
SyzRetrospector: A Large-Scale Retrospective
Study of Syzbot

Joseph Bursey
Computer Science Dept.

University of California, Irvine
Irvine, California
jbursey@uci.edu

Ardalan Amiri Sani
Computer Science Dept.

University of California, Irvine
Irvine, California
ardalan@uci.edu

Zhiyun Qian
Computer Science and Engineering Dept.

University of California, Riverside
Riverside, California
zhiyunq@cs.ucr.edu

Abstract—Over the past 7 years, Syzbot has fuzzed the Linux
kernel day and night to report over 6,700 bugs, of which nearly
5,500 have been patched. While this is impressive, we have found
that 25% of bugs take longer than 738 days to find. Moreover, we
have found that current metrics commonly used, such as time-
to-find and number of bugs found, are inaccurate in evaluating
Syzbot since bugs often spend the majority of their lives hidden
from the fuzzer. In this paper, we set out to better understand
and quantify Syzbot’s performance and improvement in finding
bugs. Our tool, SyzRetrospector, takes a different approach to
evaluating Syzbot by finding the earliest that Syzbot was capable
of finding a bug, and why that bug was revealed. We use
SyzRetrospector on a large scale to analyze 695 bugs and find
that 40% of bugs are hidden for more than 258 days before
Syzbot is even able to find them. We further present findings on
why bugs were revealed to Syzbot (i.e., their revealing factors),
the effort required to reveal bugs, the trends in delays, and how
the location of bugs affects these delays. We also provide key
takeaways for improving Syzbot’s delays.

I. INTRODUCTION

Over the past 7 years, Syzbot, one of the largest continuous
fuzzing projects, has managed to find over 6,700 bugs [1] in
the Linux kernel. Despite this number, the question “How well
has Syