare the tradeoffs 

of different architectures. The effort confirms that first proving the properties on 

the components and then proving a refinement mapping between the system and 

the components is easier than directly proving the composite property on the 

system. The effort also argues that this route can reuse existing proofs in proving 

newer properties. 

The techniques enumerated above demonstrate the effectiveness of the 

Abadi-Lamport theory. However, these examples also illustrate how labor 

intensive the verification activity can be, even for small problems. These 

approaches also require highly skilled professionals with special expertise.  
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2.3.3 Confidentiality: Information Flow Security 
As discussed before, confidentiality cannot be sufficiently treated in the 

Abadi-Lamport composition. Researchers took a different path towards this 

property. They have proposed frameworks unifying information flow security 

properties and have studied composing these properties under the frameworks.  

Unifying Framework. The various information flow security properties 

listed in Section 2.2.2 have been proposed with different intentions. These 

properties operate under different formalisms, making comparison among them 

difficult. There have been many efforts to unify these properties under a single 

formal framework so that the properties can be compared, deeper insights can be 

gained, and a consensus on which property is the most desirable might be 

reached. A unifying framework can also provide a more solid foundation to study 

the composition of these properties under different operations. 

Naturally, most unifying frameworks are based on trace and logic because 

these are used for defining most of the properties originally. Four representative 

frameworks are outlined here. These efforts lay down the foundation to study 

securely composing abstract computations for confidentiality. 

John McLean proposes the first such framework, Selective Interleaving 

Function (SIF) [89, 91]. It views each information flow security property as a 

function that takes two traces and interleaves fragments of these traces to 

generate a new trace. Different properties can be described using corresponding 

functions that takes related fragments and perform appropriate processing on the 

first and the second trace. A partial ordering among the proposed properties is 
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established, based on the implication relationships between the equivalent 

functions of these properties.  

Peri et al. suggest a simple unification framework based on the many-

sorted logic [111]. They study a limited set of proposed properties with the logic 

and restate the properties using formulas of the logic. 

MAKS is another concise unifying framework [85]. Its basic building 

blocks are Basic Security Predicates. A predicate can be Removal (R), Backward 

Strict Deletion (BSD), Backward Strict Insertion (BSI), Backward Strict Insertion 

of Admissible Events (BSIA), Forward Correctable Insertion (FCI), and Forward 

Correctable Deletion (FCD). These predicates describe operations available on 

traces. MAKS proves that existing properties can be constructed from these 

predicates. The implication relationship between the predicates can be used to 

order the corresponding security properties. The result is illustrated in Figure 2-3. 

Halpern and O’Neill uses a modal logic of knowledge to unify the various 

properties [53]. Their framework models states of both the agents and the 

environment. The framework extends the notion of Non-Deducibility on Input 

[136] in several aspects. Firstly, its notion of secrecy allows asymmetric secrecy 

from one agent to the other, unlike the symmetry of the original definition. Since 

the secrecy is modeled as knowledge, it can be more specific on what is to be 

guarded, relieving the requirement that everything is a secret. Secondly, its 

notion of a trace (called Run in the framework) makes time more explicit. It 

introduces an allowability function based on time that can uniformly handle 

complete synchrony, complete asynchrony, and any middle points between the 

two extremes. Thirdly, it also introduces a probability measure to handle 
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probabilistic secrecy. This measure can be either a global measure on all possible 

runs, or a locally defined one on partitions of runs. In addition to these 

extensions, using model logic of knowledge also enables the framework to model 

resource-bound adversaries where revealing of secrecy is computationally 

expensive.  

 

Figure 2-3, Information Flow Properties, from [85] 

 
Some unifying frameworks based on process algebras are also suggested. 

Process algebras are compact, can express composition naturally, and can handle 

situations where traces on inputs and outputs are insufficient. For example, 

process algebras can specify that a low level agent should not get any information 

by observing a high level agent being deadlocked. This is a possibility that is not 

addressed in trace-based formalisms. 
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Security Process Algebra (SPA)[40, 41, 43] is a security extension to the 

process algebra Calculus of Communicating Systems (CCS) [100]. It views 

various definitions of information flow securities as requirements on the 

processes, and uses equivalence relations to classify those properties based on 

their implication relationships. It uses trace equivalence and test/failure 

equivalence to classify existing properties, and proposes behavior equivalence as 

a stronger definition of equivalence. The behavior equivalence is based on weak 

bisimulation of processes, where processes are equivalent if they can accept the 

same nondeterministic events. Based on this notion of equivalence and the 

definition of Non-Deducibility on Strategy [147], SPA proposes a new security 

property, Bisimulation Non-Deducibility on Composition, where a high level 

agent can compose with a general process.  

Ryan and Schneider applies a different process algebra Communicating 

Sequential Process (CSP) [62] to unify information flow properties [119]. They 

eliminate the difference between inputs and outputs, viewing them as just events. 

They use power bisimulation to unify those properties. Power Bisimulation is a 

different equivalence than the weak bisimulation used in the Security Process 

Algebra. 

Composition. The composition problem has received significant 

attention within the information flow security community. The general question 

to be answered is: given a component with one property and a component with 

potentially different properties, when they are composed using one composition 

construct, what property will the composite system satisfy [91]? A simplified 

version is: when two components with one property are composed using a 
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particular composition construct, will the composite system also satisfy that 

property? If yes, then it can be said that the property is compositional 

(composable) under that composition construct.  

The notion of composition depends on the formalism adopted. Selective 

Interleaving Function classifies composition into three different constructs [91]. 

In a product composition, two components are juxtaposed, without any 

interaction. In a cascade composition, one component’s output is fed as another 

component’s input. In a feedback composition, in addition to the input/output 

relationship established in cascade, the output of the second component is also 

the input of the first component, forming a loop between the two components.  

Some representative results from studying composition under these 

constructs are summarized below. It is proved in [91] that the feedback 

composition retains less security properties than the product composition and 

the cascade composition, because it is too restrictive on what to accept and too 

generous on what to produce. MAKS only considers product composition and 

cascade composition [85]. It uses a powerful lemma to unify known composition 

results. MAKS reveals why certain properties cannot hold under composition and 

suggests what emergent behaviors (behaviors that only exist in a composite 

system) can emerge under composition. Zakinthinos proposes a simple bunch-

theory based framework, where a bunch is the content of a set [148]. The 

framework studies both cascade and feedback and discovers that properties 

eliminating dependencies on inputs are preserved under feedback composition. 

Peri et al. [111] study the composition problem under the many-sorted logic and 
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prove compositional properties in cascade and feedback composition using PVS 

[109].  

Composition takes a different form in Security Process Algebra [41]. It is 

formed by the parallel execution of processes. These processes only synchronize 

on common complementary actions when one process’s output is another’s input. 

The algebra studies whether certain properties can still hold when the restriction 

operator and the hiding operator applies on the composition operator. The 

Bisimulation Non-Deducibility on Composition property has to be extended to its 

strong variant to be composable. A model checking tool, compositional security 

checker [42], is used to check the compositionality of security. The power 

bisimulation proposed in [119] is also composable.  

Santen et al. views the compositional problem under the 

refinement/composition perspective [125]. They argue that traditional 

possibilitistic secrecy is too strong, requiring too many sufficient conditions and 

providing too few necessary conditions. They suggest that in a refinement setting, 

if a concrete specification preserves the same probability of discovering secrecy as 

an abstract specification, then it is a secrecy-preserving implementation of the 

abstract specification. Santen et al. discovers that failing to hold security under 

composition comes from the new window of observation opened up by 

decomposing a system into components. 

Discussion. The information flow security property captures a natural 

notion of secrecy. Despite its general appeal and two decades of research for it, 

the topic remains mostly of an academic interest [117]. In real systems, high-level 

agents do interact with low-level agents. Even among researchers, there is no 
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universally accepted consensus about what is the best definition and formalism to 

characterize the information flow security property. This can be seen from the 

many proposed properties and even more frameworks unifying them. These 

properties are too remote from a real system and few real policies care about 

information flow security. The composition mechanisms are very primitive and 

far from real connection facilities. Finally, information flow security models are 

very difficult to build. Their canonical definitions took a form of an inductive or a 

universally quantified format, which is not constructive at all. It may be necessary 

to retreat to building a traditional access control model first and performing 

covert channel analysis afterwards [90, 99]. As suggested in [117], “non-

interference is little more than a rather intriguing topic of arcane debate, at best 

the source of compelling theoretical challenges on which learned but largely 

irrelevant papers can be written.” In spite of its appeal and abundance of 

mathematically beautiful results, information flow security might not be very 

relevant and practical for real software.  

2.4 Component Specifications of Software Security 
After surveying the theoretical results on security, we will discuss two 

types of software techniques that describe, analyze, and enforce security for 

componentized and networked software systems in the remaining part of this 

chapter. This section focuses on how a component can be specified for its security 

requirements and provisions. The next section elevates the abstraction to the 

architectural level and surveys related approaches. For a more comprehensive 

discussion of software mechanisms utilized in complex systems to handle 

modular security, please see [113].  
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This section investigates techniques that support explicit component 

security specification. During composition, these specified components should be 

combined consistently, resolving potential conflicts and accomplishing system 

wide security.  

2.4.1 Computer Security Contract 
Computer Security Contract (CSC) addresses how to disclose the security 

property of a component to others [72, 73]. It tries to answer the following 

questions: how to characterize the security properties of a component, how to 

access these properties at runtime, how to characterize the composite security 

properties when a system is composed out of several components statically or 

dynamically, and whether the composite properties are also available at run-time.  

Computer Security Contract explicitly specifies security properties of 

component interfaces. The interface specifies ensured and required security 

properties of a component using logic. When the components are composed 

together, a composite logical description is deduced to capture the ensured and 

required properties of the composite component. These properties can be 

accessed at run-time. An interface with reasoning capability and knowledge 

storage is named Active Interface.  

The basic form of the logic is an atom describing three items: the security 

operation, the security credential used in the operation, and the data operated by 

the operation. For example, an encryption operation takes a key as the credential 

and a stream of data for encryption. 

The CSC framework operates in an event-based environment. When a 

component needs a service, it broadcasts a request, and becomes the focal 
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component. A candidate component is the component responding to this request. 

If the two components can successfully negotiate and find a way to satisfy the 

required security properties of each other, then a binding is established between 

the two components, forming a composition. The composite contract is the 

composition of the contracts of the two components, with the required property 

of the candidate component as the composite required property, and the ensured 

property of the focal component as the composite ensured property. After a 

successful negotiation, both the focal and candidate component reconfigure them 

to behave as specified by the contract. 

 

Figure 2-4, Active Interface, from [73] 

To enable the run-time access of security properties described by 

composite contracts, each component has an interface called the Active Interface. 

The interface consists of an identifier verifiable through a digital certificate, a 

traditional functional interface describing the available functions, a read-only 

public security knowledge database providing the ensured and required security 
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property of the component, and a read-write protected computer security 

contract base containing all the active contracts that the component is currently 

bound to as a focal component. The contract base will expand and shrink, as the 

component engages in different compositions. However, each candidate 

component bound to a focal component cannot see the contract of other 

candidate components, providing a protection among the components. The 

structure of the active interface is shown in Figure 2-4.  

The logic-based contract is expressed with a Prolog-like form of logic 

programming [74]. A contract has a set of rules each of which has a header and a 

body. The header is a predicate that can be derived if all predicates in the body 

are satisfied. An ensured property is a rule containing only a header. A required 

property is a rule containing only a body. A compositional contract is the result 

derived from the rules of the components. Logic programming allows more 

powerful automation and reasoning. A rule can use predicates from the 

authentication logic proposed in [21]. The authentication logic reasons about the 

authentication and belief relationships among components, and provides a well-

established foundation to from a compositional security property from 

component contracts.  

In summary, the Computer Security Contract approach extends the 

traditional functional interface of a component with an extra-functional interface 

about required and ensured security properties. A logic approach is used to 

describe these properties. Logic reasoning is utilized in negotiating a composition 

of components and determining the composite security properties. A run-time 

structure provides storage and access of these properties. 
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While this approach is promising, some issues need to be resolved. Firstly, 

a more expressive and efficient expression mechanism is needed. The current 

basic atom describing security operations, credentials and data does not capture 

most entities involved in security design and analysis. How to improve its 

expressive power yet retain its computation efficiency is still an open research 

question. Secondly, the current composition mechanism is still rather simple, 

mirroring a function call between a caller and a callee. Existing logics on 

functional composition can be applied to this composition mechanism. Other 

composition mechanisms, possibly involving more than two entities, need to be 

incorporated [75]. Thirdly, the current contract base is stored at the focal 

component and requires modifying the component, so it depends highly on one 

party of the component. Whether this is the only or the best choice is arguable. 

When a general component container is used, it might be a better place to serve 

as the composite contract base. Other forms of composition might choose 

different places to store security contracts.  

2.4.2 cTLA Contract 
Hermann proposes a more elaborate component specification to describe 

and verify security properties of component-based systems [60]. Instead of the 

simple first order predicate logic used in the Computer Security Contract, a 

compositional extension to the Temporal Logic of Actions (TLA)[77], cTLA, is 

used to specify the behavior contract of components and their compositions.  

The cTLA is a linear time temporal logic describing the safety and liveness 

properties of systems (see Section 2.3.1). The contract written in cTLA models 

each component as a process and delineates the state transitions of the process 
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for the component, forming a state machine. The state machine can be used to 

enforce security properties, allowing valid state transitions and prohibiting 

invalid ones, as described in [127]. 

The composition feature of cTLA is based on concurrent execution of 

processes. cTLA enables composition from implementation-oriented processes, 

constraint-oriented processes, and processes combining both. The composition 

feature of cTLA supports the property of superposition, where a property of a 

process is also a property of the embedding system.  

The superposition of composition greatly simplifies the verification of 

compositional systems. The verification can utilize a pre-developed framework 

containing theorems about shared global settings and the properties of 

constituent components. To prove a more concrete system holds the same 

property as a more abstract system, a correspondence between a process in the 

latter and a component in the former should be established, most probably in the 

form of a refinement mapping.  

A Role-based Access Control policy is modeled as cTLA processes. The 

validity of the access control policy of an e-commerce procurement application is 

verified using the refinement mapping technology suggested above. That 

experience suggests that a refinement mapping is relatively easy to find, and 

much of the verification work can be automated with tools.  

Compared to the Compositional Security Contract [73] (see Section 2.4.1), 

cTLA does not focus on what a compositional contract will be when composing 

components, and how a run-time system can support reasoning, storage, and 

utilization of this contract. Composition Security Contract is a bottom-up 
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approach. cTLA is another instance of those top-down logic-based refinement 

verification methodologies [36, 134]. Despite the initial positive experience, the 

approach faces the same challenges, namely finding the suitable security 

properties for the methodology and effectively conducting the proof with more 

automation and less dependence on human experts. 

2.4.3 Discussion 
The techniques proposed in this section are only a sample of possible 

alternatives. They stand out by their explicit use of logic-based component 

specification. Using logic facilitates automatic reasoning and proving during 

composition and refinement. One issue beyond simple composition is the 

emergent property problem. Emergent properties are those properties that only 

come from composing components. Undesirable emergent properties might be 

the result of under-specification of the components or implicit assumptions made 

by the components. Specifications of components should be complete so no 

undesirable properties will emerge during composition [61, 149]. Desirable 

emergent properties are also challenging. An open research question is whether a 

set of secure components can be composed to achieve more security that what is 

available through a single component [32] and how this can be accomplished.  

A problem with the component specification approach is how trustworthy 

the specification is, because there might be no proof that the real behavior of the 

component is the same as that specified in its specification. One possible 

mitigation is using certification [47]. Some trusted third party can certify the 

conformance between the specification of a component and its underlying 

behavior and issue a certificate difficult to forge to the component. The certificate 
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can easily be verified during composition. This is not a complete solution, but it 

can be part of the foundations to support secure composition of components. 

2.5 Architectural Approaches to Software Security 
Software architecture has been proposed as an effective method to design 

and analyze large and complex software systems. Most of the previous work has 

focused on functionality. This section will examine its support for security. Some 

questions specific to an architectural approach are: Does the technique employ a 

formal architecture model? If there is a formal architecture model, are 

connections between components buried in an ad hoc manner, or are the 

connections abstracted as first class connectors? If connectors are used, how do 

they facilitate the expression and enforcement of security? 

This section begins by examining security extensions of standard object-

orientated techniques (Section 2.5.1 and Section 2.5.2). It then turns to 

approaches without an explicit notion of connectors (Section 2.5.3 and 2.5.4). 

The next discussion is about architectural models supporting explicit connectors 

(Section 2.5.5 and 2.5.6). The issue of security in architecture evolution is 

discussed in Section 2.5.7.  

2.5.1 Object-Oriented Labeling 
Like modeling software architecture with standard object-oriented 

notations [93], some design techniques extend object-orientated methodologies 

to support security. Herrmann introduces a methodology to analyze information 

flow security [59]. The theoretical foundation of the methodology is a 

decentralized labeling model. The meta-model used in the methodology is the 
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Common Criteria [22]. To facilitate the adoption of the methodology, a tool based 

on graph rewrite system is also developed.  

A label in the decentralized labeling model [105] identifies a set of 

principals. One of them is the owner; the others are readers who are granted 

reading access by the owner. An “act for” relationship can be defined between 

principals so one principal can have the same reading privilege as the other 

principal. Operators are defined over labels to generate more restrictive or less 

restrictive labels. Each component, interface, method, and field of an object-

oriented design model is assigned a label. A label serves as an access control 

policy to define what kind of access is granted to which principal. The 

decentralized labeling model facilitates static analysis of information flow 

security for a model so labeled. 

The Common Criteria [22] defines a set of classes for concepts utilized in a 

security evaluation process. An asset is a resource needing protection. It has 

vulnerabilities, so it is exposed to threats. Risks are associated with these threats. 

Countermeasures can be deployed to fight the threats. However, 

countermeasures may contain vulnerabilities themselves, so more 

countermeasures are needed. For each asset, vulnerability, risk, threat, and 

countermeasure, a number is assigned to reflect its relative value, severity, or 

effectiveness. 

A graph rewrite system is a set of rules used in transforming graphs. Each 

rule specifies a pre-pattern that identifies the graph before transformation, a 

post-pattern that specifies the graph after transformation, an application 
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function that must be met by the attributes of the original graph, and an effect 

function that the attributes in the transformed graph will exhibit.  

Guided by the meta model of the Common Criteria, the object-oriented 

labeling methodology assigns a numeric value to each data item described in the 

object-oriented model. It also labels each component, interface, method, and 

field to reflect the current access control policy. Using graph rewrite rules, the full 

access control relationship is computed, so is the asset value of each data 

structure and data storage component. If some of the more precious assets might 

be exposed to malicious principals, a threat is identified, and the corresponding 

risks are assessed. If the risks are within the acceptable range, then the object-

oriented model is satisfactorily secure. Otherwise, either the label needs 

relabeling, or countermeasures should be deployed to attack the threats. The 

effectiveness of the new countermeasure needs to be reevaluated. Since 

countermeasures might bring in new vulnerabilities, this process will iterate until 

the risks fall into a range acceptable to the security assessor.  

This methodology integrates formal information flow analysis into 

mainstream object-oriented design techniques, resulting in a usable approach 

that can enhance the security of design. Its use of a graph rewrite system can 

easily integrate more knowledge about security analysis into the design process, if 

the knowledge can be embodied in a graph rewriting rule. 

The assessment on security is reached through a subjective evaluation 

process, thus the assurance provided by the methodology is at best qualified. 

Currently the methodology can only utilize one kind of formalism (object 

structure) and evaluate designs statically. Integrating multiple kinds of formalism 
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(object behaviors) and expanding the evaluation into a dynamic environment is 

worth pursing. 

A similar approach is MOMT [86], a methodology that adds multilevel 

security to the original Object Modeling Technique. The basic extension is to add 

a security label to attributes and operations of objects and classes in the static 

model, and add a security label to the events produced in the dynamic model. The 

MOMT methodology is not widely used, possibly due to its incompleteness. 

2.5.2 UML-based Security Modeling 
UML is a standard design modeling language. There have been several 

UML-based approaches for modeling security.  UMLsec [70] and SecureUML [82] 

are two UML profiles for developing secure software. They use standard UML 

extension mechanisms (constraints, tagged values, and stereotypes) to describe 

security properties.   

Aspect-Oriented Modeling [112] models access control as an aspect. The 

modeling technique uses template UML static and collaboration diagrams to 

describe the aspect. The template is instantiated when the security aspect is 

combined with the primary functional model. This process is similar to the 

weaving process of aspect-oriented programming. The work described in [71] 

uses concern diagram as a vehicle to support general architectural aspects. It 

collects relevant UML modeling elements into UML package diagrams. 

2.5.3 ASTER 
Bidan and Issarny proposes one of the first techniques to address security 

issues using an architecture description language supporting connectors [12]. 

Based on security requirements of components to be composed, the approach 
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uses the specification matching technique [150] and composes a customized 

connector out of base connectors and system-provided connectors to connect the 

components and meet those requirements. These connectors are implicit, though. 

In canonical software architecture paradigm, a connector handles 

communication issues between components. The quality of service of 

communication, such as security, can be handled via newly formed connectors 

composed of existing application-level connectors and system connectors [132]. 

This connector composition approach has the following benefits: 1) separation of 

concerns: computation, communication, and QoS of communication are handled 

by different constituent parts of the architecture; 2) limited impact on the 

existing architecture; 3) assurance of enforceability by the underlying system. 

The proposed approach addresses three types of security properties: 

encryption, authentication, and access control. An encryption specification of a 

component specifies the parameters of the encryption, such as the algorithm 

being used, the key size, and the session length. A component might use a set of 

encryption algorithms and have different levels of trust for each algorithm, with 

the highest trust on the most secure encryption. Based on the specifications, if 

two components can each find an algorithm sufficiently trusted and the 

algorithms are compatible (probably using the same algorithm and accepting 

keys of the same size), the components are bound together, and the connector 

will be the most secure connector that can be established between the two 

components. 

A similar process is applied to match the authentication requirements of 

the components. Each component specifies the authentication protocols that it 
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can use and the level of trust of each protocol. The most trusted protocol that can 

be mutually applied will authenticate the components.  

A different specification is used to specify access control policies [11]. For 

each component, the specification stipulates the types of subjects (classifications) 

and the types of access these subjects will be granted (access rules). When 

composing two components together, the composite classifications can be the 

union, intersection, or product from the classifications of the components. The 

composite access rules can be the logical conjunction or logical disjunction of the 

access rules of the components. Two types of match are defined to compare 

access control policies: a plug-in match if one policy subsumes the other and an 

exact match if they are equal.  

The ASTER configuration-based environment is extended to compose 

components having security specifications. The environment is based on a 

module interconnection language, and it can be used for run-time composition of 

components. 

This approach is among the first to specify security requirements for 

components and form composition based on the requirements (see also Section 

2.4). The approach is supported by a configuration-based design environment. 

The approach still has the following limitations: 1) The security specification is 

not very expressive. It is limited to certain aspects of certain properties, such as 

algorithms of encryption and protocols of authentication. 2) The match of the 

specifications is primitive. It is mostly a selection process based on parameters of 

the specifications. 3) Even though the approach argues for composition of 

connectors, it is still oriented towards module interconnection, lacking an explicit 
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notion of connector that stores and enforces the composite security property. 4) 

The approach does not directly address how composition can be applied to 

composite systems.   

2.5.4 System Architecture Model 
System Architecture Model (SAM) is a methodology that can be used to 

model and analyze security of system architectures [29]. The methodology 

models security as a global constraint on the system architecture. It then 

propagates the constraint down to the components, and verifies that the 

components satisfy the constraint collectively. The methodology then applies the 

same process to model and analyze each component individually.  

The System Architecture Model (SAM) integrates a model-oriented 

formalism, Petri net, and a property-oriented formalism, Temporal Logic. Its 

lower level (proposition level) utilizes Place-Transition nets and Real-Time 

Computation Tree Logic, so the model can be automatically analyzed. At the 

higher level (first order level), it adopts Predicate/Transition nets and First Order 

Temporal Logic, because they are more expressive. The security modeling and 

analysis is based on the higher level notions. Petri nets describe components and 

connectors, and Temporal Logic specifies architectural constraints. 

The methodology consists of the following steps [29]: 

1) Construct a top-level secure system architecture model.  

2) Specify system wide architectural security constraint patterns. These 

patterns are expressed in temporal logic, and they involve only ports of the 

components. 
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3) Decompose the system wide security constraint patterns into individual 

constraint patterns on components.  

4) Verify the consistency between the system wide constraint patterns and 

the component-level constraint patterns. The verification generally is not 

decidable. However, since the component constraints are derived from the 

system wide constraints and the architecture connects components together, a 

smaller Petri net can be designed to replace each component, using conversion 

guidelines delineated by the methodology. The resultant larger and executable 

Petri net can be used to verify the consistency between constraint patterns from 

two different levels.  

5) Incrementally design and verify components. Apply the about four steps 

for each component. 

 

Figure 2-5, System Architecture Model, from [29] 
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The overall methodology is illustrated in Figure 2-5, which shows the 

environmental constraints and component constraints at the high level, and how 

constraints on one component are inherited as the composition constraint in the 

low level. 

The SAM methodology is applied to model the Resource Access Decision 

Facility of CORBA. It is verified that the architecture satisfies the security 

constraints: the access control decision is always in accordance with the current 

policy.  

This methodology can model the security of a system architecture in a 

systematic and formal manner. It can assure that a system composed from 

components satisfies the security requirements. It claims to be one of the first 

such efforts that model architectural security in a composable and verifiable 

fashion.  

The methodology achieves scalability through the classical divide-and-

conquer mechanism. Once the constraints on each component are verified to 

preserve the architectural constraints, each component can be designed and 

analyzed separately. As long as a component conforms to its part of the full 

contract, the global property will not be affected. 

The SAM methodology is a top-down approach. It starts with the security 

requirements of a system, and assigns responsibility to each component, so their 

composition can be verified for satisfying the requirements. The methodology 

could not be applied in a bottom-up manner, where the composite security from 

composing components needs to be reasoned from the security of those 

components. 
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The methodology also models security as a form of correctness. It treats 

security as a property that can be expressed by first order temporal logic. While 

this can cover a large set of problems, the approach cannot address problems in 

the covert channel domain. This methodology is an architectural level integrity 

verification methodology for safety composition and refinement (see Section 2.3.1 

and 2.3.2). 

In step 3 of the methodology, how to decompose the global constraints 

into each component is not always straightforward. With a given architecture, 

there can be several alternatives to allocate constraints. How to decide the 

tradeoffs of the alternatives is worth exploration. More challengingly, when the 

architecture is still under design and it can still be changed to accommodate 

different security property, performing such an allocation and tradeoff analysis 

becomes even more difficult. 

Since the System Architecture Model is based on Petri nets, it does not 

have the notion of explicit connectors. The “connector” is actually the transitions 

between places, not the usual notion of communications between computations. 

Therefore, the methodology does not have a step to incrementally design and 

verify “connectors”. While the temporal logic-based formalism is applicable to 

other software architecture description languages, extrapolating the Petri net-

specific mechanism might not be very straightforward. 

2.5.5 Connector Transformation 
Given the importance of connectors in architectural development [95], 

constructing them effectively is of great importance. Handcrafting each connector 

can be expensive. Existing connectors do not always provide all required qualities. 
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Like composing general application using existing components, connector 

composition is aiming at reducing development efforts. Spitznagel and Garlan 

proposes a set of operators that can be used to transform an existing connector 

into a new connector that provides required security property [131].  

The motivating problem of the approach is to add security property to a 

generic communication mechanism. In the example given in [131], it is to add 

Kerberos authentication support to Java Remote Method Invocation. One 

possible solution is to ask the developer to modify the original application that 

uses the communication mechanism. This solution is rather expensive, and the 

result is not maintainable. A second possibility is to modify the generator 

generating stubs for the communication mechanism so the mechanism provides 

the security capability at appropriate locations. This method requires expertise of 

the communication and security mechanisms, and it cannot scale to other 

properties because a new property will require further modification of the 

modified mechanism.  

The authors propose a solution employing a set of transformations on the 

original connector to produce a new connector that can meet both the 

communication and security requirements. A tool can be developed to automate 

the process. This transformational method lowers requirements on the 

knowledge about the original communication mechanism. The general 

transformational method could be applied again on the resultant connector when 

the mechanism needs to provide other qualities.  

The transformation method is outlined in Figure 2-6, where l designates 

communication libraries, generated stubs, etc., below the application level, s 
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represents low level infrastructure services, t stores data and tables for 

information like locations of communicating parties, p is a policy specifying the 

proper use of these parties, and w collects the formal specification describing the 

connector’s proper behavior. 

 

Figure 2-6, Connector Transformation, from [131] 

The authors argue that the transformations on connectors should balance 

between formalism and practice, and the transformations should be useful, 

general and analyzable. They propose the following transformations for secure 

communication: data transformation that changes the format of data exchanged, 
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splice that combines two binary connectors into one new binary connector, 

adding a role that enables adding a new party to the interaction, session that 

makes a stateful connection stateless or vice versa, and aggregate that puts a set 

of connectors under the control of one controller.  

The Kerberos support is successfully added to Java RMI after these 

transformations. The engineering effort involved is reasonable, but the 

advantages gained are significant.  

They admit that their current technology only handles different types of 

transformations applied on a single type of connector, because a transformation 

requires knowledge of the specific connector. Finding a set of general 

transformations applicable to many types of connectors is a great challenge. The 

current formalism used in describing the transformations is still limited to the 

specific connector type. 

Transformational construction of connectors can be an effective way of 

providing extra functionality in connectors. However, finding a set of 

transformations useful, general, and analyzable remains a big challenge.  

Connector transformation can be considered as one method to introduce 

more aspects onto the base communication capability. The aspect methodologies 

provide a general framework that can handle many different aspects, but not 

much support specific for security is provided [113]. The connector 

transformation methodology utilizes a set of transformations useful in supporting 

security. Which methodology is more powerful and more secure, and whether a 

combination of both is possible, remain open research issues. 
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2.5.6 SADL 
Architecture Proof. Secure Software Architecture [104] is one of the 

few approaches that directly deal with security at the architectural level. Based on 

the correct refinement approach presented in [103], the Secure Software 

Architecture approach presents three unique features: it supports not only 

horizontal decomposition of architectures but also vertical decomposition 

between different layers of abstractions, it maintains a correctness retaining 

mapping between different layers, and it utilizes a canonical architecture 

description language that supports property refinement. The approach is 

illustrated in Figure 2-7.  

 

Figure 2-7, Secure Software Architecture, from [48] 
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The authors use the approach to prove the Bell-LaPadula [6] security of a 

secure extension to the X/Open Distributed Transaction Processing standard 

(SDTP). They argue that proving the security property at an architectural level on 

a standard has the advantage that any compliant products will possess the same 

security assurance without further proof. They develop different security 

extensions to the original architecture and prove that each extension preserves 

the required security.  

In the SDTP proof, the DTP standard partitions a distributed transaction 

processing system into three components: the application component that is the 

initiator of the transaction, the resource manager that manages resources of the 

transaction, and the transaction manager that coordinates the transaction. Three 

possible architectures that enforce Bell-LaPadula security are: 1) Place all three 

components into a single security level. 2) Put the application and the resource 

manager at different levels, connect them through a MLS (Multi Level Security) 

filter that enforces security, and use a full MLS transaction manager. 3) Use a full 

MLS application component, a full MLS resource manager, and a full MLS 

transaction manager. They prove that each architectural variation can preserve 

the required security. 

The reasoning power of the architecture definition language SADL is based 

on logic. During the refinement process, the mapping established between the 

higher level abstraction and the lower level abstraction must be both a theory 

interpretation and a faithful interpretation. That is, a true property at the higher 

level abstraction is also true at the lower level, and a false property at the higher 

level is also false at the lower level. In other words, the lower level architecture 
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implements the higher level architecture exactly. This is based on a completeness 

assumption on that all true statements at each level of abstraction can be derived 

from the specifications of that level. As will be clear later, this is a rather stringent 

requirement.  

After establishing the mappings between the proposed secure 

architectures, they manually prove that these mappings actually preserve the 

security properties.  

Implementation. The effectiveness of the architectural refinement 

methodology is demonstrated by implementing the secure distributed transaction 

processing (SDTP) architecture proposed above [48]. The demonstration reveals 

important properties of the methodology. 

The most important objective of the implementation case study is to 

determine whether applying transformations using only faithful interpretations is 

sufficient to derive the implementation level description from the most abstract 

descriptions. The non-definitive conclusion from the case study is that it is very 

difficult or even impossible. A less stringent kind of transformations always 

preserving security is showed to suffice for the derivation, but it requires very 

strong preconditions, which severely affects the applicability of such 

transformations. Eventually the authors have to introduce transformations that 

do not always preserve security, and they will check to assure that such 

transformations still retain security in each case. To prove that the 

transformations still preserve security, they utilize the same transformations 

used in architectural descriptions to prove the security perseverance of these 

transformations. They call this notion as “proof-carrying architecture” because of 
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the carrying along of transformations from architecture descriptions. Combining 

transformations that always preserve security and transformations that can be 

checked to preserve security together, they accomplish the goal of deriving a low-

level secure architecture from an abstract description.  

The study also demonstrates that rearchitecting can be an effective 

method to introduce security. Security is not an inherent property of the original 

architecture standard. It is an add-on feature after the architecture has been 

established. The methodology shows how to introduce and verify security on a 

legacy architecture. 

Transformations are a common software production technique. While they 

cannot achieve everything through a limited set of transformations, they verify 

the validity of transformations that they believe are generally useful. 

Also, the authors can derive the final implementation from the lowest 

“implementation-level” descriptions straightforwardly, due to the formality of 

facilities from the selected programming language. The argument for the 

programming language dependence is that this is necessary to assure no 

significant gap exists between the lowest level description and the code, and the 

confidence gained in the transformations and checking is not lost in the final step 

of software construction. 

Discussion. This experience suggests that employing mathematically 

sound transformations only, such as faithful interpretations or security 

preserving transformations, is too difficult for practical applications of the 

methodology. However, loosening the stringent requirements on transformations 

and checking security after transformations with the connection embodied in 
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architectural descriptions is more effective in verifying the security of the 

architecture. This is also demonstrated in [29], where verifying the consistency 

between architectural constraints and component constraints is facilitated by the 

fact that the latter is derived from the former.  

A common obstacle against a transformation and proof-based approach is 

that it requires significant expertise and is highly labor intensive (see also Section 

2.3.2). An automated tool simplifying the application of the methodology is 

possible, with the insights gained from the effectiveness of rearchitecting, the 

available stock of general and verified transformations, and the easiness of 

producing code from low level descriptions,.  

The authors plan to use light weight formal approach, design a lot, specify 

some, and prove just a little [133]. This approach would be more practical than a 

formal method that requires great efforts from methodology experts. 

2.5.7 Law-Governed Architecture 
Law-Governed Architecture [101] is a methodology arguing for not only 

the description of an architecture model but also its enforcement. The benefits of 

an enforced architecture model are two folds. Firstly, it can bridge the gap 

between a descriptive architecture and the system, enabling reliable reasoning 

about the system. Secondly, due to its carefully circumscribed flexibility, 

developers can enforce invariants of evolution when the system evolves during its 

lifetime. 

The focus of the Law-Governed Architecture approach is the evolution of a 

system in its operational context. An evolving system models three aspects of the 

system. The first is the system itself. The second is the explicit rules (called laws) 
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that govern the structure of the system, the evolution of the structure, and the 

evolution of the laws. The third is the environment in which a system lives and 

the laws are enforced.  

The laws can be classified into two categories. The system sub-laws govern 

the structure and behavior of the system. The evolution sub-laws regulate the 

development and evolution of the system and the laws themselves. Based on a set 

of initial laws, a system can evolve into other forms. During the evolution, certain 

rules are enforced, and these rules are called evolution invariants. Strong 

invariants are those invariants that not even the developer or the manager can 

change.  

Different types of systems, different kinds of laws, and different 

enforcement techniques can be used in Law-Governed Architecture. The laws can 

be enforced statically and centrally, through a persistent object base describing 

all program modules, rules of evolution, meta rules about rules creation and 

modification, and builders who conduct development and evolution. The laws 

can also be enforced dynamically and distributedly, by intercepting message 

exchanges between architectural components. 

The Law-Governed Architecture can be applied to enforce secure 

operation and evolution of a system. For example, a set of rules can be defined to 

require that one component cannot access data in another component. Rules can 

be refined into more detailed rules. They can also be relaxed to allow more 

permissive accesses. However, the strong invariants should never be violated.  
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In sum, Law-Governed Architecture not only models the architecture of a 

system but also specifies and enforces its evolution, through a set of reflexive 

rules. The rules can specify the security properties of the system. 

The limitation of the Law-Governed Architecture methodology lies in the 

expressiveness and enforcement of the laws. The laws must be enforceable, and 

the enforcement should be reasonably efficient. This limits laws that can be 

imposed. The methodology suggests that there still are many useful laws within 

the limit. Finding these laws remains an open research problem. 

2.5.8 Discussion 
This section has discussed several software architecture-related solutions 

proposed for handling security of componentized software systems.  

The simple extension of standard object-oriented notions with security 

information (Section 2.5.1) can be rather useful, when such a model comes into 

existence at a later stage of design. They can serve as a prelude to the secure 

program partition method [105], whose information flow security requirements 

on programs can derive from the secure object-orientated design models.  

UML is now widely accepted as the standard detailed design notations. 

Previous research shows it had some major shortcomings when used to describe 

software architecture [93]. Thus the techniques proposed in Section 2.5.2 might 

not be well suited for architectural security. With the recent introduction of UML 

2.0, this issue might need to be revisited.  

Security should be addressed as early as possible. This naturally leads to 

an architecture-based approach. Simple extensions to module interconnection 

models (Section 2.5.3) do not provide a formalism rich enough to express and 
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reason about architectural security concerns. Even models with a formal 

underpinning (Section 2.5.4) can mix the artificial requirements of the formalism 

and the underlying semantics of the real communication, and hinder the ability 

to reason about security in certain cases. 

An architecture model that features connectors (Section 2.5.5 and 2.5.6) 

can facilitate the analysis and design of security, because the security issue can be 

expressed clearly at an early stage, and reasoning about, composing and 

implementing security can be allocated into relevant connectors.  

An architecture model can also guide the proper evolution of a system 

(Section 2.5.7). The model can serve as a basis to prevent the system from 

degenerating into insecure variants. This still remains a big challenge for 

researchers.  

Compared to previous methods using architectural connectors (Section 

2.5.5 and 2.5.6), which only handles simple encryption and description functions 

but do not address other security requirements such as authentication and 

authorization, our approach supports the dominant security enforcement 

mechanism (namely access control), adopts an extensible architecture 

description language to express security modeling, uses connectors as a central 

vehicle for expressing and enforcing access control decisions, and provides a suite 

of support tools to realize these concepts. 
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3 Basic Modeling Concepts and an Analysis Algorithm 
This chapter elaborates on our connector-centric approach to solve the 

architectural access control problem: how can we describe and check 

access control issues at the software architecture level? We first define 

the basic concepts in architectural access control, and then we give an overview of 

the proposed secure Architecture Description Language, Secure xADL. After that 

we discuss the central roles that connectors play in our approach. Then we 

establish the different architectural contexts that are involved in making access 

control decisions. Finally we present an algorithm that can check whether the 

intended architectural access should be granted within the given contexts.  

3.1 Architectural Access Control 
We choose the discretionary access control model discussed in Section 

2.2.1 as the base security model, because it is the dominant model deployed and 

utilized by the majority of the componentized and networked software systems. 

We introduce the following core concepts that are necessary to model access 

control at the architecture level: subject, principal, resource, privilege, 

safeguard, and policy. 

3.1.1 Subject 
A subject is the user on whose behalf software executes. Subject is a key 

concept in security, but it is missing from traditional software architectures. 

Traditional software architecture generally assumes that a) all of its components 

and connectors execute under the same subject, b) this subject can be determined 

at design-time, c) it generally will not change during runtime, either 
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inadvertently or intentionally, and d) even if there is a change, it has no impact 

on the software architecture. As a result, there is no modeling facility to capture 

allowed subjects of architectural components and connectors. Also, the allowed 

subjects cannot be checked against actual subjects at execution time to enforce 

security conformance. We extend the basic component and connector constructs 

with the subject for which they perform, thus enabling architectural design and 

analysis based on different security subjects defined by software architects. 

3.1.2 Principal 
A subject can take multiple principals. Essentially, principals 

encapsulate the credentials that a subject possesses to acquire permissions. There 

are different types of credentials. In the classic access control model, the 

principal is synonymous with subject, directly designating the identity of the 

subject. But other types of principals provide indirection and abstraction 

necessary for more advanced access control models, as we will see in Chapter 4. 

The results for accessing resources will vary depending on the different principals 

a subject possesses.  

Principals encapsulate credentials, yet in one sense a subject is also one 

type of credential, from which an access control decision based on that subject 

can be made. Both subject and principals are summary credentials that collect 

and abstract more concrete types of credentials for further use. Such more 

concrete credentials can be something the accessing entity is (the identity), 

something the accessing entity owns, or something the accessing entity knows 

(such as the password). The authentication process associates these more 

concrete credentials to the more abstract subject and principals.  
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3.1.3 Resource 
A resource is an entity whose access should be protected. For example, a 

read-only file should not be modified, the password database can only be changed 

by administrators, and a privileged port can only be opened by the root user. 

Traditionally such resources are passive, and they are accessed by active software 

components operating for different subjects. In a software architecture model, 

resources can also be active. That is, the software components and connectors 

themselves are resources whose access should be protected. Such an active view 

is lacking in traditional architectural modeling. We feel that explicitly enabling 

this view can give architects more analysis and design power to improve security 

assurance.  

3.1.4 Permission, Privilege and Safeguard 
Permissions describe a possible operation on an object. Another 

important security concept that is missing from traditional ADLs is privilege, 

which describe what permissions a component possesses depending on the 

executing subject. Most current modeling approaches take a maximum privilege 

route, where a component’s interfaces list all privileges that a component 

possibly needs. This could become a source for privilege escalation vulnerabilities, 

where a less privileged component is given more privileges than what it should be 

properly granted. A more disciplined modeling of privileges is thus needed to 

reduce such vulnerabilities. We model two types of privileges, corresponding to 

the two types of resources. The first type handles passive resources, such as 

which subject has read/write access to which files. This has been extensively 

studied in traditional resource access control literatures. The second type deals 
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with active resources. These privileges include architecturally important 

privileges, such as instantiation and destruction of architectural constituents, 

connection of components with connectors, execution through message routing 

or procedure invocation, and reading and writing architecturally critical 

information. Little attention has been paid to these privileges, and the limited 

treatment so far has neglected the creation and destruction of  software 

components and connectors [145].  

A notion corresponding to privilege is safeguard, which describe 

permissions that are required to access the interfaces of the protected 

components and connectors. A safeguard attached to a component or a connector 

specifies what privileges other components and connectors should possess before 

they can access the protected component or connector.  

3.1.5 Policy 
A policy ties all concepts defined above together. It specifies what 

privileges a subject, with a given set of principals, could have to access resources 

that are protected by safeguards. It is the foundation for architectural 

constituents to make access control decisions. Components and connectors 

consult the policy to decide whether an architectural access should be granted or 

denied. 

There have been numerous studies on security policies [54, 102, 144]. 

Since our focus is on a more practical and extensible modeling of software 

security at the architecture level, our priorities in modeling policy are not 

theoretical foundations, expressive power, or computational complexity. Instead, 
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we focus on the applicability of such policy modeling within a software 

environment.  

3.2 A Secure Software Architecture Description Language 
To solve the architectural access control problem, we need a language to 

express the security requirements of software architecture. We extend our 

existing Architecture Description Language (ADL), xADL 2.0 [27], with these 

concepts introduced in the last section, to get a new language, Secure xADL. We 

adopt the eXtensible Access Control Markup Language (XACML) [106] as the 

basis for architectural security policy modeling. This is the first effort to model 

these security concepts directly in an architectural description language. 

This section first gives overview of xADL and XACML, then describes the 

syntax constructs of Secure xADL, and finally discusses the rationales for 

following the extension route in language design.  

3.2.1 Overview of xADL 
xADL is an XML-based extensible ADL. It has a set of core constructs, and 

it supports modular extensions. 

The core constructs of xADL support modeling both the design-time and 

run-time architecture of software systems. The most basic concepts of 

architectural modeling are components and connectors. Components are loci of 

computation, and connectors are loci of communication. xADL adopts these two 

concepts, and extends them into design-time types and run-time instances. 

Namely, in the design-time, each component or connector has a corresponding 

type, a componentType or a connectorType. At run-time, each component or 

connector is instantiated into one or more instances, componentInstances or 
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connectorInstances. This run-time instance/design-time structure/design-time 

type relationship is very similar to the corresponding relationship between the 

run-time objects, the program objects, and the program class hierarchy.  

Each component type or connector type can define its signatures. The 

signatures define what components and connectors provide and require. The 

signatures become interfaces for individual components. Note that xADL itself 

does not define the semantics of such signatures and interfaces. It only provides 

the basic syntactic support to designate the locations of such semantics.   

xADL also supports sub-architecture. A component type or a connector 

type can have an internal sub-architecture that describes how the component 

type or the connector type can be refined and implemented, with a set of 

components and connectors that exist at a lower abstraction level. xADL allows 

specifying the mapping between the signatures of the outer type and the 

interfaces of the inner constituents. The sub-architecture support enables 

composing more complex components or connectors from more basic ones.  

xADL has been designed to be extensible. It provides an infrastructure to 

introduce new modeling concepts, and has been extended successfully to model 

software configuration management and provide a mapping facility that links 

component types and connector types to their implementations.  

3.2.2 Overview of XACML 
The eXtensible Access Control Markup Language (XACML) [106] is an 

open standard from OASIS to describe access control policies for different types 

of applications. It is utilized in an environment where a policy enforcement point 

(PEP) asks a policy decision point (PDP) whether a request, expressed in XACML, 
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should be permitted. The PDP consults its policy, also expressed in XACML, and 

make a decision. The decision can be permit, deny, not applicable (when 

the PDP cannot find a policy that clear gives a permit or a deny answer), and 

indeterminate (when the PDP encounters other errors). 

The core XACML is based on the classic discretionary access control model, 

where a request for performing an action on an object by a subject is permitted or 

denied. In XACML an object is termed a resource. Syntactically, a PDP has a 

PolicySet, which consists of a set of Policy. Each Policy in turn consists of a 

set of Rule. Each Rule decides whether a request from a subject for performing 

an action on a resource should be permitted or denied. When a PDP receives a 

request that contains attributes of the requesting subject, action, and resource, it 

tries to find a matching Rule, whose attributes match those of the request, from 

the Policy and PolicySet, and uses the matching rule to make a decision 

about permitting or denying. 

XACML has the following characteristics that make it a suitable choice to 

meet our policy modeling needs:   

Firstly, the language is based on XML, which makes it a syntactically 

natural fit for our own XML-based ADL, xADL.  

Secondly, the language is extensible. The language core supports 

expressing policies within the classic access control model. Several extensions, 

named profiles in the XACML standard, are developed to suit more specific needs. 

Each profile defines new concepts and algorithms that are applicable to a new 

domain. This modular approach, similar to our own xADL modular approach, 
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makes the language evolvable. The extensibility allows us to adopt it for 

architectural modeling without loss of future expressiveness.  

Thirdly, XACML provides a clean conceptual framework. The core 

concepts of subject, action, and object are directly adopted from the classic access 

control model. The basic matching procedure, based on the attributes of rules 

and requests, is based on first order logic and set theory, which makes XACML 

both reasonably expressive (many policies can be expressed using this formalism), 

and plausibly practical (most practical software architects and developers can be 

expected to master the language, maybe after some initial training). One notable 

feature of XACML is that it supports a variety of combing algorithms that allows 

flexibility in combing rules and policies. More specifically, it provides both a deny 

override algorithm and a permit override algorithm. The former, when combined 

with a “permit all” rule, supports an “open policy” [116] (where any requests that 

are not explicitly denied will be permitted), and the latter algorithm, when 

combined with a “deny all” rule, supports a “close policy” (where any requests 

that are not explicitly permitted will be denied). 

Fourthly, the language has been equipped with a formal semantics [64]. 

While this semantics is an add-on artifact of the language, it illustrates the 

possibility to analyze the language more formally, and opens possibilities for 

applying relevant theoretical results about expressiveness, safety, and 

computational complexity to the language. 

Last, but not least, even though XACML is still a rather new language, 

some tool support has been available. The first version came out in February 

2003, and the second version is recently approved in February 2005. Some early 
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tool support has been provided, including an open source evaluation engine 

implemented in Java [135] that can evaluate whether a request should be 

permitted by a policy, and a syntax-directed editor [44] for constructing and 

modifying XACML documents. These tools facilitate our research on architectural 

security policy modeling. 

3.2.3 Constructs of Secure xADL 
Combing the xADL language, the XACML language, and the architectural 

access control concepts defined in Section 3.1, we define a secure software 

architecture description language, Secure xADL, to describe security properties of 

software architecture.  

From the viewpoint of XACML, Secure xADL can be considered as a 

profile for the software architecture domain. The profile defines new subjects 

(such as components and connectors), actions (such as instantiating connectors 

and connecting components), and resources (such as connectors connected to 

and interfaces being accessed). 

From the viewpoint of xADL, Secure xADL defines a new schema that 

supplies a set of new elements types. Such types can be utilized, along with other 

base and extension xADL schemas, in defining a complete software architecture.  

Figure 3-1 depicts the core syntax of Secure xADL. The central construct is 

SecurityPropertyType. It collects the subject, the principals, the privileges, and 

the policies of an architectural constituent. The policies are written in XACML 

syntax, and embedded in the xADL syntax. The SecurityPropertyType can be 

attached to types of components and connectors. Figure 3-1 illustrates that it is 

attached to a connector type to make a secure connector type. The 

71 



 

SecurityPropertyType can also be attached to components and connectors, 

making them secure components and connectors. Finally, the 

SecurityPropertyType can also be attached to the specifications of sub-

architectures and the description of the global software architecture.   

<complexType name="SecurityPropertyType"> 
  <sequence> 
    <element name="subject" 
           type="Subject"/> 
    <element name="principals" 
           type="Principals"/> 
    <element name="privileges" 
           type="Privileges"/> 
    <element name="policies" 
           type="Policies"/> 
  </sequence> 
</complexType> 
<complexType name="SecureConnectorType"> 
  <complexContent> 
    <extension base="ConnectorType"> 
      <sequence> 
        <element mame="security" 
           type="SecurityPropertyType"/> 
      </sequence> 
    </extension> 
  </complexContent> 
</complexType> 
<complexType name="SecureSignature"> 
  <complexContent> 
    <extension base="Signature"> 
      <sequence> 
        <element name="safeguards" 
           type="Safeguards"/> 
      </sequence> 
    </extension> 
  </complexContent> 
</complexType> 
<!-- similar constructs for component, structure, and 
instance --> 

Figure 3-1, Secure xADL schema 

Another construct illustrated in Figure 3-1 is Secure Signature. It has a set 

of associated safeguards to protect its access. The Secure Signature can be used to 
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define signatures of component types and connector types. Safeguards can also 

be used on interfaces of components and connectors. 

The xADL fragment in Figure 3-2 (In this dissertation, the XML syntax is 

greatly abbreviated, and indentation is used to signify the markup structure) 

specifies a secure connector. This secure connector is of type 

BridgeConnector_type, which is a secure connector type. The connector has 

a subject of US. Its associated policy, written in XACML, specifies that it will only 

allow the creation of the connector when the associated subject is US. Different 

types of policies will be further discussed in Section 4.4.  

<connector id="UStoFranceConnector"  
                xsi:type="SecureConnector"> 
  <type href="#BridgeConnector_type" /> 
  <security> 
    <subject>US<subject/> 
    <policies> 
      <PolicySet PolicyCombiningAlgId="deny-overrides"> 
        <Policy RuleCombiningAlgId="deny-overrides"> 
          <Rule Effect="Deny"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>SecureManagedSystem 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>UStoFranceConnector 
              <AttributeDesignator>resource-id 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>urn:xadl:action:AddBrick 
              <AttributeDesignator>action-id 
            <Condition FunctionId="not"> 
              <Apply FunctionId="string-is-in"> 
                <AttributeValue>US</AttributeValue> 
                <AttributeDesignator>subject 
          <Rule Effect="Permit" />  
        </Policy> 
      </PolicySet> 
    </policies> 
  </security> 
</connector> 

Figure 3-2, A Secure Connector with Subject and Policy 
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Note that both the policy combination algorithm and the rule combination 

algorithm are deny-overrides, and the last rule, which has no match clauses 

and thus matches any request, is a permit rule. The net effect is that if a request 

matches the first rule, the request will be denied; any other requests will be 

permitted. This is an “open policy”.  

3.2.4 Rationales for Language Design 
We choose not to design a brand new language. Instead, we extend and 

combine two base languages, xADL and XACML. Adopting this choice in 

language design is based on the following criteria.  

Firstly, our base language, xADL, is extensible, and it has been extended to 

address different architectural concerns, such as types and configuration 

management. When it comes to modeling software security, it is rather natural 

that we keep this choice and focus more on the core issues in architectural access 

control. We have incorporated a set of core security concepts, and also allow 

further security extensions in the future. These extensions will eventually be 

subject to the extent that is made possible by both theoretical expressiveness and 

practical applicability.  

Secondly, XACML is also extensible. Its core specification describes the 

basic concepts of subjects, actions, and resources and specifies how these 

concepts can be integrated into rules, policies, and policy sets, and how these 

policies can be combined. Several profiles have been developed for new domains. 

Software architecture can be viewed as a new domain for XACML. 
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Thirdly, XACML provides a flexible framework for combining policies, 

which allows us to design and combine suitable policies from different 

architectural contexts, as will be discussed in Section 3.4. 

Fourthly, both languages have ample tool support that further facilitates 

new language designs. Our base language has been supported by a data binding 

library and an architectural development environment that makes a developer of 

extensions focus more on the development of the features per se. The availability 

of the evaluation engine and the editor for XACML allows us to devote more 

attentions to utilize XACML in an architectural context.  

Finally, the major advantage of a new language is that it can be easily 

experimented and changed by the designer to suit special needs. However, we 

feel the core concepts that a language tries to express are more important than 

their syntactic expressions. If such expressions do not bring major advantages for 

conceptual understanding or tool support, we feel mere syntactic convenience 

does not fully compensate for the associated cost. From a language design 

viewpoint, reusing existing language facilities provides many benefits that a 

newly developed language must exhibit before such a new language can be even 

tested for its really innovative features. The costs of developing a brand new 

language are not always easy to justify. We feel this is especially true for modern 

software engineering research. Many times a language itself is a mere syntactic 

convenience, because the core concepts that the language embodies can take 

many different forms. The usability of the language is determined more by the 

concepts and associated tools.  
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3.3 The Central Role of Architectural Connectors 
Architecture Description Languages (ADLs) provide the foundation for 

architectural description and reasoning [94]. Most existing ADLs support 

descriptions of structural issues, such as components, connectors, and 

configurations. Several ADLs also support descriptions of behaviors [2, 84]. The 

description of behaviors is either centered around components, extending the 

standard “providing” and “requiring” interfaces [137], or is attached to 

connectors, if the language supports connectors as first class citizens [2]. These 

descriptions enable reasoning about behaviors, such as deadlock avoidance and 

deadlock detection [65].  

Among the numerous ADLs proposed, some do not support connectors as 

first class citizens [29, 84]. Interactions between components are modeled 

through component specifications in these modeling formalisms. This choice is in 

accordance with the principles of component-based software engineering, where 

every entity is a component and interactions between components are captured 

in component interfaces. A component has a “provided” interface that lists the 

functionality this component provides. It also has a “required” interface that 

enumerates the functionalities it needs in providing its functionality. Interactions 

between components are modeled by matching a component’s “required” 

interface to other components’ “provided” interfaces.  

Embedding interaction semantics within components has its appeal for 

component-based software engineering, where components are the central units 

for assembly and deployment. However, such a lack of first class connectors does 

not give the important communication issue the status it deserves. This lack blurs 
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and complicates component descriptions, which makes components less reusable 

in contexts that require different interaction paradigms [28]. It also hinders 

capturing design rationales and reusing implementations of communication 

mechanisms, which is made possible by standalone connectors [33]. We believe a 

first class connector that explicitly captures communication mechanisms 

provides a necessary design abstraction.  

Several research efforts are focused on understanding and developing 

connectors in the context of ADLs. A taxonomy of connectors is proposed in [95], 

where connectors are classified by services (communication, coordination, 

conversion, facilitation) and types (procedure call, event, data access, linkage, 

stream, arbitrator, adaptor, and distributor). Techniques to transform an existing 

connector to a new connector [131] and to compose high-order connectors from 

existing connectors [83] are also proposed and experimented in handling 

encryption and decryption issues. 

Our approach for architectural access control is centered on connectors. 

Connectors propagate privileges that are necessary for access control decisions. 

They regulate architectural connections between components. And they can also 

coordinate message routing securely. In the remaining part of this section we 

discuss the central role of connectors. The importance of connectors becomes 

more evident in Section 3.4 and Section 4.4, when we elaborate access control 

check and architectural execution.  

3.3.1 Components: Supply Security Contract 
A security contract specifies permissions an architectural constituent 

possesses to access other constituents and the permissions other constituents 
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should possess to access the constituent. A contract is expressed through the 

privileges and safeguards of an architectural constituent.  

For component types, the above modeling constructs are modeled as 

extensions to the base xADL types. The extended security modeling constructs 

describe the subject the component type acts for, the principals this component 

type can take, and the privileges the component type possesses.  

The base xADL component type supplies interface signatures, which 

describe the basic functionality of components of this type. These signatures 

become the active resources that should be protected. Thus, each interface 

signature is augmented with safeguards that specify the necessary privileges an 

accessing component should possess before the interfaces can be accessed. 

3.3.2 Connectors: Regulate and Enforce Contract 
Connectors play a key role in our approach. They regulate and enforce the 

security contract specified by components.  

Connectors can decide what subjects the connected components are 

executing for. For example, in a normal SSL connector, the server authenticates 

itself to the client, thus the client knows the executing subject of the server. A 

stronger SSL connector can also require client authentication, thus both the 

server component and the client component know the executing subjects of each 

other. DCOM over Internet (Section 6.4.4) could utilize such a strong connector. 

Connectors also regulate whether components have sufficient privileges to 

communicate through the connectors. For example, a connector can use the 

privileges information of connected components to decide whether a component 

executing under a certain subject can deliver a request to the serving component. 
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This regulation is subject to the policy specification of the connector. DCOM for 

SP2 (Section 6.4.2) introduces such regulation on local and remote connections. 

Connectors also have potentials to provide secure interaction between 

insecure components. Since many components in component-based software 

engineering can only be used “as is” and many of them do not have 

corresponding security descriptions, a connector is a suitable place to assure 

appropriate security. A connector decides what communications are secure and 

thus allowed, what communications are dangerous and thus rejected, and what 

communications are potentially insecure thus require close monitoring. 

XPConnect of Firefox (Section 6.3.10) can play such a role in securing possibly 

insecure extensions.  

Using connectors to regulate and enforce a security contract and 

leveraging advanced connector capabilities will facilitate supporting multiple 

security models [139]. These advanced connector capabilities include the 

reflective architectural derivation of connectors from component specifications, 

composing connectors from existing connectors [114], and replacing one 

connector with another connector. 

Connectors can be composite connectors. A composite connector 

combines several connectors together into a large connector to achieve a 

composite security policy. The combination can be conjunctive, when the 

composite connector permits a request only if each sub-connector permits. Or the 

combination can be disjunctive, when the composite connector permits if any 

sub-connector permits. Each sub-connector operates independently, yet they 

collaborate together to accomplish the accumulative effect.  
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3.4 Context for Architectural Access Control 
Access control decisions are generally based on attributes of subjects, 

resources, and actions. Factors other than the subject-operation-object tuple can 

also contribute to access control decision. The most prominent example is time, 

which has been extensively used to express temporal access control constraints 

[69]. Such factors are called context or environment of access control decisions.  

Likewise, from an architectural modeling viewpoint, when components 

and connectors are making security decisions, the decisions might be based on 

entities other than the decision maker and the protected resource. For example, a 

component might need to adhere to the policy of its type, in addition to following 

its own policy. We use context to designate those relationships involved in 

architectural access control. These relationships affect how the accessing 

constituent acquires its privileges and how the accessed constituent constructs its 

policy.  

There are different types of relationships that can affect access control 

decision. Here we discuss four of them: the nearby components and connectors, 

the type of components and connectors, the sub-architecture containing 

components and connectors, and the global architecture. The reason we choose 

these four is because that we believe they are probably the most common types of 

contexts, and xADL provides native support for them.  

3.4.1 Nearby Components and Connectors 
A common source of context in software architecture is the neighboring 

components and connectors. For a component, the context is the connectors that 

it connects to. For a connector (which could be of many categories, such as a 
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simple procedure call connector or a more complex event routing connector), the 

context derives from the components and other connectors that are connected to 

it. In the most common case where a connector is connected to two components, 

these two components form the immediate context for the connector. The 

neighboring relationship can be expanded to components and connectors that are 

not immediate neighbors.  

An example of taking nearby components and connectors into 

consideration during access control decisions is the access control check 

algorithm of the Java security architecture [50]. In this architecture, components 

are methods of different classes, and connectors are the procedure calls among 

these methods. When a method tries to access a resource, the system will check 

and decide whether such an access should be granted. The system does not only 

inspect the permissions that the immediate calling method has. In addition, the 

system uses a mechanism called Stack Inspection to walk up the call stack frames 

and check all methods that reside above the method in the call stack (i.e., the 

caller of the method, the caller of the caller, etc.) also have the requisite 

permission. The requested access can be granted only if all methods involved 

have the necessary permissions. For example, in Figure 3-3, where method A 

calls method B that calls method C, if C needs to access a protected resource, then 

C and B and A should all have the necessary permissions. This example illustrates 

that when an access control decision is to be made, not only the immediate 

component (the method that tries to access the protected resource) is considered, 

but also the neighboring components that are connected through connectors (in 
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this case, all methods that are above the calling method in the call stack) should 

also be accounted for. 

 

Figure 3-3, Privilege Propagation Connectors 

In this stack inspection scheme, a method with enough permission can 

choose to take full responsibility of the access control with a doPrivileged call. 

Then, when the system walks up the call stack, if it encounters such a method, it 

stops walking the stack, and grants the permission of access to the original calling 

method. Essentially the privileged method grants any method it calls the same 

permissions as itself.  
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In Figure 3-3, if B is such a method, then its privileges can propagate 

through the PC Connector 2 to method C, and C can acquire the permissions of B 

even if the outermost caller A probably does not have the permission. This can be 

viewed as an instance where a more privileged component uses special 

connectors to grant such privileges to components of its choice.  

In the general case, there exists a privilege propagation relationship 

among components connected by connectors. Each component carries a set of 

privileges. Such privileges can be propagated to the nearby components by using 

different types of connectors. A more specialized connector can propagate more 

privileges than other regular connectors. When a component makes a request, it 

is its own permissions and all permissions propagated to it that are considered 

for deciding whether the access should be granted or not. 

Our approach supports describing this type of architectural context for 

access control. Each component can have a description of its possessed privileges. 

The connectors connecting them can be equipped with descriptions of how these 

privileges should be propagated. When an architectural constituent tries to access 

a protected resource, the support tools use the accumulated privileges of the 

constituents to check against the safeguards of the protected resource.  

3.4.2 Types  
An important construct of xADL is its modeling capability of component 

types and connector types. This construct is inspired by types in traditional 

programming languages, where types provide a unit for abstraction and reuse. 

More recently, type safety has been suggested as a foundation for security [128]. 
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Types of components and connectors provide another context for access control 

decisions of their instances. 

In programming languages, the general rule is that an instance possesses 

all properties of its type. In a security context, the relationship between an 

instance and its type does not always follow this pattern. When both the type and 

the instance specify a security policy, if there is any conflict, either the type or the 

instance could be given a higher priority.  A policy administrator may often desire 

a “most-specific-override” policy, where the policy that has the most specific 

applicability range should take precedence. This means that the policy of the 

instance should be given the priority and the instance policy overrides the type 

policy. In other situations, the administrator might want to assure that all 

instances of the type obey the same policy, thus the management and 

enforcement of the policy can be simplified, since only one policy, the type policy, 

would need to be changed. This requires giving priority to the type policy.  

Our approach treats the type of a component and a connector as a context, 

and provides the required flexibility in choosing the more authoritative policy 

between the instance policy and the type policy. 

3.4.3 Containing Sub-architecture 
xADL supports sub-architecture, which describes the internal architectural 

structure of a component type and a connector type. This construct allows such a 

type to be implemented as a collaborative set of components and connectors, and 

provides a facility to map the interfaces of the sub-architecture to the interfaces 

of the internal components and connectors. Sub-architecture enables abstraction 

and composition of software architectural constituents. 
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Substructure is a powerful modeling mechanism. A large software system 

can be composed from components and connectors, using sub-architecture 

hierarchy. Such a hierarchy has implications not only for functionality but also 

for security. In the most common case, each component and connector contained 

within the sub-architecture possesses the same security properties as the 

container, such as subject, principals, and privileges. In other cases, a component 

or a connector has different security properties than its container. A 

representative scenario for this case is mobile code, such as Java or JavaScript. 

The mobile code, downloaded from external sites, executes within the container, 

yet it is restricted to a sand box and subject to a set of access restrictions that do 

not apply to the sub-architecture container and components outside of the 

container. This containing sub-architecture should be utilized to make access 

control decisions.  

These cases illustrate the concept of trust domain and trust boundary. A 

trust boundary delineates the trust relationship among components and 

connectors. All components and connectors within the boundary trust each other 

and form a trust domain. No security checks are needed for access between 

constituents within the boundary. However, crossing boundary must be very 

carefully checked and monitored.  

Software architecture provides an appropriate means to model such 

boundaries. The traditional software architecture should be augmented with trust 

information to clearly define where trust starts and ends within a software system. 

Viewing from this angle, the common case of sub-architecture has only one trust 

domain, within which the components and connectors inherit security properties 
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from the container. The mobile code case, on the other hand, contains multiple 

trust domains. The downloaded mobile code executes in a trust domain that is 

different than that of the containing sub-architecture.  

Our approach supports treating sub-architecture as another type of 

context in which access control decisions are made. Our approach allows 

specifying the internal components and connectors to inherit the same security 

properties from the containing sub-architecture, thus forming the same trust 

domain. It also allows specifying different security properties for components 

and connectors within the sub-architecture and creating new trust domains.  

3.4.4 Complete System 
The complete software system forms the last type of context within which 

security decisions are made. However, the boundary of a complete software 

system is not always easy to identify. For example, in component-based software 

engineering, a complete architecture might be just embedded into another 

architecture and serve as a component within that larger architecture. Or, two 

seemingly complete systems can interact with each other to accomplish a 

collaborative task, thus forming a federation which might be viewed as the real 

complete system. Our approach defines a complete system as the highest level of 

architecture considered by an architect during architecture design and analysis.  

In most traditional access control systems, the decisions are only made 

within this context. Our approach allows combining this context with three other 

types of contexts mentioned earlier: the nearby constituents, the type of 

components and connectors, and the containing sub-architecture. We feel these 
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architectural contexts not only form the functional architecture of a software 

system but also have significant security relevance. 

3.5 An algorithm to Check Architectural Access Control 
Based on the concepts outlined in Section 3.2.3 and the contexts 

established in Section 3.4, in this section we present an algorithm that can check 

whether an architectural access in a software architecture description should be 

granted or denied. More formally, the algorithm finds the answer to this question: 

given a secure software architecture description written in Secure 

xADL, if a component A wants to access another component B, 

should the access be allowed? Finding the answer to this question can help 

an architect design secure software from two different perspectives. Firstly, the 

answer helps the architect decide whether the given architecture satisfies 

intended access control. If there is some access that is intended by the architect 

yet is not allowed by the description, the description should be changed to 

accommodate the access. Secondly, the answer can also help the architect decide 

whether there are architectural vulnerabilities that introduce undesired access. If 

some undesired access is allowed, then the architect must modify the architecture 

to eliminate such vulnerabilities.  

We first present an algorithm that decides whether a single architectural 

access should be granted. Then, the algorithm is extended to check a complete 

architecture description. Finally, we discuss the applicability of the algorithm.  

3.5.1 Algorithm for Single Architectural Access 
In xADL, each component and connector has a set of interfaces that 

designate externally accessible functionalities. An interface can be either an 
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incoming interface, designating functionality the constituent provides, or an 

outgoing interface, designating functionality that the constituent requires.  Each 

incoming interface can be protected by a set of safeguards, which specify the 

permissions any components or connectors should possess before they can access 

the interface. Each outgoing interface can also possess a set of privileges, which 

are generally the same as those of the owner constituent.  

The interfaces are connected together to form a complete architecture 

topology. A pair of connected interfaces has one outgoing interface and one 

incoming interface. Such a connection defines that the constituent with the 

outgoing interface accesses the constituent at the incoming interface. Each such 

connection defines an architectural access. For example, in the C2 architecture 

style [138], a component sends a notification at its bottom interface to a top 

interface of a connector. The algorithm can be used to decide whether the 

outgoing interface (the bottom interface of the component in the above example) 

carries sufficient privileges to satisfy the safeguards of the incoming interface (the 

top interface of the connector).  

Architectural access is not limited to direct connections between interfaces.  

In xADL, a component cannot directly be connected to another component. Two 

components should be connected through a connector. Thus, a meaningful 

architectural access might involve the two components that are only indirectly 

connected through a connector. For example, if a client is connected to a server 

through a remote procedure call connector, then the meaning for access control is 

the client’s access of the server’s methods, though it is through a standalone 
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connector. In the most general case, architectural access involves two interfaces 

that are indirectly connected by components and connectors.  

The architectural access check is made more complex by the contexts 

discussed in Section 3.4. The accessing component can acquire privileges from 

multiple sources. The component can possess privileges itself. It can also get 

privileges from its type (Section 3.4.2). It can obtain privileges from the 

containing sub-architecture (Section 3.4.3) and the complete architecture 

(Section 3.4.4). 

More complexly, privileges can also propagate to the accessing component 

through connected components and connectors, probably subject to the privilege 

propagation capability of the connectors (Section 3.4.1). When a privilege needs 

to propagate from one interface of one constituent to another directly connected 

interface of another constituent, we assume this propagation is always successful, 

since such connection between the interfaces, named link in xADL, does not 

possess semantics beyond pure connection.  

However, when a privilege tries to propagate from an incoming interface 

of a constituent to an outgoing interface of the same constituent, the constituent 

can decide how the privilege can traverse through the constituent. In the most 

common case, where the constituent does not provide any special specifications, 

we assume that the incoming interface and the outgoing interface are connected, 

and we also assume that the privilege can propagate between them unmodified.  

This covers the majority of the specifications.  

The constituent can change this default behavior. It can decide that there 

is no connection between the incoming interface and the outgoing interface, thus 
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the privilege cannot be propagated. It can also decide that the privilege should 

not be propagated, and thus remove it from the privileges at the outgoing 

interface. Figure 3-4 illustrates how a procedure call connector can stop 

propagating the WritePasswordFile privilege from the Caller interface to the 

Callee interface. Finally, the connector can decide that the privilege should be 

replaced by another privilege. All these choices can be expressed using a policy 

written in XACML. The privilege propagation policies can be acquired from the 

constituent, the type, the container, and the complete architecture, just like other 

security policies. 

<connector id="PC Connector 2"  
                xsi:type="SecureConnector"> 
  <type href="#ProcedureCallConnector_type" /> 
  <security> 
    <subject>System<subject/> 
    <policies> 
      <PolicySet PolicyCombiningAlgId="deny-overrides"> 
        <Policy RuleCombiningAlgId="deny-overrides"> 
          <Rule Effect="Deny"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>Caller 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>Callee 
              <AttributeDesignator>resource-id 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>WritePasswordFile 
              <AttributeDesignator>action-id 
          <Rule Effect="Permit" />  
        </Policy> 
      </PolicySet> 
    </policies> 
  </security> 
</connector> 

Figure 3-4, Policy for Privilege Propagation 

The accessed components can acquire safeguards from similar sources. 

One notable difference in acquiring safeguards is that this process does not 

90 



 

involve the connected constituent context, and thus does not go through a 

propagation process.   

Input: an outgoing interface, Accessing,  
    and an incoming interface, Accessed 
 
Output: grant if the Accessing can access  
    the Accessed, deny if the Accessing  
    cannot access the Accessed 
 
Begin 
  if (there is no path between Accessing  
    and Accessed) 
    return deny; 
  if (Accessing and Accessed are connected  
      directly) 
    DirectAccessing = Accessing;  
  else 
    DirectAccessing = the constituent  
       nearest to Accessed in the path; 
  Get AccumulatedPrivileges for 
    DirectAccessing from the owning  
    constituent, the type, the containing  
    sub-architecture, the complete architecture, and the 
    connected constituents;  
  Get AccumulatedSafeguards for Accessed 
    from the owning constituent, the type, 
    the containing sub-architecture, and the 
    complete architecture; 
  Get AccumulatedPolicy for Accessed from  
    similar sources; 
  if (AccumulatedPolicy exists) 
    if (AccumulatedPolicy grants access) 
      return grant; 
    else 
      return deny; 
  else  
    if (AccumulatedPrivileges contains  
      AccumulatedSafeguards) 
      return grant; 
    else 
      return deny;   
End; 

Figure 3-5, Algorithm 1: Access Control Check 
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To make a decision whether to allow such access, the simplest decision is 

to check whether the accumulated privileges of the accessing constituent covers 

the accumulated permissions of the accessed constituent. However, the accessed 

constituent can choose to use a different policy, and the sources of the policy can 

be from the accessed constituent, the type of the constituent, the sub-architecture 

containing it, and the complete architecture.  

The architectural access control check algorithm is described in Figure 3-5. 

It first checks whether the accessing interface and the accessed interface is 

connected in the architecture topology. If not, the algorithm then denies the 

architectural access. If they are connected, the algorithm proceeds to find the 

interface in the path that is nearest to the accessed interface. If the accessing 

interface and the accessed interface are directly connected, this direct accessing 

interface is the same as the accessing interface. Then, the privileges of the direct 

accessing interface are accumulated, using various contexts, so are the safeguards 

and policies of the accessed interface. If a policy is explicitly specified by the 

architect, then the policy is consulted to decide whether the accumulated 

privileges are sufficient for the access. If there is no explicit policy, then the 

access is granted if the accumulated privileges contain the accumulated 

safeguards as a subset.  

3.5.2 Extend to Complete Architecture 
The proposed algorithm to check architectural access control is applied to 

a pair of interfaces. Extending it to the complete architecture description is 

straightforward. We can just enumerate each pair of interfaces and apply the 

algorithm to each pair. 
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A useful optimization is to calculate a topological order between the 

interfaces first, so the first constituent in this order has no other constituents that 

it can obtain privileges from. Then the algorithm uses this order to compute the 

privileges that each architectural constituent can obtain from its connected 

constituents. During the computation a constituent can get its accumulated 

privileges by simply applying the connector’s privilege propagation capability to 

the accumulated privileges of other constituents connected to the connector. 

There is no need to do more expensive non-local computation to obtain 

propagated privileges.  

After getting the accumulated privileges from the connected constituents 

context, the algorithm computes the accumulated privileges, safeguards, and 

policies using various contexts. Finally the algorithm can check each pair of 

interfaces. Depending on the completeness of the specifications, there probably 

does not exist non-trivial checks between certain pairs of interfaces. However, the 

algorithm can be used incrementally during the process of developing the full 

specification for the complete system. 

When sub-architecture is involved, the algorithm gets more complex. In a 

xADL specification, there is a set of types that can be used to describe the 

architecture, and there is also a set of possibly independent architecture 

structures (the archStructure xADL element). A sub-architecture is 

implemented by connecting a component type or a connector type to one 

architecture structure, and map the signatures of the component type or the 

connector type to interfaces of the components and connectors of the architecture 

structure. Thus, one sub-architecture can be contained within another sub-
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architecture, if one type using the former sub-architecture is used to instantiate a 

component or a connector in the latter sub-architecture. The sub-architecture 

that is not contained by any other sub-architecture becomes the top level 

architecture. However, the top level architecture can be later used in a newly 

added architecture structure, and thus becomes a sub-architecture.  

To apply the algorithm of checking access control between two interfaces 

in a complex architectural description that contains layers of architecture 

structures, the algorithm first checks whether the two interfaces belong to the 

same architecture structure. If so, then the algorithm uses that architecture 

structure to check access control. If the two interfaces do not belong to a common 

architecture structure, then the common architecture structure that contains 

both of them or the top level architecture can be used as the architecture 

structure to check access control, depending on the choice of the architect.  

Once the suitable architecture structure is found, it needs to be translated 

into a plain graph that the Algorithm 1 in Figure 3-5 can be applied. Since the 

architecture structure might contain internal architecture structures, it needs to 

be flattened such that only primitive interfaces of the primitive architecture 

constituents are connected with each other. Two types of processing are 

necessary during this step.  Firstly, if a sub-architectured type, S, is used to 

instantiate multiple instances, such as C1 and C2, in a containing architecture 

structure, then multiple copies of the sub-architecture of S should be generated 

and properly named with prefixes of the containers. The renaming is essential to 

avoid name conflicts when multiple instances of interface I can only be 

differentiated as C1.I and C2.I. Secondly, the signature of a sub-architectured 
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type, O, that maps to an interface, I, within the sub-architecture is used to 

propagate privileges unmodified between them, similar to the links between 

architecture constituents in architecture structures. This algorithm is described 

in Figure 3-6. 

Input: an outgoing interface, Accessing,  
    and an incoming interface, Accessed 
 
Output: grant if the Accessing can access  
    the Accessed, deny if the Accessing  
    cannot access the Accessed 
 
Begin 
  if (Accessing and Accessed belong to the same 
        architecture structure) 
    container = the architecture structure 
  else if (use top level architecture) 
    container = top level architecture  
  else 
    container = least common container   
  if (container contains other architecture structures) 
    { 
      replace constituents of sub-architectured types 
        with the sub-architecture; 
      rename the constituents of the sub-architectures 
        if there are multiple instances of them; 
      connect the outer signatures and the  
        inner interfaces as privilege preserving 
    } 
  calculate the reachability closure of the expanded 
      container interface graph 
  return Algorithm1(Accessing, Accessed) 
End; 

Figure 3-6, Algorithm 2: Sub-architecture Access Control Check 

3.5.3 Validity of the Algorithm 
To validate our third hypothesis, that with a Secure xADL description, 

the access control check algorithm can check the suitability of 

accessing interfaces, we give an informal proof to show that the algorithm can 
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be mapped to a well known graph reachability problem, and thus solutions for 

that problem can be used to decide the result of the algorithm.  

Informal Proof. The validity of the algorithm can be established in a 

constructed privilege graph. For each privilege of an outgoing interface a node is 

drawn. Similarly, for each safeguard of an incoming interface a node is also 

drawn. Edges connecting these nodes are derived from the architectural topology 

and different types of contexts. For example, if a connector can propagate a 

privilege form one of its interfaces to another interface, then an edge is drawn 

between these two nodes. Viewing from a graph theory viewpoint, the algorithm 

executes reachability analysis, deciding whether necessary privileges can reach 

where they are needed. If there exists a path between the safeguard nodes and 

privilege nodes, then the architectural access is granted, otherwise the access is 

denied. Thus our algorithm can utilize any standard solution to the path finding 

problem to make decisions on granting or denying access. End of Proof. 

What separates our algorithm from a normal reachability analysis is that 

the privileges can come from different contexts. It can come not only from the 

connected components and connectors, but also from types, containing sub-

architectures, and the global architecture. In addition to the regular architectural 

topology graph, where constituents are nodes and their connections are edges, 

there are overlay graphs such as a type graph (a constituent node connected to its 

type node) and a containment graph (a constituent node connected to its 

container node). The policy against which these privileges are evaluated can also 

come from different sources. It can be either an explicitly specified policy or the 
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accumulated safeguards of the accessed interface. Both of them can come from 

either the architectural topology graph or the overlay graphs.  

The algorithm assumes an acyclic graph. With an arbitrary graph, 

standard algorithms for loop detection can be applied, and the architect needs to 

decide whether such loops are allowed. One possible solution to handle a loop is 

to partition the graph into architecturally meaningful acyclic sub graphs. Such 

partition could change the security implications for the original architecture, 

though. Determining such implications and extending the algorithm to handling 

arbitrary loops remains a future research question. 

There might exist multiple paths from one interface to another interface. 

Under such cases, the algorithm depends on the architect to pick one path, and it 

allows the architect to enumerate all paths to inspect whether there exists one 

permissive path, and whether all paths are permissive. An architect has the 

flexibility in making the ultimate architectural choice. 

The algorithm depends on degree of the completeness of the secure 

architecture description. In the architectural design phase, an architect can 

incrementally change the access control specifications of privileges and policies, 

and investigate their effects. If an intended access is not satisfied by the current 

specification, the architect can change the specification to meet the need. 

Both the privileges and the policy can involve elements that can only be 

decided at run-time. For example, in the role-based access control model [124], a 

user can selectively activate different roles, thus acquiring different privileges. 

One future research problem is to employ our algorithm in these dynamic 
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situations, probably with the help of the necessary enforcement infrastructure 

(Section 7.2.4). 
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4 Advanced Modeling Concepts 
The previous chapter lays the foundation of architectural access control by 

defining the basic concepts, establishing relevant contexts, and outlining 

checking algorithms. This chapter builds on these foundations to cover advanced 

concepts necessary in modeling architectural access control in more complex 

situations. We first introduce the Role-based Access Control model to support 

large number of subjects. Then we incorporate a trust management model that 

enables access control across organizational boundaries. After that, we discuss 

the need to inspect beyond interfaces for finer degree of access control. We will 

then elaborate how run-time architectural access control can be modeled. This 

chapter concludes with a summary of the modeling concepts and language 

constructs of Secure xADL.  

4.1 Handling Large Scale Access through Roles 

4.1.1 Basic Role-based Access Control 
The Role-based Access Control Model (RBAC) [124] is a more recent 

development to address two problems that are not well handled by the classic 

access control model. Firstly, a user needs to have different permissions under 

different capacities, even though the identity of the user remains the same. 

Secondly, in a large organization where there are tens of thousands of users, 

managing their access control permissions could be a daunting task. When some 

permission should be added or removed from users with the same capacity, the 

operation would have to be repeatedly performed for each user. 
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An extra level of indirection, role, is introduced to solve these problems.  

Roles become the entities that are authorized with permissions. Instead of 

authorizing a user’s access to an object directly, the authorization is expressed as 

a role’s permissions to an object, and the user can be assigned to the 

corresponding role. A user can take different roles under different situations to 

acquire different permissions, no longer being limited to a single set of 

permissions. A user can even posses several roles simultaneously to perform 

operations that demand those roles jointly. Also, when some permission needs to 

be added or removed from thousands of users, if all involved users can all take 

one role, then the permission can be added or removed from that role, and the 

system will assure that each user obtains or loses that permission. The RBAC 

model thus eases management of access control in large-scale organizations. 

Figure 4-1 depicts this indirection. 

 

Figure 4-1, Role-based Access Control, from [122] 

4.1.2 Hierarchical Roles and Separation of Duty 
RBAC allows roles to form a hierarchy. In such a hierarchical RBAC model, 

a senior role can inherit from a junior role. Every user that takes the senior role 

100 



 

can also take the junior role, thus obtaining all the permission associated with the 

junior role. A senior role can actually inherit from multiple junior roles, thus 

forming a lattice among the roles. In a lattice formation the inheritance 

relationship is more properly termed as “dominance”, where a senior role 

dominates a junior role. The hierarchical RBAC model resembles the single and 

multiple inheritance relationships in programming languages. 

Another important concept in Role-based Access Control is the notion of 

separation of duty. The notion specifies that several sensitive tasks should not be 

performed by the same user. More formally, it requires that the user cannot 

perform those roles simultaneously. For example, a person cannot act as both the 

treasurer and the cashier at the same time so that embezzlement would at least 

require collusion of two people.  

4.1.3 RBAC Support in XACML 
XACML supports Core and Hierarchical RBAC through a profile. This 

support of RBAC through defining a profile over the core framework, without 

introducing unnecessary overheads, contributes to our choice of adopting 

XACML as the base policy language.  

The RBAC profile defines roles as additional attributes of subjects and 

resources. To support making permit or deny decisions on requests involving 

roles, the profile utilizes two types of policy sets. Policy sets are the top level 

container in XACML, and generally only one set is needed. The two sets for RBAC 

are a role policy set (RPS) and a permission policy set (PPS). The role policy set 

restricts that it only matches the subject with the intended roles. It does not 

restrict on resources and actions. The permission policy set does not restrict the 
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subject. It only limits what resources and actions will result in a permit decision. 

The role policy set references the permission policy set. To evaluate whether a 

request should be permitted or denied, the PDP should not use the permission 

policy set directly, since it does not limit subjects and any subjects, no matter 

whether they have the correct roles, will be granted permissions. Instead, the 

PDP should use the role policy set to exclude those subjects without the correct 

roles, and then use the permission policy set to decide whether the requested 

action on the resource should be allowed. 

To support Hierarchical RBAC, the XACML RBAC profile lets the 

permission policy set of a senior role reference the permission policy set of a 

junior role. Thus, when a request reaches the senior set, it also includes 

permission from the junior set.  

The XACML RBAC profile adopts a close policy. Each request that is not 

explicitly permitted in existing policy sets should be denied. Generally a PDP will 

return a result of Not Applicable if it cannot find a matching rule for the 

request. This constraints how Secure xADL policies should be expressed to 

achieve the desired result.  

4.1.4 Roles as Principals in Secure xADL 
RBAC has recently been standardized [5]. The standard contains four 

components: Core RBAC, Hierarchical RBAC, Constrained RBAC with static 

separation of duty, and Constrained RBAC with dynamic separation of duty. We 

support the RBAC model for its advanced capability in handling large scale access 

control. At this stage Secure xADL only supports both Core RBAC and 

Hierarchical RBAC.  
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Figure 4-2 depicts the conceptual framework of the Hierarchical RBAC 

model. There are four sets of entities: USERS (each element is a user), SESSIONS 

(each element is a session that a user is participating), ROLES (each element is a 

role), and PERMS (the set of permissions, whose elements are permissions about 

operations (members of the OPS set) on objects (members of the OBS set)). 

There are three important relationships: PA (the permission assignment between 

a role and its associated permissions), UA (the user assignment where a user is 

assigned associated roles and thus acquires related permissions through the PA 

relation), and RH (the role hierarchy where a senior role inherits from a junior 

role and obtains its permissions) 

 

Figure 4-2, Hierarchical RBAC 

Secure xADL uses principals to represent roles. As discussed in Section 

3.1.2, principals are summary credentials used for access control. Since a role is 

the entity that is granted permissions in the RBAC model, we choose to use a 

principal to specify a role for a component or a connector. 
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 In Secure xADL, each component or connector has one subject that 

designates the user the component or connector executes for, and it uses 

principals to designate the roles the user can take. Since a user might take 

multiple roles, there can be multiple principals associated with a component or a 

connector. These principals can be selectively activated or deactivated during 

system execution.  

In the access control check algorithm (Section 3.5.1), principals are 

obtained and propagated like privileges, following the same contexts: the access 

path, the type of the component or the connector, the container, and the 

complete system architecture. 

Figure 4-3 specifies a RBAC policy that uses only the Core RBAC model. 

The connector executes as the US subject and takes a NATO role (expressed as a 

NATO principal). Note the policy set with a PolicySetId "RPS:NATO". The 

specially formatted PolicySetId is the Secure xADL notation to signify a role 

policy set for a role. In this case the policy set is the role policy set for the role 

NATO. Similarly, the “PPS:NATO” policy set is the permission policy set for the 

NATO role, and is referenced by the role policy set through the 

PolicySetIdReference. Also note that the policy set with a PolicySetId 

“UA”. This is the Secure xADL notation to specify the user assignment relation for 

the RBAC model. The example assignment specifies that a user US can take the 

role NATO, adopting the XACML RBAC Profile action with the id of 

urn:oasis:names:tc:xacml:2.0:actions:enableRole. 
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<connector id="UStoFranceConnector"  
                xsi:type="SecureConnector"> 
  <type href="#BridgeConnector_type" /> 
  <security> 
    <subject>US<subject/> 
    <principals> 
      <principal>NATO</principal> 
    <policies> 
      <PolicySet PolicySetId="RPS:NATO"> 
        <PolicySetIdReference>PPS:NATO 
      </PolicySet> 
      <PolicySet PolicySetId="PPS:NATO"> 
      </PolicySet> 
      <PolicySet PolicySetId="UA"> 
        <Policy RuleCombiningAlgId="permit-overrides"> 
          <Rule Effect="Permit"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>US 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>NATO 
              <AttributeDesignator>resource-id 
            <ActionMatch MatchId="anyURI-equal"> 
              <AttributeValue> 
          urn:oasis:names:tc:xacml:2.0:actions:enableRole
              <AttributeDesignator>action-id 
      </PolicySet> 
    </policies> 
  </security> 
</connector> 

Figure 4-3, A Core RBAC Policy 

4.2 Handling Heterogeneous Access through Trust 
Management 

4.2.1 Trust and Delegation in Decentralized Systems 
In a decentralized software system, where components and connectors 

execute for different owners, they have their own autonomous security 

administrative domains, and each of these domains decides who can access their 

services independently. Decentralization makes using a centrally managed 

subject and role hierarchy difficult, if not entirely impossible. The classic access 
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control model and the role-based access control model are insufficient in these 

situations. Trust management schemes [130, 143] have been developed to 

provide a decentralized approach to address these issues.  

PolicyMaker [16] is the first system that uses trust management, which 

combines authentication and authorization in their policy definitions, to 

implement decentralized access control. A local decision maker uses credentials 

presented to it by a remote party to make the access control decision. The 

credential is generally a certificate signed by the local decision maker, signifying 

the trust of the local party on the remote party. It unifies local and remote access 

control by treating a local policy also as a credential signed by the local decision 

control maker. Several later systems, such as KeyNote [15, 17] and SD3 [67], 

adopts a similar approach that uses logic and signed certificates as the basis for 

making access control decisions [143]. 

A concept related to trust is delegation. Entity A can make entity B as its 

delegate, so if an entity C trusts entity A then it will also allow the entity B to act 

on behalf of entity A [80, 152]. The delegation can propagate further and form a 

delegation chain, thus multiple entities are involved in a trust-based access 

control decision. The granted delegation can also be revoked, if entity A decides 

entity B should no longer act as entity A [51]. 

From a trust management perspective, the standard Java access control 

algorithm for stack walk [50] (discussed in Section 3.4.1) treats the different 

protection domains on a stack as a chain of trust and delegation. The system 

libraries, which are callees at the bottom of the stack, virtually grant their trust on 

the callers at the top of the stack, when the libraries invoke the 
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doAsPrivileged method to perform operations requested by the callers. This 

trust chain is on the opposite direction of the call chain. When a less privileged A 

entity calls a more privileged entity B, entity B should trust entity B before it 

honors the call. Such trust and delegation, exhibited in the form of the 

doAsPrivileged method call, should be exercised carefully.  

4.2.2 Role-based Trust Management in Secure xADL 
So far we have discussed the classic access control model (Section 2.2.1), 

the role-based access control model (Section 4.1), and the trust management 

model (Section 4.2.1). Several efforts have been made to provide a more unified 

view of these models [123, 140]. Such a unified view provides the theoretical 

foundation for our architectural treatment of access control models. As we have 

discussed in Section 3.1.1, the Subject concept captures the user on whose behalf 

software executes. Section 3.1.2 suggests that principals provide indirection and 

abstraction necessary for more advanced access control models. In the classic 

model, the indirection is unnecessary, and a principal becomes synonymous to 

the subject. In the role-based model, the principal expresses the different roles a 

user can perform, and is essential to the access control decision. In the trust 

management model, a remote subject’s principal can be public key credentials or 

certificates signed by the local subject, so that a local subject can use these 

principals to decide whether a request should be permitted or denied. 

Secure xADL adopts the role-based trust management (RBTM) framework 

[81] as its base for support of trust management. The framework has a theoretical 

semantics based on logic and set theory, which makes it a natural fit since other 

parts of Secure xADL is also based on similar theoretical foundations. The 
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framework uses roles as the basis for granting trust, so it integrates with the 

RBAC support of Secure xADL easily.  

In a decentralized environment, there are different autonomous 

administrative domains. The most basic rule of the role-based trust management 

framework specifies that a role R1 defined in a domain D1 grant its trust on the 

role R2 defined in the domain D2, so that each user from the domain D2 who can 

perform the R2 role can acquire permissions in the domain D1 that are granted to 

the role R1. The authors of the RBTM framework formally express this as R1.D1  

R2.D2, signifying a trust relationship from D1 to D2. (The framework is backed by 

logic programming, so the arrow in the formal rule points in a direction that 

implies logic derivation.)  

From a Role-based Access Control perspective, the trust grant rule is 

similar to the relationship between a senior role and a junior role in the 

Hierarchical RBAC model. There a senior role obtains all permissions of the 

junior role. Here a role from a remote domain acquires the permissions granted 

on a local role in the local domain. The RBTM framework views the trust 

management relationship as the set containment relationship between 

independently defined roles. 

From a trust management perspective, the trust grant rule is a credential 

that a remote can present to the local entity for access control. If the remote 

entity can convincingly deliver the credential (for example, the credential is 

signed by the local entity), then the local entity will grant the permissions 

associated with the role.  
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Architectural constituents of Secure xADL use the trust grant rule to 

define what trust locally defined roles will grant on remotely defined roles. 

Syntactically this is expressed along with other Role-based Access Control 

policies.  

Figure 4-4 is an example of a Secure xADL trust management policy. Note 

the “TM:deault” policy set, which is the Secure xADL notation to signify a trust 

management policy. The rule specifies that the US role from the US domain 

(specified by the subject attribute with an id of urn:xadl:domain:name) trusts 

(specified by the urn:xadl:action:Trust action) the France role from the 

France domain (specified by the urn:xadl:domain:name resource attribute). 

Compared to the RBAC policy in Figure 4-3, each role in this policy is explicitly 

specified with the autonomous domain under which it is defined. In the previous 

RBAC policy, the same default domain is assumed for each role defined. 

4.2.3 Trust Boundary and Architectural Connector 
While the term trust management was recently coined to handle 

decentralized access control, trust has long been a central concept in security 

research [121]. From a software architecture viewpoint, a trust boundary 

delineates the trust relationship among components and connectors. All 

components and connectors within a boundary trust each other, and thus no 

security checks would be necessary. However, any access crossing a boundary 

should be very carefully monitored and checked. Software architecture 

descriptions could provide an appropriate means to describe and analyze these 

trust boundaries.  
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<connector id="UStoFranceConnector"  
                xsi:type="SecureConnector"> 
  <type href="#BridgeConnector_type" /> 
  <security> 
    <subject>US<subject/> 
    <policies> 
      <PolicySet PolicySetId="TM:default"> 
        <Policy RuleCombiningAlgId="permit-overrides"> 
          <Rule Effect="Permit"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>US 
              <AttributeDesignator>subject-id 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>default 
              <AttributeDesignator>urn:xadl:domain:name 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>France 
              <AttributeDesignator>resource-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>France 
              <AttributeDesignator>urn:xadl:domain:name 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>urn:xadl:action:Trust 
              <AttributeDesignator>action-id 
        </Policy> 
      </PolicySet> 
    </policies> 
  </security> 
</connector> 

Figure 4-4, A Trust Management Policy 

Secure xADL arguments traditional software architecture descriptions 

with trust information to clearly delineate where trust starts and ends within a 

complex software system. Traditional boundaries are laid around components, 

connectors, and the containing sub-architectures. Secure xADL overlays these 

boundaries with trust information. Thus, when a component executing for one 

subject needs to access another connector executing as a different subject, a cross 

trust domain access control check should be performed. The two subjects 

generally are defined within a single administrative domain, so the cross-subject 
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trust boundaries in this case still lie within that administrative domain. When a 

component from one autonomous administrative domain tries to access another 

connector in another autonomous domain, the trust management policy should 

be consulted to check whether the cross-domain trust boundaries should be 

allowed to cross.  

Connectors can play an important role in checking accesses crossing trust 

boundaries. When a connector connects two trust boundaries in the architectural 

topology, the connector can propagate and delegate trust in accordance with the 

trust policy. The necessary trust credentials, such as the subject and principals of 

the accessing component, can propagate along the connectors, subject to whether 

the delegation is allowed and whether the accessing role is trusted. Thus at the 

other end of the connector the accessed component can utilize such trust 

information to decide whether the access request is allowed.   

4.3 Handling Content-based Access 
Previously, we have established interfaces of components and connectors 

as a basic unit for access control protection. The interfaces are protected by 

safeguards. The accessing components and connectors need to have sufficient 

privileges for these safeguards before they can access the protected interfaces. 

This interface-based access control scheme is based on the dominant design in 

component-based software engineering and software architecture, where 

interfaces are the key encapsulations for provided and required services.  

However, depending on how an interface is designed, the interface might 

not always provide all information necessary for making an access control 

decision. For example, a file system component usually provides interfaces for 
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creating, reading, writing, and removing files. These interfaces remain the same 

for accessing both ordinary and sensitive files within the component, but the 

results would differ depending on not only the accessing component but also on 

the parameters passed to these interfaces. 

In certain architectural styles, there are only limited types of interfaces. 

For example, in the classic Unix pipe-and-filter architecture style, each pipe and 

each filter has a standard input interface to receive byte stream inputs and a 

standard output interface to send byte stream outputs. The interface itself does 

not differentiate one input stream from another input stream, or differentiate one 

output stream from another output stream. The simplicity and uniformity of the 

interfaces provide great flexibility in composing larger architectures from smaller 

building blocks, but it does not provide enough information to control access. To 

provide access control for architecture styles that utilize generic interfaces, 

Secure xADL enables content-based access control that allows access control to 

be based on the content passing through these interfaces.  

For example, in the message-based C2 style [138], each component and 

connector has a top interface and a bottom interface, and all top interfaces and all 

bottom interfaces within an architecture are of the same type. This generic 

interface type is used to send and receive all requests and notifications. We adopt 

the xADL message extension [58] to describe the content of a C2 message, 

including its type (whether it is a request or a notification), its source and 

destination component and connector, and the names and values of the 

parameters of the message. XACML provides a facility to allow inspecting the 

content of the resource as part of the generic rule matching process, in addition 
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to matching attributes of a subject, an action, and a resource. Combining the 

message extension and the content inspection facility, Secure xADL allows 

architectural access control decisions based on not only the interfaces of 

components and connectors but also the content that passes through these 

interfaces. For example, an architect can limit the delivery of a notification from 

the bottom interface of a connector to the top interface of another connector only 

to notifications that has a certain value for a certain parameter.  

<connector id="UStoFranceConnector"  
                xsi:type="SecureConnector"> 
  <type href="#BridgeConnector_type" /> 
  <security> 
    <subject>US<subject/> 
    <policies> 
      <PolicySet PolicyCombiningAlgId="deny-overrides"> 
        <Policy RuleCombiningAlgId="deny-overrides"> 
          <Rule Effect="Deny"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>UStoFranceConnector 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>RouteMessage 
              <AttributeDesignator>resource-id 
            <ActionMatch MatchId="string-equal"> 
             <AttributeValue>urn:xadl:action:RouteMessage
              <AttributeDesignator>action-id 
            <Condition FunctionId="not"> 
              <Apply FunctionId="string-is-in"> 
                <AttributeValue>Secret</AttributeValue> 
                <AttributeSelector  
            RequestContextPath="//context:ResourceContent
          <Rule Effect="Permit" />  
        </Policy> 
      </PolicySet> 
    </policies> 
  </security> 
</connector> 

Figure 4-5, Content-based Access Control 
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Figure 4-5 depicts a sample policy for content-based access control. When 

the connector routes a message (an action with the id of 

urn:xadl:action:RouteMessage), it will deny the routing if it finds 

inappropriate messages when it inspects the content of the message. The content 

of the message to inspect is described with an XPath [141] expression beginning 

with “//context:ResourceContent”. XACML uses this path as an 

AttributeSelector to retrieve the content of the resource from the request. 

4.4 Handling Architectural Execution 
To effectively enforce secure architectural access, we also need to provide 

necessary run-time support for architectural execution of an architecture 

described in Secure xADL. Two most basic types of operation for architectural 

execution are architectural instantiation and architectural connection. Most 

architecture styles need these two types of architectural operations. For message-

based architecture styles like C2, providing message routing support is also 

essential to architectural execution.   

4.4.1 Architectural Instantiation 
The first architectural operation is instantiation, namely creating the 

components and connectors based on the architecture description. This has not 

been well studied by previous work [145]. A sample instantiation policy can 

specify that the components and connectors should not be created unless there 

are public key certificates present, since merely creating the component or the 

connector could be dangerous enough. This is the policy adopted by recent 

versions of Internet Explorer for ActiveX Controls. 
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Secure xADL uses urn:xadl:action:AddBrick to specify the 

architectural instantiation operation, as depicted in Figure 3-2. 

4.4.2 Architectural Connection 
The second architectural operation is connection, namely binding the 

interfaces of components and connectors together. When binding a component 

and a connector, the policies of both the component and the connector should be 

consulted. If either of them rejects such a connection, then the connection 

operation should not be allowed. A connection operation can involve more than 

just immediate connections. For example, when using a connector to connect a 

component with another component, the policies of the connector and the two 

components all should be consulted. This is an example of the nearby constituent 

context (Section 3.4.1).  

Figure 4-6 specifies a policy for architectural connection. The operation for 

making an architectural connection is specified by the Secure xADL action 

urn:xadl:action:AddWeld. Note the resource match uses the XACML 

regexp-string-match method, which matches strings with regular 

expression. In this case the value to be matched is “.*”, thus every connection 

request will be permitted. 

4.4.3 Message Routing 
For a message-based architecture styles like C2, when a system described 

in the style executes, each component and connector only communicates with 

each other through passing messages. Thus, providing support for message 

routing will complete the support of executing such software systems: first 
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instantiating components and connectors, then connecting components with 

connectors, and finally messaging events among them. Secure xADL supports 

routing messages according to specified policies. Such support can utilize the 

content-based access control facility discussed in Section 4.3.  

<connector id="UStoFranceConnector"  
                xsi:type="SecureConnector"> 
  <type href="#BridgeConnector_type" /> 
  <security> 
    <subject>US<subject/> 
    <policies> 
      <PolicySet PolicyCombiningAlgId="permit-overrides">
        <Policy RuleCombiningAlgId="permit-overrides"> 
          <Rule Effect="Permit"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>SecureManagedSystem 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="regexp-string-match">
              <AttributeValue>.* 
              <AttributeDesignator>resource-id 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>urn:xadl:action:AddWeld 
              <AttributeDesignator>action-id 
        </Policy> 
      </PolicySet> 
    </policies> 
  </security> 
</connector> 

Figure 4-6, Policy for Architectural Connection 

In C2, there are two types of message routing. The external message 

routing occurs when messages are sent from one interface of a component to 

another interface of a connector. The internal message routing happens when a 

message received from one interface of the connector is forwarded to another 

interface of the same connector. The standard C2 semantics for a connector is to 

unconditionally route such messages. However, this might leak sensitive 

information, if any receiver at the receiving end is untrustworthy. Thus, a more 
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discreet policy could be adopted by the system or the connector that permits only 

routing safe messages to appropriate interfaces.  

4.5 Summary of Modeling Concepts 
This section summarizes the modeling concepts proposed in Chapter 3 

and Chapter 4. These concepts can be used for checking architectural access 

control using the algorithms defined in Section 3.5. 

Secure xADL is based on a unified access control model that incorporates 

the classic discretional access control model [78], the role-based access control 

model [124], and the role-based trust management model[81]. The latter two 

models can be viewed as extensions to the classic model. Such a unified model 

can cover access control requirements for a large class of software systems. 

Secure xADL extends two base languages based on XML. One language, 

our extensible architecture description language, xADL [27], provides basis for 

describing different architectural constructs, such as components, connectors, 

types, sub-architectures, and the complete architecture. The other language, the 

XACML language [106], supplies a logic and set theory based policy language 

utilizing matching subjects, actions, and resources to rules and policies. Both 

languages support modular extension.  

Secure xADL extends descriptions of architectural constituents 

(components, connectors, types, sub-architectures, and the global architecture) 

with constructs necessary to model access control: subject, principal, 

permission, resource, privilege, safeguard, and policy. Subject is the 

user on whose behalf software constituents execute. A subject can take multiple 

principals. Each principal encapsulates a credential that the subject possesses 
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to acquire permissions. It is the synonym as subject in the classic access control 

model, a role in the role-based model, and a decentralized role in the trust 

management model. A permission is an allowed operation on a resource. A 

resource is an entity whose access should be protected. A resource can be 

passive, like files, or it can be active, like components and connectors. A 

privilege describes permissions components and connectors possess, depending 

on the executing subject. A safeguard describe permissions required to access 

the protected interfaces of components and connectors. A policy ties all these 

concepts together, and specifies what access is allowed and what access should be 

denied.  
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5 Tools Support 
In this chapter we describe support tools we have developed for the 

connector-centric approach to software architectural access control. We first 

describe the evaluation engines we have developed for this approach. These 

engines, while being an integral part of our approach, can also be used separately. 

Then we give an overview of the base architecture design environment, 

ArchStudio [27]. After that we illustrate the design-time tools we have developed 

for the environment, including editors and analyzers. Finally, we discuss the run-

time tools that we have developed to fully support secure execution of event-

based software systems. 

5.1 Evaluation Engine of Access Control Models 

5.1.1 Implementing Role-based Access Control 
Because Secure xADL supports the Core RBAC and the Hierarchical RBAC 

parts of the RBAC standard [5], we write a Java class library to implement these 

parts. The RBAC standard is specified as a set of functions, but Java prefers 

object-oriented design. Thus we provide a procedural interface for the set of 

classes. The RBAC standard also requires that each part should be able to be 

deployed and utilized independently, thus we choose to let the Hierarchical RBAC 

part inherit from the Core RBAC part so the Core part can be used standalone 

and the Hierarchical part does not need to duplicate unnecessary code. 

For the Core part, we design a set of interfaces and classes: User, Role, 

Operation, Object, Permission, and Session, just as specified by the 
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standard. An RBACCoreImpl implements all functions specified by the standard, 

and can be accessed by the following procedure-oriented interface: 

public interface RBACCore { 
    User addUser(Name User); 
    Role addRole(Name Role); 
    void assignUser(User aUser, Role aRole); 
    void deassignUser(User aUser, Role aRole); 
    void grantPermission(Operation p, Object b, Role r); 
    void revokePermission(Operation p, Object b, Role r);
    void checkAccess(Session s, Operation p, Object b); 
    Set  assignedUsers(Role aRole); 
    Set  assignedRoles(User aUser); 
    Set  roelPermissions(Role aRole); 
    Set  userPermissions(User aUser); 
    ... 
} 
 

Figure 5-1, Core RBAC Interface 

The RBAC Hierarchical part is based on the RBAC Core part, and adds the 

classes and interfaces in Figure 5-2 to provide access for the role-inheritance 

relationships. In Hierarchical RBAC, adding an inheritance relationship between 

two roles can trigger a wide propagation of permissions, because the newly added 

relationship could bridge two large existing role hierarchies. 

public interface RoleHierarchical extends Role { 
    void addAscendant(RoleHierarchical ascendant); 
    void addDescendant(RoleHierarchical descendant); 
    void addJunior(RoleHierarchical junior); 
    void addSenior(RoleHierarchical senior); 
    ... 
} 
public interface RBACHierarchical extends RBACCore { 
    void addInheritance(RoleHierarchical a, d); 
    void deleteInheritance(RoleHierarchical a, d); 
    Set  authorizedRoles(User aUser);  
    Set  authorizedUsers(Role aRole); 
    ... 
} 

Figure 5-2, Hierarchical RBAC Interface 
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5.1.2 Integrating Role-based Trust Management 
The Role-based Trust Management (RBTM) framework was implemented 

by its author, Ninghui Li [81]. We adapt it to suit our own needs. The original 

framework answers two types of queries: which roles (foreign or local) an entity is 

allowed to have, and to which entities (foreign or local) a role is granted. We limit 

the inter-autonomous domain trust relationships to roles of domains, and use the 

previously developed RBAC engine to query the role-user relationships within an 

autonomous domain. A RoleDecentralized role maintains to which domain it 

belongs. Each domain’s RBAC engine uses a trust manager to manage its trust 

relationships with other domains. It informs the trust manager what roles from 

other domains it trusts and revokes the established trust relationships when 

appropriate. The trust manager for a domain is queried for these relationships 

and decides whether an access from a foreign role should be allowed.  

public interface RoleDecentralized  
                    extends RoleHierarchical { 
    void setDomain(Domain owning); 
    ... 
} 
public interface RBACDecentralized  
                    extends RBACHierarchical { 
    void setDomain(Domain domain); 
    void setTrustManager(RBTM trustManager); 
    ... 
} 
public interface RBTM { 
    void grantTrust(RoleDecentralized l,RoleExpression r)
    void revokeTrust(RoleDecentralized, RoleExpression r)
    Set  getTrustedForeignRoles(RoleDecentralized local);
    Set  getTrustingForeignRoles(RoleDecentralized l); 
    boolean checkAccess(Name localUser, Name localDomain,
         Name foreignDomain,Name operation, Name object);
    ... 
} 

Figure 5-3, RBTM Interface 
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5.1.3 Integrating with SunXACML 
We use the SunXACML [135] open source library as the underlying policy 

decision engine. SunXACML provides a SimplePDP that reads a policy and a 

request that are both described in XACML, tries to find a rule from the policy that 

matches the request, and returns a permit or deny answer based on the found 

matching rule and the rule combination algorithm. 

Based on the SimplePDP, we develop our own policy evaluation engine. 

Our PDP is constructed with a set of current polices and a set of potential policies. 

A policy finder is developed to retrieve potential polices when referred to by the 

current polices.  

The XACML RBAC Profile specifies how policy sets can be used to 

implement RBAC (Section 4.1.3), but it does not specify where the policy sets can 

be found. Using our PDP, we supply the role policy set as the current policy, and 

the permission policy set as the potential policy. This not only solves the problem 

of locating policy, but also avoids directly evaluating using the permission set, 

which is prohibited by the XACML RBAC Profile.  

Because we already have a RBAC engine and a RBTM engine, we decide to 

reuse them to both save efforts and avoid inconsistencies. We design three classes: 

RBACHierarchicalWithXACML, RBACDecentralizedWithXACML, and 

RBTMWithXACML.  These classes read role-based and trust management policies 

specified in Secure xADL (Section 4.1.4 and Section 4.2.2), and evaluate against 

an XACML request. Internally they populate the existing engines with 

information from the XACML policies. A role attribute finder is developed to find 

the correct role policy set using specified principals or the original RBAC engine. 
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5.2 Overview of ArchStudio 
ArchStudio [27] is an architecture development environment. It supports 

designing software architectures specified in xADL, and executing them if they 

architectures are in the C2 architecture style. 

ArchStudio has two editors that an architect can use to construct and 

modify architectures. The first one, ArchEdit, is a syntax-directed, text-based 

editor. It can automatically inspect xADL extensions and provide means to add 

constructs introduced the extensions. The second editor, Archipelago, is a 

powerful graphical editor. It gives an intuitive view of the architecture.  

Tron is the analysis framework of ArchStudio. Tron supports many types 

of architectural analysis, such as checking each component has a unique 

identifier and each interface is of the correct type. 

ArchStudio is a C2 style application and written with the c2.fw framework. 

The framework is a class library that eases developing C2 style software. It 

provides support for both components and connectors (termed Brick in the 

framework). A broadcasting connector is the standard connector for c2.fw, as 

required by the C2 style.  

When given a xADL description of a C2 style architecture, ArchStudio 

instantiates a ManagedSystem to execute the architecture. The 

ManagedSystem uses an ArchitectureController to control the execution. 

The controller consists of three parts: an ArchitectureManager that creates 

bricks and links them together, an ArchitectureEngine that manages the 

running threads of the bricks, and a MessageHandler that delivers messages 

from one interface of a brick to another interface of another brick. 
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5.3 Design-time Support 
At design-time a security architect needs to specify the security properties 

of an architecture and check whether the specification meets intended accesses. 

The editor and checker of ArchStudio enable these activities. 

5.3.1 Integrating the XACML Policy Editor 
No extra effort is needed to support editing the subject, principals, 

privileges, and safeguards of Secure xADL in ArchEdit, because the constructs 

follow the established pattern used by pervious extensions, and ArchEdit’s 

syntax-directed capability automatically supports editing these elements.  

Editing the XACML policy requires more integration. We need to perform 

three changes. Firstly, each XACML PolicySet is exposed to other parts of 

ArchStudio as a string, even though internally it is a complex XML document. 

Secondly, we adopt the UMU-XACML-Editor developed by University of Murcia 

(UMU), and make it to read and write a policy in the string form. The editor 

provides a syntax-directed manner to construct a correct XACML policy. It 

adopts the same tree-based user interface design as employed by ArchStudio 

components, making integrating it seamless from a user perspective. Finally, we 

supply the editor with Secure xADL’s subjects, resources, and actions to ease 

constructing a Secure xADL related policy. The integrated editor can be used to 

edit policies for components, connectors, their types, and architecture structures.  

The policy editor integration is reused in the graphical editor, Archipelago. 

To support editing other constructs of Secure xADL, a context menu plug-in is 

written, and is invoked when the editing focus is on secure components and 

connectors.  
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Figure 5-4, Policy Editor in ArchEdit 

Figure 5-4 depicts the policy editor in ArchEdit. Figure 5-5 shows the 

editor in Archipelago. Notice that the external editor is visually well integrated 

with other user interface components. 

 

Figure 5-5, Policy Editor in Archipelago 
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5.3.2 Access Control Analysis 
Figure 5-6 illustrates how in the Archipelago graphical editor the security 

architect can access the architectural access control algorithm specified in Section 

3.5. The architect specifies both an interface of an accessing component or 

connector and an interface of an accessed component or a connector. The 

algorithm checks whether the accessing component or connector has sufficient 

privilege to access the accessed interface and reports the result. If the result is not 

as the intended, the architect can check the involved components and connectors 

along the access path and modify their security properties (using editors of 

Section 5.3.1) to achieve the desired consequence. The check can be performed on 

any pairs of interfaces within the architecture. This access control check can also 

be invoked through the other editor, ArchEdit. 

 

Figure 5-6, Menu for Access Control Check 
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When given a Secure xADL description, the algorithm implementation 

first checks whether the accessing interface and the accessed interface belong to 

the same architecture structure. If they are, the implementation constructs an 

interface graph for that structure, where each node represents an interface, and 

each link in the Secure xADL description becomes an edge. An edge is also drawn 

between an incoming interface and an outgoing interface of a connector.  

If the accessing interface and the accessed interface do not belong in the 

same structure, then the implementation uses the top level architecture as the 

common container, flattens that architecture by replacing each contained 

structure with an interface graph for the contained structure, possibly renaming 

duplicated architectures and linking mapped interfaces with edges.  

With such a connected interface graph, the algorithm implementation 

finds a path between the accessing interface and the accessed interface. The 

algorithm uses the standard Floyd’s algorithm [26] to find a shortest path, if such 

a path exists. This step takes O(n3) time, where n is the number of interfaces 

contained in the constructed interface graph. 

With this path, the implementation retrieves the privileges of the accessing 

interface and the safeguards of the accessed interface, from the interface, the 

containing connector, the type of the containing connector, and the containing 

architecture structure. Then the implementation propagates the privileges along 

the path. During this propagation process, each connector can decide whether a 

privilege can be propagated through it, based on its policy. This step uses the 

evaluation engine (Section 5.1.3). Finally, the implementation checks whether the 

privileges eventually reaching the accessed interface satisfy the safeguards. 
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The privilege propagation step takes O(m) time, where m is the length of 

the path. At each step, by default the privilege will propagate. But if the connector 

supplies a policy, then the XACML-based evaluation engine is executed. This 

execution needs memory resource and execution time because of the XML usage. 

Overall, the static analysis provides satisfactory performance for interactive usage 

by an architect at design-time. 

5.4 Run-time Support 

5.4.1 Policy Decision Point and Policy Enforcement Point 
To effectively enforce secure architectural access, we need to provide 

necessary run-time support. The language from which we base our policy 

description, XACML, uses an enforcement and decision framework. In this 

framework, when a policy enforcement point (PEP) needs an access control 

decision about whether the access should be granted, it constructs a request and 

sends the request to the policy decision point (PDP). The PDP retrieves the 

applicable policies and uses them to calculate a response of permission or denial. 

Then the response is sent back to the PEP, and the PEP can either permit or deny 

the original access request.  

Within this framework, the important design questions are: 1) What 

operations should be controlled? 2) Where is the PEP located? 3) Where is the 

PDP located? 4) Where should the PDP retrieve the relevant policies? Section 4.4 

has answered the first questions: the controlled architectural operations should 

include architectural instantiation, architectural connection, and message routing 

for message-based architecture styles. Section 3.2 and Section 3.4 have answered 

the last question: architectural access control policies should come from all 
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relevant sources: the components, the connectors, their types, their containing 

architectures, and the complete architecture. Thus, the unanswered questions are 

about the locations for the PDP and the PEP. 

Because ArchStudio is written in the c2.fw framework, and a c2.fw-based 

application is executing under the control of the Managed System and the 

Architecture Controller, the natural choice is to combine the PDP and PEP 

together, and use both the individual bricks of the c2.fw framework and the 

controller as the combined enforcement/decision point. An individual brick can 

handle more local access control decisions, and the architecture controller can 

handle more global decisions. We stress that each of them can retrieve policies 

from all relevant sources, and an architectural operation could involve both of 

them. The next two subsections describe the framework and the controller, 

respectively. 

5.4.2 The c2.fw.secure Framework 
In the c2.fw framework, the basic class is Brick, which can be either a 

component or a connector. The c2.fw.secure framework is an extension of the 

c2.fw framework. The Brick class is extended to a SecureBrick class in the 

c2.fw.secure framework. The SecureBrick class stores the subject for which it 

executes, the principals of the subject, and the associated privileges. More 

importantly, SecureBrick has the capability to maintain a PDP. This PDP is 

consulted during various points of architectural execution, as we will see in the 

following sections on architectural operations.  
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The original c2.fw framework defines an Interface class to describe the 

top and bottom interfaces. This class is extended into a SecureInterface class 

in the c2.fw.secure framework. A SecureInterface carries safeguards to 

protect the interfaces of bricks. 

5.4.3 The Secure Architecture Controller  
There are three parts of an architecture controller: the engine, the 

architecture manager, and the message handler. The latter two are related to 

secure execution of C2 systems, and are extended to the Secure Architecture 

Manager and the Secure Message Handler, respectively. Each of them can 

maintain a PDP, and the PDP is populated with a policy obtained from the 

security property of the global architecture. This policy controls how various 

architectural operations are performed, as we shall see.  

The secure architecture manager and the secure message handler will raise 

security exceptions if some operations are rejected because of security reasons. 

To minimize the change on other parts of ArchStudio, the exception is a subtype 

of the unchecked run-time Java exception, so other parts do not have to handle 

the exception. The exception is caught and handled by the 

SecureManagedSystem. 

While both the SecureBrick and the secure manager/handler can obtain 

and enforce security policies, the advantage of placing policy enforcement at the 

secure architecture controller is that existing applications do not need to be 

rewritten to benefit from the secure execution. Many policies can be specified and 

enforced at the architecture structure level. Of course, a SecureBrick provides 

130 



 

more capabilities and offers finer controls for developing more advanced secure 

applications.  

5.4.4 Sources and Defaults of Policies 
In executing a secure C2 application, the security polices can come from 

different sources of a Secure xADL description: the brick, the type, and the 

architecture. The security architect should decide where the proper scope is to 

enforce a security policy. 

Another important issue is to choose a default policy between an “open 

policy” [116] (where any requests that are not explicitly denied will be permitted) 

and a “close policy” (where any requests that are not explicitly permitted will be 

denied). For a single desired effect, both can be utilized, but the syntax is 

different. It is their implications for unspecified operations that would surprise 

an unscrupulous architect. The architect should carefully explore and inspect the 

effects of the specified policy.   

5.4.5 Architectural Instantiation 
Having discussed the placement of policy decision and policy enforcement, 

in the remaining part of this section we will discuss how the Secure Architecture 

Controller and the c2.fw.secure framework implement the different types of 

architectural operations.  

The first architectural operation is instantiation, creating the components 

and connectors based on the architecture description. This is managed by the 

Secure Architecture Manager. Because at this stage the C2 brick is to be created, 

the Secure Architecture Manager is in full control of whether to create the brick 

or not, using a policy similar to the one specified in Section 4.4.1.  
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After the manager decides the component or the connector can be created, 

it creates the component or the connector using the implementation specified in 

its type, collects relevant policies from the brick, the type, and the architecture, 

and supplies these policies to the newly created brick so the brick can finish its 

own initialization,  including creating the brick PDP. 

5.4.6 Architectural Connection 
The second architectural operation is connection, binding the interfaces of 

components and connectors together. This is also handled by the Secure 

Architecture Manager.  

When binding a component and a connector, since both bricks should 

have been created, the Secure Architecture Manager consults each of them to 

check whether any brick’s policy will reject the connection. Such policy is 

specified as in Section 4.4.2. By doing this the architecture manager gives the 

involved bricks the capability to control their own connections. If either of them 

rejects such a connection, then the connection operation should not be allowed.  

The Secure Architecture Manager can also inspect the globally policy 

associated with the global architecture for operations that involve more than just 

the immediate connections. For example, when using a connector to connect a 

component with another component, the architectural policy is the most natural 

place to specify whether such connections should be allowed. This is an example 

of the nearby constituent context.  

If the connection operation is rejected because of security reasons, the 

Secure Architecture Manager reports such problems. The Tron analysis tool of 

ArchStudio displays the unsuccessful connection attempts, as shown in Figure 
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5-7. Similar failures in architectural instantiation are also reported by the Tron 

tool. Some failed connection attempts are actually caused by failures in early 

failures of instantiating bricks. The architect can inspect the involved bricks and 

the global architecture to decide the reasons for the rejection and take 

appropriate actions.  

 

Figure 5-7, Architectural Connection Failure 

5.4.7 External Message Routing 
In C2, external message routing occurs when messages are sent from one 

interface of a component to another interface of a connector. This task is 

processed by the Secure Message Handler. During external message routing, the 

message handler can use architectural information on the message, such as the 

source interface and the destination interface to decide whether the message 
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should be delivered. The message handler can also inspect more deeply into the 

content of the message to decide whether the message should be delivered, as 

discussed in Section 4.3 and Section 4.4.3. 

Since evaluating a request against an XACML policy is a potentially 

computationally expensive task and the message handler is delivering all external 

messages in the system, requiring the handler to inspect each message before 

delivery could be very costly on performance. The current secure message 

handler only inspects a message in two occasions: when the message is delivered 

between a normal C2 brick and a secure C2 brick, and when the message is 

delivered between two secure C2 bricks that belong to different subjects. While 

this decision is a made as a tradeoff between security and performance, there is 

also a security rationale: a trust boundary is crossed in these two situations, so 

the access must be carefully inspected and regulated, as discussed in Section 

4.2.3.  

5.4.8 Internal Message Routing 
In C2, internal message routing refers to when a message received from 

one interface of the connector is forwarded to another interface of that connector. 

The standard C2 semantics is to unconditionally route such messages. However, 

this might leak sensitive information, if any receiver at the receiving end is 

untrustworthy. Thus, a more discreet policy can be adopted by the connector, 

only routing safe messages to appropriate interfaces. Unlike external message 

routing, where the message handler is the PDP/PEP, in this case the local 

connector decides what it should do, since the message routed is completely 

under its control.  
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As in the case of external message routing, the connector can inspect both 

the architectural information and the message content to decide whether the 

message should be forwarded. Since the message is under full control of the 

connector, it is tempting to treat the message as simply traveling from one 

internal interface of the routing connector to another interface of the same 

connector, without consideration of larger contexts. However, depending on the 

application requirements and the capability of the messaging system, sometimes 

it is desirable to retain the original contextual information of a message that the 

message has before the message reaches the incoming interface. Since a C2 

connector has only one top interface and all notifications come from this 

interface, whatever the sender of the message is, loosing the contextual 

information makes it difficult to differentiate between the sources of these 

messages. This would be undesirable, since the source of a message could play 

important roles even in internal message routing.   

5.4.9 A Connector’s Role in Secure Architectural Execution 
In our connector-centric approach to software architectural access control, 

a secure connector plays two important roles in securely executing C2 style 

software: it participates in deciding whether architectural connections should be 

made, by rejecting inappropriate connections when the architecture manager 

consults it before the connection; and it assists in determining whether a message 

should be routed to the intended recipient, by discarding improper messages 

routed through it.  
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The secure connector makes these decisions based on the specified 

security policies and the message. It can inspect both the architectural properties 

of the message and the content of the message to make a decision on delivery. 
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6 Case Studies 
In this chapter we present four case studies to assist in validating our 

connector-centric approach to software architectural access control. The first case 

study, Coalition, shows that our approach can describe how two parties that do 

not fully trust each other can share data without revealing more sensitive 

information, and how our tools support executing such a system with a secure 

routing connector to exchange shared data. The second case study uses a 

composite secure connector to connect various off-the-shelf components to 

construct a secure file sharing application for a local area network. The third case 

study models the component security architecture of the Firefox web browser, 

and demonstrates that our connector-centric approach can describe how Firefox 

security manager maintains trust boundaries and improves security through 

connector enhancement. The last case study illustrates Microsoft Distributed 

Component Object Model and shows how our approach can model its handling of 

architectural access control operations and its growth through various types of 

connectors to handle evolving security requirements. 

These cases studies have helped validating three research hypotheses: 

Hypothesis 1: An architectural connector may serve as a 

suitable construct to model architectural access control.  

Hypothesis 2: The connector-centric approach can be applied to 

different types of componentized and networked software systems. 

Hypothesis 4: In an architecture style based on event routing 

connectors, our approach can route events in accordance with the 

secure delivery requirements. 
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6.1 Coalition 
In this section, we illustrate the use of the connector-centric approach with 

a coalition application. We present three architectures, each has its own software 

and security characteristics. We also describe how to specify related architectural 

execution policies.  

The software architecture is in the C2 architecture style. The coalition 

application allows two parties to share data with each other. However, these two 

parties do not necessarily fully trust each other, thus the data shared should be 

subjective to the control of each party.  

The two parties participating in this application, depicted in Figure 6-1, 

are US and France. Each of them can operate independently, displaying the 

messages they receive from their own information collection devices. They can 

also share messages necessary to achieve a coalition mission. In Figure 6-1, US 

sends messages to France so France can display the additional messages. France 

also sends messages to US. One message about hostile air defense missile is 

especially important, and the US side would reconfigure the flight path of its 

planes after receiving the message.  

6.1.1 The Original Architecture 
Figure 6-2 illustrates the original coalition architecture, using our 

Archipelago architecture editor [27]. In this architecture, US and France each has 

its own process. US is on the left side, and France is on the right.  The squares are 

components, and the regular rectangles are connectors.  
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Figure 6-1, Coalition in Execution 

The US Radar Filter Connector sends all notifications downward. The US 

to US Filter Component forwards all such notifications to the US Filter and 

Command & Control Connector. However, US does not want France to receive all 

the notifications. Thus it employs a US to French Filter Component to filter out 

sensitive messages, and sends those safe messages through the US Distributed 

Fred Connector, which connects to the French Local Fred Connector to deliver 

those safe messages. (A Fred connector broadcast messages to all Fred 

connectors in the same connectors group.) The France side essentially has the 

same architecture, using a French to US Filter Component to filter out sensitive 

messages and send out safe messages.  
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Figure 6-2, Original Coalition 

The advantage of this architecture is that it maintains a clear trust 

boundary between US and France. Since only the US to French Filter and the 

French to US Filter come across trust boundaries, they should be the focus of 

further security inspection. This architecture does have several shortcomings. 

Firstly, it is rather complex, This architecture uses 4 Fred connectors (US Local, 

US Distributed, French Local, and French Distributed) and 2 components (US to 

French Filter, French to US Filter) to implement secure data routing such that 

sensitive data only go to appropriate receivers. Secondly, it lacks conceptual 

integrity. It essentially uses filter components to perform data routing, which is a 

job more suitable for connectors. Thirdly, it lacks reusability, since each filter 

component has its own internal logic, and they must be implemented separately.  
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6.1.2 An Architecture with Two Secure Connectors 

 

Figure 6-3, Coalition with Two Secure Connectors 

An alternative architecture uses two secure connectors, a US to France 

Connector and a France to US Connector. Both are based on the same connector 

type, SecureC2Connector_type. The US to France Secure Connector connects 

to both the US Filter and Command & Control Connector and the French Filter 

and Command & Control Connector. When it receives data from the US Radar 

Filter Connector, it always route it to the US Filter and Command & Control 

Connector. And if it detects that it is also connected to the French Filter and 

Command & Control Connector, and the data is releasable to the French side, 

then it also routes the messages to the French Filter and Command & Control 
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Connector. The France to US Secure Connector adopts the same logic. This 

architecture simplifies the complexity and promotes understanding and reuse: 

Only two secure connectors are used, these connectors perform a single task of 

secure message routing, and they can be used in other cases by adopting a 

different policy.  

Figure 6-4 illustrates the relationship between the policy of a type and the 

policy of the instances of the type. The SecureC2Connector_type is specified 

with a principal of NATO, and has a policy that denies the instantiation operation 

(the AddBrick action) if the NATO principal is not present in the request for the 

operation. In the instance UStoFranceConnector’s policy, the type policy is 

referenced through PolicySetIdReference. The instance specifies that the 

instantiation operation is denied if the US principal is not present. Note that the 

policy combination algorithm for the instance’s policy is deny-overrides. Thus, 

even if the US principal is present, unless the NATO principal is also present, the 

instantiation operation will be rejected by the type policy, and because of the 

deny-overrides algorithm, the denial by the type policy suffices to reject the 

instantiation operation. The other connector, FrancetoUSConnector, adopts a 

similar policy. This relationship between the type policy and the instance policy 

allows us to simply remove the type principal, NATO, from the type specification 

to disallow instantiation of any instances for this type.  This flexibility in 

combining the type policy and the instance policy through the policy combination 

algorithm is one of the reasons that we choose XACML as the base policy 

language for Secure xADL (Section 3.2.4). 
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<connectorType id="SecureC2Connector_type"  
                xsi:type="SecureConnectorType"> 
  <security> 
    <principal>NATO</principal> 
    <policies> 
      <PolicySet PolicySetId="InstantiateConnectorType" 
                 PolicyCombiningAlgId="deny-overrides"> 
        <Policy RuleCombiningAlgId="deny-overrides"> 
          <Rule Effect="Deny"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>SecureManagedSystem 
              <AttributeDesignator>subject-id 
            <AnyResource /> 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>urn:xadl:action:AddBrick 
              <AttributeDesignator>action-id 
            <Condition FunctionId="not"> 
              <Apply FunctionId="string-is-in"> 
                <AttributeValue>NATO</AttributeValue> 
                <AttributeDesignator>principal 
        </Policy> 
      </PolicySet> 
    </policies> 
  </security> 
</connectorType> 
<connector id="UStoFranceConnector"  
                xsi:type="SecureConnector"> 
  <type href="#SecureConnector_type" /> 
  <security> 
    <principal>US</principal> 
    <policies> 
      <PolicySet PolicyCombiningAlgId="deny-overrides"> 
        <Policy RuleCombiningAlgId="deny-overrides"> 
          <Rule Effect="Deny"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>SecureManagedSystem 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>urn:xadl:action:AddBrick 
              <AttributeDesignator>action-id 
            <Condition FunctionId="not"> 
              <Apply FunctionId="string-is-in"> 
                <AttributeValue>US</AttributeValue> 
                <AttributeDesignator>principal 
        </Policy> 
        <PolicySetIdReference>InstantiateConnectorType 
</connector> 

Figure 6-4, Type Policy and Instance Policy 
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6.1.3 An Architecture with a Single Secure Connector 

 

Figure 6-5, Coalition with One Secure Connector 

Figure 6-5 depicts an architecture with a single secure connector. This 

simplifies the architecture description further, and has the conceptual clarity that 

a single connector is in charge of all communications between two parties that do 

not fully trust each other. The connector becomes the center of secure data 

sharing. A shortcoming of this architecture is that the secure connector can see 

all traffic, thus it is the obvious target for penetration, and its breach leads to 

secret leak. An architect should balance all such tradeoffs.  

Since the single connector is the single bridge for sharing data, there are 

many manners to control the sharing by setting different polices on the connector. 
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The connector can be denied instantiation, thus no sharing will occur. Even if the 

connector is instantiated, the connections with other components and connectors 

can still be rejected, so no messages can be delivered and sharing still will not 

occur. When the connector is instantiated and properly connected with other 

constituents, it can still use its policy on internal message routing (Section 5.4.8) 

to decide what messages can be delivered.  

Figure 6-6 specifies the internal message routing policy of the 

UStoFranceConnector. There are three noticeable features in this policy.  

Firstly, the policy specifies a Deny rule that matches all requests. The rule 

combining algorithm for the policy is permit-overrides. The effect is unless a 

message is explicitly permitted to be routed, the connector will not forward the 

message. This achieves the “secure by default” effect by using a close policy.  

Secondly, the connector uses content-based access control to deliver 

messages of certain types. The two rules use an XPath expression to specify that 

message routing will only happen when the “type” value of the message is either 

“Air Defense Missile” or “Fixed Military Wing”.  

Lastly, the policies use roles to control message delivery. Two roles are 

defined, the US role and the France role. The “Air Defense Missile” message is 

delivered from France to US only when the connector acts as the France role. 

Likewise, the “Fixed Military Wing” message is delivered only when the 

connector acts as the US role. The connector can act under multiple roles, as is 

currently specified in the US and France principal. If the connector only acts as 

the US role, then the “Air Defense Missile” message will not be delivered. If the 

connector does not play any role, then no message will be routed. 
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<connector id="USFranceConnector"  
                xsi:type="SecureConnector"> 
  <security> 
    <principal>France</principal> 
    <principal>US</principal> 
    <policies> 
      <PolicySet PolicySetId="InternalRouting" 
                 PolicyCombiningAlgId="permit-overrides">
        <Policy RuleCombiningAlgId="permit-overrides"> 
          <Rule Effect="Deny" /> 
      <PolicySet PolicySetId="PPS:France" 
                 PolicyCombiningAlgId="permit-overrides">
        <Policy RuleCombiningAlgId="permit-overrides"> 
          <Rule Effect="Permit"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>USFranceConnector 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>RouteMessage 
              <AttributeDesignator>resource-id 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>xadl:action:RouteMessage 
              <AttributeDesignator>action-id 
            <Condition FunctionId="string-equal"> 
              <AttributeValue>Air Defense Missile 
              <AttributeSelector RequestContextPath=  
    "//context:ResourceContent/security:routeMessage/ 
     messages:namedProperty[messages:name='type']/ 
     messages:value/text()"/> 
      <PolicySet PolicySetId="PPS:US" 
                 PolicyCombiningAlgId="permit-overrides">
        <Policy RuleCombiningAlgId="permit-overrides"> 
          <Rule Effect="Permit"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>USFranceConnector 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>RouteMessage 
              <AttributeDesignator>resource-id 
            <Condition FunctionId="string-equal"> 
              <AttributeValue>Military Fixed Wing 
              <AttributeSelector RequestContextPath=  
    "//context:ResourceContent/security:routeMessage/ 
     messages:namedProperty[messages:name='type']/ 
     messages:value/text()"/> 
</connector> 

Figure 6-6, Role-based and Content-based Routing 
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6.2 Impromptu 
This section uses Project Impromptu, an application for sharing files in a 

local area network, to illustrate that the connector-centric approach can be used 

to develop composite secure connectors for componentized and networked 

software. In Section 6.2.1, we give an overview of the project, specifying the 

general context in which we make design decisions about security. Section 6.2.2 

enumerates software components of the system and establishes security goals. 

Section 6.2.3 describes how a secure connector connects these components to 

accomplish security goals. Lastly, Section 6.2.4 illustrates how the secure 

connector can be replaced by another composite secure connector that are more 

secure and standard compliant.  

6.2.1 Overview of Project Impromptu 
Project Impromptu is a subproject of Project Swirl [31]. The hypotheses of 

the Swirl Project are as follows. Firstly, traditional security mechanisms must be 

utilized in a user-centered context to provide effective security for users. Secondly, 

users make security related decisions within a context. Different contexts require 

different degrees of security. Thirdly, users’ perceptions of the context can be 

facilitated by visualizing security related events that come from heterogeneous 

sources. Finally, perceptions and decisions related to security should be well 

integrated with users’ main tasks.  

Project Impromptu develops an ad-hoc file sharing application as a test 

bed to investigate and evaluate these hypotheses. Each Impromptu user can 

share files and decide how the shared files can be accessed by other users. A file 

can be “see-only”, which means other users can only know its existence but 
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cannot access its content. A file can be “read-only”, where other users can read its 

content but cannot modify it. A file can also be “read-write”, allowing other uses 

to read and modify its content. Finally, a file can be “persistent”, which will still 

exist for read/write access even after the original owner has left the ad-hoc 

sharing group.   

 

Figure 6-7.Impromptu User Interface 
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Figure 6-7 depicts what a user will see when Impromptu launches. The 

“pie” designates the entire ad-hoc file sharing group. Each slice of the pie 

represents a participant. The participant representing the current executing user 

is highlighted by the darker shaded slice. Each dot is a shared file. The position of 

the file determines the sharing level for each file. From the outermost ring inward, 

each ring represents “see-only”, “read-only”, and “read-write”, respectively. The 

center circle collects all “persistent” files. 

6.2.2 Architectural Components and Connectors 

 

Figure 6-8, Impromptu Architecture 

Internally, the Impromptu application consists of the following 

components: the graphical user interface, the Jetty web server, the Impromptu 

WebDAV proxy, and the Slide WebDAV repository. The secure WebDAV 

connector and the YANCEES [37] event notification connector connect these 

components together. The architecture is graphically depicted in Figure 6-8. Jetty 
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and Slide are external open source software components. The user interface 

component, the proxy component, the secure WebDAV connector, and the 

YANCEES connector are developed by us.  

The YANCEES connector provides a high-level event notification channel. 

This connector delivers relevant events to interested subscribers. These events 

include functionality related events, such as an indication that a file is created, 

and security related events, such as that the file’s sharing level has been changed 

from “read-only” to “read-write”.  

Jetty serves as a dynamic application server that allows an add-on 

component to decide what a response will be when Jetty receives a request. Slide 

is an add-on component that provides WebDAV [24] repository support. 

WebDAV is an HTTP extension that provides Internet-scale resource storage, 

retrieval, and modification capability. It is an open standard, easily available in 

different platforms, and is thus chosen as the foundation storage for the ad-hoc 

file sharing application. 

Participants store their own files in their own Slide server. However, this 

local storage is not directly seen by the participant. A user only interacts with the 

Impromptu proxy, using the Pie GUI depicted in Figure 6-7. The proxy provides 

an illusion of a unified, shared file storage work space. When an Impromptu 

proxy receives a file operation request, it determines whether the request is 

directed at a local file or a remote file belonging to another participant. In the 

former case, it retrieves the file from the local Slide server. In the latter case, it 

issues a standard WebDAV request against the remote Impromptu proxy, which 

will accomplish the operation using its own local Slide server.  
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We designed this application for a relatively friendly, ad-hoc file sharing 

environment.  The participants are assumed to be not malicious, and the major 

risk in such an environment is unintentional disclosure of information. In 

traditional file sharing applications, when a user operates on files it is not always 

clear to the user what files are shared, how they might be accessed and changed, 

and who is currently reading and changing files. However, neither do we want to 

require a user to use complex configuration operations to express secure file 

sharing intentions. Such complexity might be overwhelming to the user, and thus 

affect usability. In summary, the security goals for the Impromptu file sharing 

application are 1) make security visible; 2) ease security configuration. 

As can be clearly seen from Figure 6-8, the secure WebDAV connector is 

the key communication mechanism that connects the Slide server, the 

Impromptu proxies, and the GUI. The next two sections outline how two 

generations of secure WebDAV connectors achieve these goals. 

6.2.3 Connector Using IP Address Authentication 
Our first WebDAV security connector employs an IP address-based 

authentication scheme and a method-based authorization mechanism. The 

connectors connect the local Impromptu proxy and the Slide server, which store 

files that should be secured, and also connect the GUI and the remote Proxy, 

which access secured files. The security architecture of a single Impromptu 

system is described in Figure 6-9, using Secure xADL. The secure WebDAV 

connector type extends a base xADL connector type, ConnectorType, using the 

extensible feature of the xADL language. Three instances of the secure WebDAV 

connector type connect related components.  
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<connectorType type="ConnectorType"  
  id="SecureWebDAVConnector"> 
    <signature id="WebDAVClient"></signature> 
    <signature id="WebDAVServer"></signature> 
    <description> 
        IP-based authentication 
        Method-based authorization 
    </description> 
</connectorType> 
<component type="ProxyType" id="Local"> 
    <principal>me</principal> 
</component> 
<component type="ProxyType" id="Remote"> 
    <principal>other</principal> 
</component> 
<component type="GUIType" id="GUI"> 
    <principal>me</principal> 
</component> 
<component type="SlideType" id="Slide"> 
    <principal>me</principal> 
</component> 
<connector type="SecureWebDAVConnector"  
    id="GUI_Impromptu"> 
    <interface signature="#WebDAVClient"  
        id="GUI"/> 
    <interface signature="#WebDAVServer"  
        id="Impromptu"/> 
</connector> 
<connector type="SecureWebDAVConnector" 
  id="Impromptu_Impromptu"> 
    <interface signature="#WebDAVClient" 
      id="Remote"/> 
    <interface signature="#WebDAVServer"  
      id="Local"/> 
</connector> 
<connector type="SecureWebDAVConnector"  
  id="Impromptu_Slide"> 
    <interface signature="#WebDAVClient"  
      id="Local"/> 
    <interface signature="#WebDAVServer" 
      id="Slide"/> 
</connector> 

Figure 6-9, Secure WebDAV Connector 

The connector connects a WebDAV client and a WebDAV server. It 

employs two security facilities. Firstly, the connector uses an IP address-based 
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authentication mechanism to separate a local client from a remote client. When 

the connector receives a WebDAV operation request from the client, it 

determines, using the IP address of the client, whether the request comes from 

the same machine as the server (thus from the local participant), or from a 

different machine (thus from a remote participant). In the former case, the client 

component will execute as the local principal, “me”. In the latter case, the client 

component executes as the remote principal, “other”. For example, in Figure 6-9, 

connector GUI_Impromptu connects the GUI and the local Impromptu. The GUI 

executes as the “me” principal because it executes on the same machine as the 

local Impromptu. The connector Impromptu_Impromptu connects two 

Impromptu proxies. The remote Impromptu proxy executes under the “other” 

principal because it resides on a different machine than that of the local 

Impromptu proxy. Any non local participants will execute as the “other” principal. 

This is the Role-based Access Control (RBAC) model discussed in Section 4.1, 

where components executing for different remote subjects (participants of the 

sharing session) have the same “other” role. 

Secondly, the connector uses both the principal and the file sharing level 

to decide what WebDAV methods a client can perform against that file. The local 

GUI component, executing as the “me” principal, can do anything towards local 

files. A remote participant, executing as the “other” principal, is subject to the 

sharing level of a file. This decision process is transparent to a user, so there is no 

need for the user to finish any complex setups. If a file is shared as “see-only”, the 

connector will only allow the WebDAV PROPFIND method to pass from the 

client to the server. This method permits other participants to retrieve 
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information about the file such as the creation date, the resource type, etc. For a 

“read-only” file the connector permits, in addition to the PROPFIND method, the 

WebDAV GET method, enabling a remote participant to get the content of a file. 

Finally, the secure connector permits the WebDAV PUT method for a 

“read/write” file, so a remote user can store back modifications for a retrieved file. 

We have conducted an initial user study to assess whether the proposed 

security architecture can achieve the security goals [31]. The preliminary results 

of this study suggest that the system gives users a clearer sense of perception and 

manipulation of security, and it does not overwhelm users with technical details.   

6.2.4 Standard-Compliant Composite Connector  
After the initial investigation of Project Impromptu, we have revised the 

security architecture to address some issues we encountered during the 

investigation.  

Firstly, we want to deploy the Impromptu system into handheld devices, 

which might require a more secure authentication connector. The current 

Impromptu software is a tightly integrated suite of components, some of which 

might require too many resources to execute on handheld devices. A possible 

solution is to only execute the GUI on the handheld device (so we can still 

investigate how users perform their regular and security-related tasks on such 

hardware platforms), and deploy the rest of the Impromptu software on more 

powerful machines. Under such a configuration, the IP address-based 

authentication mechanism is insufficient, because even requests from the owning 

participant (who is using a handheld device) actually comes from a different IP 

address. We adopt a more secure authentication connector, the HTTP digest 
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authenticator. Such a connector enables deploying the Impromptu system to an 

environment that might contain malicious adversaries, and mitigate some 

limitations of an address-based authentication mechanism [7].  

Secondly, we want to utilize existing authorization mechanisms supported 

in Jetty and Slide to enable richer authorization semantics. Utilizing existing 

mechanism enables better integration with mechanisms provided by the Jetty 

application server and the Slide WebDAV server, and leverages the standard 

WebDAV ACL [24] access control features provided by Slide.  

Thus, we have developed a second secure connector using standard-

compliant authentication and authorization mechanisms to replace the original 

secure WebDAV connector. This new secure connector is a composite connector. 

It consists of a digest authentication connector, a standard HTTP authorization 

connector using web.xml deployment descriptor [18], and a standard WebDAV 

ACL authorization connector. Using the sub-architecture support of Secure xADL, 

the composite connector is described in Figure 6-10. This connector will only 

allow an HTTP WebDAV request to succeed when all the constituent connectors 

grant permissions for the request. That is, the request will only succeed when it 

can pass the authentication challenge from the Digest Authenticator, when the 

requested method is allowed in the web.xml connector, and when the requested 

resource is permitted by WebDAV ACL permissions.  

One architectural advantage enabled by this new connector is that the 

standard-compliant connector allows the Jetty/Slide repository to be accessed by 

the built-in WebDAV file system support in Windows XP and Mac OS X, so now 

users can share arbitrary files and manipulate the shared files through any 
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applications, such as text editors that do not know how to directly handle 

WebDAV requests. In the first secure connector architecture, users can only share 

and change files that can be manipulated by WebDAV-aware applications, such 

as recent versions of Microsoft Office.  

<archStructure id="composite"> 
    <connector id="DigestAuthenticationConnector"> 
        <interface id="DA_input" /> 
        <interface id="DA_output" /> 
    </connector> 
    <connector id="WebXMLAuthorizationConnector"> 
        <interface id="WebXML_input" /> 
        <interface id="WebXML_output" /> 
    </connector> 
    <connector id="WebDAVACLConnector"> 
        <interface id="DAVACL_input" /> 
        <interface id="DAVACL_output" /> 
    </connector> 
    <link> 
        <point id="#DA_output"> 
        <point id="#WebXML_input"> 
    </link> 
    <link> 
        <point id="#WebXML_output"> 
        <point id="#DAVACL_input"> 
    </link> 
</archStructure> 
<connectorType id="SecureWebDAVConnector"> 
    <signature id="client" /> 
    <signature id="server" /> 
    <subArchitecture> 
        <archStructure href="#composite" /> 
        <signatureInterfaceMapping> 
            <outerSignature href="client" /> 
            <innerInterface href="DA_input" /> 
        </signatureInterfaceMapping> 
        <signatureInterfaceMapping> 
            <outerSignature href="server" /> 
            <innerInterface href="DAVACL_output" />    
        </signatureInterfaceMapping> 
    </subArchitecture> 
</connectorType> 

Figure 6-10, Composite Secure WebDAV Connector 
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6.3 Firefox Component Security 
Firefox is an open source web browser first released in November 2004. 

Its development started in 2002, shortly after the first official release of the 

Mozilla Application Suite, which had been under development since 1998. Firefox 

is a simplified version of the browser from the suite, but its enormous success has 

made it to replace the application suite as the main product produced from the 

Mozilla organization.   

Firefox is a very large open source project. The source code consists of 

about 10 thousand C/C++/JavaScript files. The files include about 5 million lines 

of code. This section demonstrates how our approach can be applied to model the 

component security architecture of this very complex, componentized and 

networked software system.  

6.3.1 Firefox Architecture 

 

Figure 6-11, Firefox Architecture, from [88] 

Figure 6-11, from [88], gives a high-level picture of the Firefox architecture. 

This diagram is only one possible representation of the complex internal 
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interactions, and it is highly simplified. As can be seen from this architectural 

overview, the browser has two major halves: the front end on the right and the 

back end on the left. The front end handles presentation of the visible content 

loaded from the Internet and interacts with the user through events. The back 

end deals with the underlying services, such as reading files and storing user 

privacy information.  

Roughly speaking, the component security architecture modeled in this 

section handles how to prevent the front end, which originates from Internet 

sources that are not necessarily trustworthy, from unduly accessing the back end, 

where important user information is kept. The problem here is an architectural 

access control problem, and our approach can be used to model how the Firefox 

solution works. The component security architecture touches the constituent 

blocks in the above diagram that are marked with stars: DOM, Frames, URL, 

JavaScript, XPConnect, XPCOM, Security, and Components.  

The Firefox security architecture contains another part, the Public Key 

Infrastructure (PKI) support. This case study chooses not to model that part, 

since the part mostly handles cryptography and digital certificates. Firefox also 

suffers from usual buffer overrun vulnerabilities. Most of these vulnerabilities 

come from the mail handler and the image processing component. Such 

vulnerabilities are not modeled by this case study, either.  

In the following subsections, we first present the platform technologies of 

Firefox, and then we delineate the most important boundaries in browser security: 

the boundary between the chrome and the content and the boundary between 

contents from different origins. After that, we establish the principals as the 
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foundation of Firefox component security, and how they are represented in top 

level containers and individual DOM nodes. Then we outline the security policies, 

and inspect how they are enforced by the script security manager. We also brief 

how security is handled in URI protocol handlers. Finally, we summarize the 

modeling of architectural access control with our connector-centric approach, 

and discuss some noteworthy issues. 

6.3.2 Platform Technologies: XPCOM, JavaScript, and XPConnect 
Firefox/Mozilla intends to be not just an application but also a 

development platform on which more third-party applications can be built. There 

are three core architectural technologies for this platform [52]: XPCOM, 

JavaScript, and XPConnect.  

XPCOM is a cross platform component model. It maintains binary 

compatibility with the Microsoft COM component model, but is portable across 

different operating systems. Major functional components of Firefox, such as 

networking and layout, are built with this model. Each component has a 

component type. A component type’s interfaces are described by a cross platform 

interface definition language, XPIDL. Each component should only be accessed 

by other components through these well defined interfaces. Many component 

types have only one instance, and this instance is running as a service in the 

platform. Other components can request a service to perform actions. 

JavaScript [39] has long been used by web developers for authoring 

dynamic web pages. Firefox uses JavaScript extensively in programming different 

functionalities of the browser, especially the user interface elements, such as 

dialogs and drag-n-drop handling. Third party extensions for Firefox are also 
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mostly developed in JavaScript. Unlike Java, the language definition of 

JavaScript does not specify how security should be handled, so the security 

features implemented in Firefox must balance how various language features 

interact with security requirements.  

XPConnect provides bidirectional communication capabilities between 

XPCOM and JavaScript. It allows a component built by XPCOM, the native 

component, to be accessed as a JavaScript object. It also permits a JavaScript 

object to be accessed by a native XPCOM component as an ordinary XPCOM 

component. As we shall see, this is the architectural connector where security 

check is conducted. 

6.3.3 Trust Boundary between Chrome and Content 
When a user uses the Firefox browser to browse the web, the visible 

window contains two areas. The chrome, which consists of decorations of the 

browser window, such as the menu bar, the status bar, and the dialogs, are 

controlled by the browser. The browser needs to perform arbitrary actions to 

accomplish the intended task, and it is also trusted to perform such actions. 

Borrowing the chrome term that originally refers to the user interface elements, 

the browser’s code is called the chrome code. Such code can perform arbitrary 

actions. Any installed third party extensions also become chrome code. 

The other area, the content area, is contained within the browser chrome. 

The content area contains content coming from different sources that are not 

necessarily trustworthy. Some contents contain active code that leads to 

executing JavaScript scripts. Such content code should not be allowed to 

perform arbitrary actions unconditionally and must be confined accordingly. 
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Otherwise they could abuse the unlimited privileges to damage users. This 

boundary between the chrome code and the content code is the most important 

trust boundary in Firefox. 

Because of the architectural choice of using XPCOM, JavaScript, and 

XPConnect to develop the Firefox browser and extensions, both chrome code and 

content code written in JavaScript can use XPConnect to access interfaces of 

XPCOM components that interact with the underlying operating system services. 

The XPCOM components are represented as the global Components collection 

in JavaScript. This access process is the architectural access control process 

discussed in Section 3.1. XPConnect, as the connector between the possibly 

untrustworthy accessing code and the accessed XPCOM components, should 

protect the XPCOM interfaces and decide whether the access should be permitted.  

6.3.4 Trust Boundary between Contents from Different Origins 
Another trust boundary is between contents coming from different origins. 

The origin of content is defined by the protocol, the host name, and the port used 

to retrieve the content. Contents differ in either the protocol, the host name, or 

even the port would be considered of different origins. Users generally browse 

many different sites, and any page can contain contents from different origins. 

The content coming from one origin should only be able to read or write content 

coming from the same origin. This is called the same-origin policy. Otherwise, a 

malicious page from one origin could use this cross domain access to retrieve or 

modify sensitive information for another origin, such as the password that the 

user uses for authentication with the other origin. This process is another 

architectural access control process, where interfaces of one content component 

161 



 

from one origin should not be unduly accessed by another content component 

from another origin.  

The trust boundary between the chrome code and the content code and the 

trust boundary between the content code and contents of different origins are the 

main trust boundaries maintained by the Firefox browser. Such boundaries can 

be loosened by users. Users can grant the UniversalXPConnect privilege to 

signed content code, essentially giving such content code full privileges as chrome 

code. User can also fine tune what accesses content code from different origins 

can have on different interfaces of XPCOM components.  

6.3.5 Principals 
Since the JavaScript language does not specify how security should be 

handled, the Firefox JavaScript implementation defines a principal-based 

security infrastructure to support enforcing the trust boundaries. There are two 

types of principals. When a script is accessing an object, the executing script has a 

subject principal, and the object being accessed has an object principal. 

Firefox uses principals to identify code and content coming from different 

origins. Each unique origin is represented by a unique principal. The principal in 

Firefox corresponds to the Subject construct in Secure xADL (Section 3.1.1), and 

such Subjects are used to regulate in architectural access control, as will be 

discussed in Section 6.3.8.  

There is one special subject principal, the system principal. All chrome 

code components and resources are identified by the system principal. A special 

case of the system principal is the null principal, where a principal cannot be 

found. This null principal is treated as equivalent of the system principal. Code 
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executing under the system principal, i.e. chrome code, can perform arbitrary 

actions.  

6.3.6 Container: Document and Window 
When a user browses the web, generally the Firefox browser loads each 

HTML document into a window. This document/window pair performs a very 

important role in executing content JavaScript code. The JavaScript language 

definition defines an execution context that specifies the semantics of 

executing JavaScript programs. Firefox’s implementation of this context is called 

JSContext. Among other things, the context maintains a run-time stack for 

executing JavaScript functions. The role of this stack will be discussed in Section 

6.3.8. An execution context maintains a scope chain for each object. This scope 

chain decides how identifiers referenced through the object are resolved. At the 

end of the scope chain is the global object, where predefined types in the 

JavaScript language, such as Object and Date, are defined, and thus all references 

to Object and Date will be eventually resolved by the global object. In the Firefox 

JavaScript definition, both the execution context and the global object are 

attached to the document/window pair. 

The document in the window is also the ultimate source of the security 

credentials for the loaded content. In the principal-based security infrastructure 

of Firefox, the document (thus the window) maintains a principal that is 

constructed based on the origin URI of the document.  

A special type of window is the frame window, when an HTML document 

uses a frame set to include a set of frames, and each frame window can contain an 

HTML document that comes from a different origin. A frame window, even 
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contained within another window, has its own principal that is based on the 

origin of the document that it contains. This principal may be different than the 

principal of the top level window. A frame window can further contain its own 

frame sets, so the frames within a top level window form a containment hierarchy.  

6.3.7 DOM Node 
When a browser loads an HTML document and presents it in a window, it 

creates a document object model (DOM) tree internally. Each element contained 

within the HTML document is represented by a node. JavaScript scripts 

contained within these documents manipulate the nodes to achieve their 

purposes. Some other functionalities of the browser, such as the navigation 

history and the top level window, are also represented as DOM nodes, so the 

JavaScript code can uniformly manipulate them.  Specially, the underlying native 

XPCOM components of Firefox are represented as the global Components 

JavaScript collection. Writing to one property of one node could result in 

significant changes. For example, changing the location property of a window 

object to a new URI will instruct the window to load a new document from the 

URI into that window, and manipulating through Components is actually 

operating on the underlying operating system services. 

From a security viewpoint, each node has a principal that identifies the 

origin of the node. If the principal is not explicitly specified for a node, then the 

node will inherit the principal from the top level container. 

Each DOM node belongs to a class. For example, all nodes created for 

HTML form elements belong to the Form class. The classes of DOM nodes can be 

used to fine tune the same origin policy. Firefox allows user to define whether 
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scripts from an origin can set or read different properties of various classes of 

DOM nodes.  

Each class has a DOMClassInfo that represents relevant information for 

accessing the properties of the nodes. For example, since changing the location 

property of document and window nodes results in navigating to a different place, 

the DOMClassInfo for the Window and Document classes advertise that these 

changes should be checked for security. DOMClassInfo provides a general 

mechanism that architectural components can present their security 

requirements. It is similar to the secure bricks of the c2.fw.secure framework 

defined in Section 5.4.2, where the existence of a secure brick can be used to  

trigger the decision on whether a security check is needed (Section 5.4.7). 

6.3.8 Enforcing Security: Security Manager 
To ensure the proper trust boundaries in the architectural access control 

operations, the XPConnect architectural connector uses a security manager to 

control both the access between content code and chrome code and the access 

between content code of one origin and content nodes of other origins. In this 

subsection we first investigate how the security manager discovers relevant 

principals, and then discuss how the security manager controls different types of 

architectural operations: access of DOM properties and functions, instantiation 

through creation, and instantiation through loadURI. 

Discover Object Principals and Subject Principals. Each JavaScript 

object in Firefox is associated with an object principal that specifies the creator of 

the object. Each top level window has a principal, which is created based on the 

URI that is used to load the document and create the top level window. Each 
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DOM node contained within the window can also be tagged with a principal. If 

the node does not have an explicit principal, then it will inherit the principal of its 

container. For most nodes this will be the principal of the top level window. For 

nodes contained within a frame window, this principal is the principal that is 

associated with the frame window. The node’s principal is the object principal 

that is used when the properties of this node are read or written.  

One special type of object principal, the principal associated with a 

function object, is the subject principal that designates the subject executing the 

function. To find the subject principal at run-time, the security manager inspects 

the run-time stack of the JSContext, and uses the principal from the inner most 

stack frame. If a principal cannot be found at the inner most stack frame, then 

the search follows the stack frame chain to find the outer calling frames. Since the 

stack frame chain of a JSContext always ends up with the principal of the global 

object, in most cases this principal, associated with the document/window pair, is 

the subject principal of the executing code. If this principal is the system 

principal, then the code is assumed to be chrome code. If no such principal can be 

found, it is assumed that the chrome code, possibly native C++ components, is 

executing and has not set up a principal yet.  

DOM Access. When some code tries to read a property of a DOM node, 

write a property of a DOM node, or call a function of a DOM node, the security 

manager discovers both the object principal and the subject principal and decides 

whether the access should be granted. Because of the integration supported by 

XPConnect, the accessing components could be actually either JavaScript or C++, 
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and the accessed component could be either simple DOM node or wrappers of 

native XPCOM services.  

If the subject principal is either a system principal or an equivalent null 

principal, then the security manager allows the DOM access. If the subject 

principal is a regular principal, and this principal is granted the 

UniversalXPConnect privilege, then the access is also granted. Otherwise, the 

security manager inspects the object principal, and only grants the access if both 

the subject principal and the object principal are the same. Since a regular 

principal differs from the system principal and regular principals for different 

origins differ from each other, the security manager uses the principal 

infrastructure to effectively enforce both the trust boundary between chrome 

code and content code and the trust boundary between contents of different 

origins. 

Instantiation by Creation. To further protect accessing XPCOM native 

components, the security manager also checks the following types of access 

attempted by a JavaScript script: when the script tries to get a service, when the 

script tries to create an instance of a XPCOM component type, and when the 

script tries to create a wrapper to such an instance. The operations of getting a 

service, creating an instance, and creating a wrapper are all architectural 

instantiation operations (Section 4.4.1), and the security manager decides 

whether the attempted architectural components should be created for the 

running architecture so the JavaScript script can accomplish its intended tasks.  

The security manager inspects the subject principal of the script to decide 

whether the attempted instantiations should be permitted. Chrome components 
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that execute as the system principal are always allowed. Content components 

signed by digital certificates are also granted such permissions if the user 

approves the signed scripts and grant the UniversalXPConnect privilege to 

the specific regular principal.  

Instantiation by LoadURI. Before a window can load the content from 

one URI, a security check is performed by the security manager on whether such 

loading is allowed, based on the target URI and the loader’s URI. Because of the 

open nature of Web, generally any loading should be permitted. Specially, 

loading a URI of one scheme within a window that is originally loaded from the 

same scheme is always allowed by the security manager. However, loading from 

different schemes might be limited or rejected depending on the schemes and the 

loading situation. For example, a web page loaded through an http URI cannot 

load a pop3 or imap URI, because the pop3 or imap URI could encode deleting a 

folder and blindly loading them would damage users. 

This check on loading URI is used in many places in the browser. Part of 

the Firefox browser is written directly in JavaScript, contained in the browser.js 

file. The file has three types of security checks: checking whether a URI can be 

loaded when loading an image, checking whether a dialog can load a URI, and 

check whether a URI can be loaded when it is dropped onto the browser. The 

JavaScript code in browser.js uses XPConnect to get the security manager, and 

consults it to see whether the URI can be loaded. 

From an architectural access control viewpoint, loadURI is similar to the 

architectural instantiation operation discussed in Section 4.4.1. When such a URI 

is permitted to load, Firefox essentially create a new component with a new 
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principal and a new JavaScript execution context in the existing architecture. The 

security manager of the XPConnect connector decides whether such 

architecturally important operations should be allowed. 

A special type of LoadURI occurs when loading documents in frames. 

Each document, whether is contained directly in a top-level window or contained 

in a frame window, is contained in a DocShell. The DocShell has methods 

that check whether it can load a URI or a set of URIs in a frame set. Because of 

historical reasons, the script within one frame can get a reference to another 

frame that is contained under the same root DocShell. The security manager 

monitors this reference to prevent possible exploits. For example, when the script 

within Frame A tries to load contents into Frame B using the reference, the 

principal of Frame A must be the same as that of Frame B, or be the same as the 

principal of any of the ancestors of Frame B in the frame containment hierarchy.  

This policy is different than the typical loading policy, where generally a source 

can load any target. It resembles the same origin policy used with DOM access. 

6.3.9 Transport: URI, Channel, Protocol Handler 
One service of the Firefox browser, the IO service, manages the network 

transportation of retrieving content from the Internet. When given an URI, the 

IO service analyzes the URI, uses the scheme to locate a protocol handler that can 

handle the URI, and asks the protocol handler to create a channel for the URI. 

The IO service then uses the channel to finish loading the content.  

There are many types of protocol handlers. Besides the most obvious ones, 

such as protocol handlers for http, https, and ftp, Firefox also uses other types of 

pseudo handlers to accomplish other tasks. For example, there are a “view-
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source” protocol to view the source of a loaded HTML document and a “wyciwyg” 

protocol (“what you cache is what you get”) to retrieve the cached copy of a 

rendered content. 

From the security viewpoint, there are two interesting types of pseudo 

protocol handlers. One type is the “about” protocol. An “about:config” URI allows 

a user to change the configuration of Firefox, and an “about:credits” URI lists the 

contributors to the open source project. When a window is first initialized, it 

generally has the “about:blank” URI, which maintains no special privileges. The 

different about URIs are handled by different about protocol modules. Each 

module redirects the about URI to a real URI. For example, the “about:config” 

URI is redirected to a chrome page where user can use the chrome code to change 

the configurations of the browser. Some of the redirections lead to chrome pages, 

but the corresponding about module drops the chrome privilege by setting the 

owner of the about channel to the principal based on the URI redirected to, so 

future content loaded in the same window will not accidentally obtain 

unnecessary privileges.  

Another interesting protocol handler handles the “javascript” pseudo 

protocol. In such a URI, the scheme is followed by a JavaScript snippet. When a 

javascript URI is loaded (or navigated to), instead of retrieving some regular 

contents, the JSProtocolHandler creates a JSChanenl, and the JSChannel 

uses a JSThunk to actually evaluate the script specified in the URL. So, if a URI 

supplied by content is used by the chrome code and the chrome code blindly 

loads the URI without first checking whether such a URI is a javascript URI, then 

a malicious hacker can supply a javascript URI and the JavaScript will be loaded 
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and thus executed by the chrome code, with full chrome privileges. This is the 

reason for vulnerabilities reported in [45].  

6.3.10 XPConnect as the Architectural Connector 
As have been seen, XPConnect is an architectural connector in Firefox, 

and the security manager coordinates critical architectural operations: it 

regulates the access by scripts running as one principal to objects owned by 

another principal (if the subject principal is not the system principal, then both 

principals should be the same for the access to be allowed), it decides whether a 

native service can be created, obtained, and wrapped (one type of architectural 

instantiation operation), and it also arbitrates whether a URI can be loaded by in 

a window (another type of architectural instantiation operation). 

The Firefox trust boundary policies can be specified using Secure xADL as 

in Figure 6-12. Each component has a subject, which is decided by the origin URI 

of the component. Each component also has a principal (the Secure xADL 

principal) to specify its role. There are two basic roles, the chrome role and the 

content role. The first policy specifies that a component executing as the chrome 

subject and the chrome role can perform any actions over any resources. The 

second policy specifies that a component executing as the content role can only 

access components of the same subject, which are components from the same 

URI. The policy also specifies that signed content components, executing under a 

signed content subject, can be granted the chrome role. This is a type of Role-

Based Access Control policy (Section 4.1.2), where a role can be played by 

different subjects. In Firefox both chrome components and signed content 

components can act as the chrome role.  
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<component id="ChromeCode"> 
    <security> 
        <subject>ChromeCode</subject> 
        <principal>Chrome</principal> 
<component id="ContentCode"> 
    <security> 
        <subject>URI</subject> 
        <principal>Content</principal> 
<component id="SignedContentCode"> 
    <security> 
        <subject>SignedURI</subject> 
        <principal>Chrome</principal> 
<connector id="XPConnectSecurityManager"  
                xsi:type="SecureConnector"> 
  <security> 
    <policies> 
      <PolicySet PolicySetId="PPS:Chrome" 
                 PolicyCombiningAlgId="permit-overrides">
        <Policy RuleCombiningAlgId="permit-overrides"> 
          <Rule Effect="Permit"> 
            <Subjects> 
              <Subject> 
                <SubjectMatch MatchId="string-equal"> 
                  <AttributeValue>ChromeCode 
                  <AttributeDesignator>subject-id 
              <Subject> 
                <SubjectMatch MatchId="string-equal"> 
                  <AttributeValue>SignedURI 
                  <AttributeDesignator>subject-id 
            <AnyResource /> 
            <AnyAction /> 
      <PolicySet PolicySetId="PPS:Content" 
                 PolicyCombiningAlgId="deny-overrides"> 
        <Policy RuleCombiningAlgId="deny-overrides"> 
          <Rule Effect="Permit"> 
            <SubjectMatch MatchId="string-equal"> 
              <AttributeValue>URI 
              <AttributeDesignator>subject-id 
            <ResourceMatch MatchId="string-equal"> 
              <AttributeValue>URI 
              <AttributeDesignator>resource-id 
            <ActionMatch MatchId="string-equal"> 
              <AttributeValue>AccessDOM 
              <AttributeDesignator>action-id 
          <Rule Effect="Deny"> 
</connector> 

Figure 6-12, Firefox Security Policy 
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Using our connector-centric approach, the Firefox component security 

architecture can be described with the architectural description shown in Figure 

6-13. Interfaces of the native XPCOM components, executing with the chrome 

role, are accessible from other chrome components but should be protected from 

other content components. The XPConnect connector maintains this boundary 

between content code and chrome code. The content components from one origin, 

including the containing window or frame and the DOM nodes contained within 

them, form one sub-architecture (Section 3.4.3). Their interfaces can be 

manipulated by chrome components, but should be protected from content 

components from other origins. The XPConnect connector maintains this 

boundary of same origin. 

 

Figure 6-13, Firefox Component Security Architecture 

The XPConnect connector, executing with the chrome role, connects 

various components and coordinates accesses to protected sensitive interfaces 
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during normal operations. The XPConnect connector is a privilege retaining 

connector, which prohibits content components escalate their privileges to obtain 

the status of chrome components. XPConnect does not allow a connector 

between content components coming from different origins, thus obeying the 

same-origin policy. Our architectural access control check algorithm from Section 

3.5 can show that ideally the XPConnect connector does not result in a privilege 

escalation exploit, because content DOM node cannot access the protected 

interfaces of XPCOM Components, but there exist paths from content code to the 

native XPCOM components so the XPConnect connector should carefully 

monitor the secure execution of content components [126]. 

XPConnect is a strategic place to improve the security for the overall 

architecture that contains both the browser proper and the extensions. Since 

Firefox serves as a platform on which many applications have been developed, it 

is insufficient that the browser itself is secure. Any installed extension, which also 

runs as chrome code, should also be secure. These extensions can use JavaScript 

to access DOM supplied by untrustworthy content pages. If any of these 

extensions is not scrupulous, then there could a vulnerability of privilege 

escalation.  

The XPConnect connector in Firefox 1.5 (released in November 2005) 

provides a new regulation feature to improve the security of extensions [46]. The 

extension can ask XPConnect for a XPCNativeWrapper that wraps a DOM node 

supplied by content pages. The wrapper assures that the property access and 

function access on standard DOM interfaces through these wrappers will go to 

the standard implementations of these properties and functions supplied by 
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Firefox, and save the extensions from being tricked into using overridden 

versions of the properties and functions supplied by content. The 

XPCNativeWrapper also assures any properties returned form the wrapper is 

also an XPCNativeWrapper, thus the developer can naturally use the properties 

of DOM nodes without dangers of violating security. 

This regulation feature has several advantages for security development: it 

has fixed several existing potential vulnerabilities, simplifies development for 

both Firefox and extensions so abiding code can benefit from the improved 

connector security automatically, and also prevents those extensions that do not 

safely manipulate the untrustworthy content from being exploited [151]. This 

improved security demonstrates that having a secure connector to coordinate 

secure collaborations and improving the connector could have positive impacts 

on the overall security architecture of a complex and componentized software 

system. 

6.3.11 Discussions 
The security manager of Firefox has substantially evolved since its 

inception. By the time of the Mozilla 1.0 release the earliest code of the security 

manager had almost completely been replaced. The content of the security 

manager has changed, so is the way to use it by other components of the browser. 

Along the evolution, the security manager has become the central place to make 

security related decisions, and more types of security check have been 

implemented within it. This requires the security manager to become more 

independent of contexts and the invoker to supply sufficient security context 

information.  
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We have modeled the component security architecture of the Firefox 

browser using our connector-centric approach for architectural access control. 

Our illustration shows that Firefox has a well-designed security architecture, and 

our approach can model this architecture of such a complex software system. 

During our modeling we have observed some issues that are worth 

discussions.  

Choice of Programming Language. The language used to develop 

Firefox browser and extensions, JavaScript, is also the programming language 

used by HTML pages to provide dynamic interactivity for the otherwise static 

contents. Given that the same language is used by both the browser authors 

(who are trusted) and webpage authors (who are not generally trusted by the 

browser), and the connection capability to XPCOM-built components enabled by 

XPConnect, it is critical to implement proper access control for downloaded 

JavaScript code.  

The JavaScript language has some special features that can be abused by 

exploits. For example, the language allows the setter and getter functions of a 

property of an object to be redefined. This feature is intended to support 

redefinition of methods in objects that inherit other objects. However, if the 

redefinition is done by the content code on properties of objects originally 

provided by chrome code, such as those properties of the wrapped native XPCOM 

components, then other unsuspicious chrome code, which intends to invoke the 

original definitions, would accidentally use the content supplied code and give 

these content code undue privileges. The language even allows overriding the 

eval function, a function that executes any supplied string as JavaScript. These 
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overrides have caused the critical vulnerability discussed in [44]. Defining and 

redefining interfaces on protected resources are security sensitive architectural 

operations. The fixes for this vulnerability in the XPConnect connector forbids 

such dangerous architectural operations by content code and finds the right 

principals to execute content code. 

JavaScript allows content code to specify timeout functions, where a 

function is executed after a time delay. There is a possibility that the original 

context used to specify the timeout function no longer exists when the timeout 

occurs and thus the timeout function needs to be executed within a different 

context. If the new context is a chrome context and it blindly executes the timeout 

function that is originally supplied by a content context, then an undue escalation 

of privilege incurs. Thus the timeout function must be associated with the 

principal from which the function comes from, and only executes as such 

principals even in a different context. Similarly, event handlers should also be 

supplied with principals.  

The Firefox JavaScript implementation supports pre-compilation of 

JavaScript programs. When an event handler is loaded, the JavaScript 

implementation could compile it with a principal associated with the handler 

function. When the event handler is later executed, the security manage should 

use the executing principal, instead of the precompiled principal, in deciding 

whether an access should be allowed. Otherwise, an undue access could be 

permitted. 

Security Manager’s Dependence on JavaScript. The current 

security manager is deeply dependent on the JavaScript language definition and 
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its implementation in Firefox. There has been ongoing development work to use 

the Python scripting language to develop Firefox applications. Since the 

underlying XPCOM platform is independent of scripting languages, it is possible 

to factor out the security manager so that it can serve security needs of multiple 

scripting languages. 

Protocol Handlers. Currently the security manager has directly made 

many decisions based on protocols when deciding whether a URI should be 

loaded or not. Another possibility regarding loading URI is to let the security 

manager inquire each individual protocol handler so that the security manager 

can become protocol independent, and the different policy choices can be 

centralized for ease of management. 

Another issue with protocol handlers is that Firefox treats javascript as a 

pseudo protocol and a JavaScript snippet can be supplied where a URI is needed. 

While such treatment has long been an industry standard, from a security 

viewpoint a JavaScript URI is conceptually different than a normal http URI. The 

former results in code execution, and the execution context is determined by the 

loader of the URI. The latter mostly loads a passive resource, possibly will not 

execute any code, and the security of the http URI can be decided by simply 

inspecting its origin. A more prudent inspection of the javascript URI is possibly 

necessary. 

Principals. Firefox uses principal as the basis for maintaining secure 

executions of JavaScript. A JavaScript script, either coming as a javascript 

pseudo URI, or as the script element of an HTML document, is associated with 

the principal of the containing document. However, when the script is executed, 
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through loading the URI, executing a timeout function, or even retrieving a 

cached copy, the executor might be of a different principal, and blindly executing 

the script in this new principal could result in security breach. It is vital to track 

the principals of the JavaScript components, ideally through all traveling paths of 

these components within the browser. Such principal closure tracking feature 

was implemented in the classic Netscape browser, but it is missing in the current 

Firefox browser [35]. 

6.4 DCOM 
DCOM, the Distributed Component Object Model, was the prominent 

object middleware for Microsoft during the 1990s. It keeps playing an important 

role in current Windows operating systems. In this section we show how our 

approach can model the security architecture of this middleware technology. This 

modeling demonstrates that our approach can be applied to a networked 

software environment.  

6.4.1 DCOM Architecture 
DCOM was developed to extend the object-oriented programming model 

of the Component Object Model (COM) to a distributed environment. The three 

core concepts of classic COM are [34]: interface, class, and component. An 

interface is a set of functions. Each interface is designated by a Global Unique 

Identifier (GUID). An interface is immutable after its publication. A class 

implements a set of interfaces. It is also designated by a Global Unique Identifier. 

A component is an instance of a class. When a client needs services from a 

component, it gets a reference to the component, in the form of an interface 

pointer, through either instantiating a new instance or getting a reference for a 
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running instance. The client can inquire a component whether it supports a 

specific interface. COM uses a source interface as a reverse communication 

channel from components to clients. A source interface is declared in the 

component, but is implemented by the client. When a component processes a call 

from a client, it can invoke functions in the source interface and call back to the 

client.  

 

Figure 6-14, DCOM Architecture 

Figure 6-14 depicts the underlying architecture for this distributed 

programming model [63]. The client first tries to get a reference for a component 

on the remote server side. Part of the DCOM infrastructure on the client machine, 

the service control manager (SCM), contacts its counterpart on the server side. 

The server SCM checks whether a satisfactory component is already running. If 

not, the server SCM launches a requested component. Otherwise, the server 

SCM just creates a reference for the running component and returns the 

reference to the client (activates the component for the client). The reference 
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actually consists of a pair of a stub and a proxy. The stub is on the server side, and 

the proxy is on the client side. The stub and proxy handle communication details, 

such as marling and unmarshaling. Once the client gets the reference back, it can 

use the reference to access the functionalities provided by the component. 

The protocol utilized by DCOM is called Object Remote Procedure Call 

(ORPC). It is an object-oriented extension to the Distributed Computing 

Environment Remote Procedure Call (DCE RPC) protocol. DCE RPC can run on 

top of different types of network protocol stacks. Various protocols have different 

security implications. 

Another constituent of the DCOM architecture is the security provider. 

DCOM, like many other types of Windows components, supports a provider 

interface so different types of security providers can be used to supply various 

levels of security for DCOM clients and components.  

6.4.2 Anonymous, Local, Remote, Activate, Launch, and Access 
The security services provided by DCOM for clients and components 

consist of authentication and authorization. There are different levels of 

authentication, such as no authentication at all, authentication when a 

connection begins, and authentication for each method invocation. Both the 

client and the server can specify the intended authentication level, and DCOM 

assures that the higher authentication level is used, thus a client and a server can 

be assured that they get the authentication level they need. This is a case where 

the DCOM connector performs the security coordination between two 

architectural components. 
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The authentication information is used to determine whether an 

architectural operation request should be granted. As discussed in the last 

subsection, a client would ask for permissions on launch, activation, and access. 

Generally, at run-time a component has the final decision on whether a request 

for an architectural operation from the client should be granted. However, 

several other authorities are also involved in the decision making process: the 

computer can have a computer wide policy for components that do not explicitly 

specify their security requirements, and a component can specify its 

requirements statically through registry settings. Thee parties can be viewed as 

the different contexts discussed in Section 3.4: component registry settings as the 

type context (Section 3.4.2) and machine wide settings as the sub-

architecture/container context (Section 3.4.3). 

The decision on launch and activation cannot be programmatically 

determined by the component, since launching and activating components are 

executed before a component can even get the chance to make any decisions at 

run-time. Thus, a component can specify its safeguards on launch and activation 

statically through configuring Windows registry, and DCOM uses the settings to 

guard launch and activation. Properly enforcing launching and activating 

permissions is critical in defending against denial-of-service attacks.  

One special type of authentication is anonymous, where a client does not 

reveal its identity to the server. It is desirable when a client wants to preserve its 

privacy, and it is also necessary sometimes if the component needs to call back to 

the originating client through a source interface.  
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Figure 6-15, DCOM Authentication and Authorization 

The standard DCOM connector that performs authentication and 

authorization between a client and a component, possibly also supports callbacks, 

is depicted in Figure 6-15. The top links depict the normal invocation, and the 

bottom links show the call backs from the component to the client. 

This architecture is not without its problems, though. The MSBlast worm 

[96] exploited a buffer overrun vulnerability in DCOM through anonymous 

authentication and has caused devastating damages. To reduce such risks, 

Microsoft has made several architectural security improvements for DCOM in 

Service Pack 2 for Widows XP and Service Pack 1 for Windows Server 2003 [97].  

Previously DCOM does not differentiate client requests coming from 

different sources. The new architecture separates the local activation requests 

from the remote ones. The former comes through Local Remote Procedure Call 

(LRPC), a local communication facility used by the Windows kernel. The latter 

comes through regular Object RPC (ORPC). Separating the local requests from 

183 



 

remote requests in DCOM can be viewed as introducing two different types of 

DCOM connectors, as depicted in Figure 6-16. These connectors enable 

supporting different security polices based on the origin of requests.  

 

Figure 6-16, DCOM for XP SP2 

Launch and activation through anonymous authentication from the 

DCOM over ORPC connector is disabled by default in the new DCOM. Unless 

administrators specifically permit anonymous authentication to support 

functionalities like callbacks, a future worm cannot exploit this capability as it 

would be able to. 

The last improvement introduced in the new DCOM is about architectural 

concept. Previously permissions on activation and access are combined together. 

The new DCOM separates the activation permission from the access permission, 

and groups the activation permission together with the launch permission. The 

rationale is that both launch and activation involve acquiring an interface pointer 
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and thus belong together logically. Viewing from our approach, both launch and 

activation are the architectural instantiation operations discussed in Section 4.4.1.  

6.4.3 Impersonation and Delegation 
When a component executes on behalf of a client, it can use the credentials 

of the client to perform necessary actions. When the authentication level 

negotiated between the client and the component through DCOM is 

impersonation, the component can use the credentials to access resources on the 

same machine as the component. When the authentication level is delegation, 

then the component can use the credentials to access resources on other 

computers through another DCOM interaction. In this delegation scenario, the 

intermediate component acts as the client in the second DCOM interaction, as 

depicted in Figure 6-17.  

The client decides whether it trusts the intermediate to act as a delegate 

for it. Essentially, it grants its role to the intermediate component, so the last 

component can treat the intermediate as the original client. This can be viewed as 

a role-based trust management policy (Section 4.2). The DCOM connectors 

essentially propagate the privileges of the client to the last component through 

the intermediate component. This propagation occurs when the client allows 

delegation, the intermediate cloaks its own identity, and the underlying DCOM 

network protocol provides sufficient support.  

6.4.4 DCOM and Internet 
DCOM was designed in the early 1990s. As the networked software 

environment has greatly evolved ever since, some original decisions of DCOM has 

made several architectural adaptations necessary.   
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Figure 6-17, DCOM with Delegation 

DCOM is based on RPC. Like RPC, DCOM uses its own naming service. 

The naming service listens on one port, and dynamically allocates new ports for 

DCOM client/server interactions. This makes it harder to deploy DCOM through 

firewalls by opening a fixed set of ports, even though DCOM can be configured to 

use a limited range of ports. 

To mitigate this problem, DCOM can be tunneled through HTTP, a 

protocol that is mostly permitted by firewalls. This feature is named COM 

Internet Services. The standard DCOM operates above TCP directly. Tunneling 

DCOM traffic through HTTP allows it to travel through firewalls. Tunneling is a 

useful technology to construct more complex connectors, where one connector, 

DCOM, is embedded inside another connector, HTTP. 
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Tunneling DCOM actually uses RPC over HTTP [98], which tunnels 

regular RPC traffic over HTTP to pass through firewalls. RPC over HTTP is 

necessary because many Windows kernel services run as RPC services and these 

services need to pass through firewalls. RPC over HTTP itself has also evolved to 

improve security. The later version of RPC over HTTP supports SSL encryption 

and mutual authentication, and disallows anonymous authentication, making the 

connector more complex yet more secure.  

Architecturally, the DCOM over HTTP can be individually disabled, and 

the RPC over HTTP can also be turned off completely. In situations where these 

services are not needed, disabling them can reduce attack surfaces exploitable by 

malicious traffic.  

The difficulty of DCOM with firewalls originates from the fact that DCOM 

was originally designed as a middleware platform for a corporate environment, 

which would be generally within a firewall. Because of this origin, some security 

practioners argue to disable DCOM for home users, where the features provided 

by DCOM are not generally used.  
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7  Conclusion 

7.1 Summary 
In this research, we have explored how to describe and enforce access 

control at the software architecture level. We combine core concepts from both 

software architecture and security into an integrated and coherent modeling 

mechanism, develop an algorithm to check the validity of access control, and 

implement an associated set of tools to design, analyze, and execute software 

modeled with these concepts. 

The central question that this research has been trying to answer is the 

software architectural access control question: how can we describe 

and check access control issues at the software architecture level? 

Because the most basic elements of an access control scheme are subjects, objects, 

and actions and the most basic elements of an architecture description language 

are components and connectors, we combine them to find an answer to this 

question. 

We identify what objects and actions are to be protected. In an 

architecture environment, the objects to be protected are the architectural 

constituents, i.e., the components and connectors themselves. In a finer 

granularity, the interfaces of components and connectors are the resources that 

are protected by safeguards. 

We associate components and connectors with subjects that these 

components and connectors act for. These subjects represent the executing users, 

and ultimately provide the privileges for accessing protected architectural 

resources.  
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We have investigated several relationships involved in a software 

architecture model and how these relationships affect access control decisions. 

We call these relationships architectural contexts. A software component or 

connector exists within the following contexts: the nearby architectural 

constituents, the type of the constituent, the containing sub-architecture of the 

constituent, and the global architecture. All these relationships can affect an 

access control decision by supplying privileges and safeguards. 

We have extended our base architecture description language, xADL, to 

describe these concepts. We have also extended the eXtensible Access Control 

Markup Language, XACML, to describe architectural access control policies. 

These two extensible languages are combined into a secure software architecture 

description language, Secure xADL. We have adopted these languages because 

they are extensible, provide excellent tool support, and are flexible enough to be 

adapted to suite our needs.  

Based on these modeling concepts, we have developed an algorithm to 

check whether an accessing interface possesses sufficient privileges to access 

another protected interface on an architectural constituent. The algorithm can be 

applied to interfaces not directly connected together, and to interfaces that do not 

even reside within the same level of an architecture structure. 

This is the most basic architectural control scheme. It establishes using 

constituents’ subjects to obtain access on these constituents within architectural 

contexts. We have added more expressive extensions to this basic scheme.  

Firstly, we have explored how the role-based access control model can be 

utilized to handle larger scale access control. Roles essentially provide an extra 
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level of indirection between actions and subjects. Subjects can take different roles, 

in the form of principals. Each role gives the subject additional capabilities for 

performing actions.  

Secondly, we have employed the trust management model to deal with the 

heterogeneous nature of decentralized software systems. In a modern software 

system, the components frequently operate in heterogeneous administrative 

domains and do not always fully trust each other. Trust management systems are 

introduced to authorize different users in a distributed environment, and to 

model the interoperation and delegation relationship among heterogeneous 

components. We have explored how each component can express its preference 

of protection, and how it will trust foreign components as components 

performing roles locally defined in its own domain. 

Thirdly, we have extended interface-based access control into content-

based access control. When protected resources cannot be completely described 

by interfaces, such as when sensitive messages are routed among generic 

interfaces of connectors, we support inspecting the content passing through the 

interfaces to accommodate finer access control.  

Finally, we support executing run-time actions that are meaningful at the 

architectural level. The two basic operations are instantiating components and 

connectors and connecting components through connectors. Controlling 

instantiation of the architectural constituents restricts what components and 

connectors can be created, an essential architecture problem that has been 

largely neglected by previous software security research. Regulating connection 

of architectural constituents determines what connectors can be deployed and 

190 



 

what components can connect to them. For event-based architecture styles, we 

have also identified external message routing and internal message routing as 

important architectural operations. 

Our approach to architectural access control is centered around 

connectors. We believe connectors not only provide the essential glue to form an 

architectural topology, but are also vital to answering the architectural access 

control question: they propagate credentials for decision making, participate in 

determining validity of architectural connections, and can route messages in 

accordance with established policies.  

We have extended our base architecture-based development environment, 

ArchStudio, to support modeling and analyzing the access control issues of 

software architectures. We have extended its editors to edit architecture policies 

textually and graphically, and have developed analysis tools to check the validity 

of a software architecture modeled using Secure xADL based on the formerly 

mentioned algorithm.  

We have also developed a framework that allows constructing software 

architecture securely based on the C2 message passing style. This framework 

provides new security capabilities to the existing c2.fw framework. A designer can 

specify how security sensitive messages should be routed between participants 

that are not fully mutually trustful. The secure connector ensures secure 

delivering requests and notifications to proper receivers, subject to proper trust 

verification and content inspection.  

Our research hypotheses are that:  
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Hypothesis 1: An architectural connector may serve as a 

suitable construct to model architectural access control.  

Hypothesis 2: The connector-centric approach can be applied to 

different types of componentized and networked software systems. 

Hypothesis 3: With a Secure xADL description, the access 

control check algorithm can check the suitability of accessing 

interfaces. 

Hypothesis 4: In an architecture style based on event routing 

connectors, our approach can route events in accordance with the 

secure delivery requirements. 

To validate hypothesis 3, we have analyzed the algorithm by mapping it to 

a well known graph reachability problem. A Secure xADL architecture description 

is transformed into a graph, where the nodes stand for privileges and safeguards, 

and the edges represent connections permitted by policies of connectors. We 

have established that permitting an architectural access between a pair of 

interfaces roughly equals to finding a path in the constructed graph, and thus any 

standard solution to the reachability problem can be used. 

To validate hypotheses 1, 2, and 4, we have applied our modeling concepts 

and support tools to conduct four significant case studies. With the first case 

study, development of a secure coalition application based on the c2.fw.secure 

framework, we have demonstrated how our modeling mechanism and support 

tools can be used to fully support describing and executing architectural access 

control polices for instantiation, connection, external message routing, and 

internal message routing.  
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In our second case study Impromptu, a secure file sharing application, we 

have demonstrated how a networked software system can be built from third 

party software components using our connector-centric approach. We have also 

illustrated how a composite secure connector can be constructed from more 

primitive connectors.  

In our third case study, analyzing Firefox, we have demonstrated how a 

major open source browser’s security model, which includes external components 

installed or downloaded from other sources, can be modeled with our technique. 

We have shown how the installed/downloaded components can perform their 

tasks within the control of the containing browser and not interfere with each 

other. 

In our last case study, analyzing DCOM, we have demonstrated how 

middleware can be modeled through our modeling technique. We illustrate the 

delegation feature of the DCOM subsystem and discuss how proper launch and 

activation are introduced to mitigate previous vulnerabilities.  

In summary, we have proposed a connector-centric approach that helps 

answer the architectural access control question, and developed support tools 

and an execution framework for software architects to adopt the approach. We 

believe our approach can advance the understanding of both software 

architecture and access control technologies, and will empower software 

developers to develop more secure software for complex, networked, 

componentized systems. 
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7.2 Future work 
We plan to further investigate our connector-centric approach in the 

following areas.  

7.2.1 Different Types of Connectors 
In this research, our study has been mostly focused on procedure call-

based connectors and message passing connectors. There are other types of 

connectors proposed in software architecture literature [95] such as blackboard 

and database connectors. We will investigate how security is handled in these 

types of connectors, and how these connectors can be architected to further 

improve security.  

7.2.2 Different Mechanisms to Construct Connectors 
Connectors can be composed together to make more complex types of 

connectors. We have proposed one method to conjuncture a sequence of 

constituent connectors to obtain a composite connector. We plan to expand this 

investigation to study other mechanisms for composing secure connectors. 

7.2.3 Security as an Aspect 
Functional software architecture, expressed as components and 

connectors, forms a graph. The trust and access control relationships among 

them, expressed and enforced through connectors, can be viewed as an overlay 

network on top of this functional topology. We will investigate how this overlay 

network interacts with the base network.  

Aspect-Oriented Programming [76] has been proposed as an effective 

means to address cross-cutting concerns. Access control can be viewed as one 

such concern. We plan to explore how access control can be expressed as a 
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concern at the architecture level and how to apply AOP techniques to enhance 

our framework, especially how to construct composite connectors from primitive 

connectors. 

7.2.4 Reflective Architectural Model 
When a system maintains an architectural model of itself at run-time, it 

has a reflective architectural model. A reflective model enables a component and 

a connector to query, and possibly change its architectural context. A reflective 

architectural model gives components and connectors, at run-time, additional 

information to make security-related decisions based on different types of 

contexts. This enables flexibility in decision making and enforcement. In the 

meantime, it also creates security issues, since such a model must be properly 

protected to ensure that no unauthorized retrieval or modification of that model 

happens. We intend to incorporate a reflective architectural model and study how 

it facilitates security modeling and enforcement, and how it might enable 

applying the algorithm in Section 3.5 at run-time. 

Reflective operations generally consume more resources than their non-

reflective counterparts. Such potentially expensive operations should be 

monitored to counter denial-of-service attacks. These attacks, along with other 

types of attacks, can possibly be detected by a reflection-based intrusion 

detection system. The interaction between resource management and security is 

another future research area.  

7.2.5 Dynamic Architecture 
Components and connectors should have an interface that allow their 

policies to be changed at run-time, so they can execute new, possibly more secure 
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policies, without a costly shutdown and reboot. Similarly, they can acquire new 

subjects or role principals, and thus enable for themselves more access. 

Supporting dynamism provides flexibility necessary for changing and evolving 

environments. We plan to extend our existing support for architecture dynamism 

to handle security dynamism as well. 

7.2.6 Policy Conflict Resolution 
Our algorithm currently gives only an answer of grant or denial. It does 

not identify whether there is any conflict in the policies retrieved from different 

contexts, and it does not provide assistance in identifying the source of a grant or 

denial decision. We plan to investigate work on policy conflict resolution [8] and 

policy change impact [38] to enhance the algorithm. 
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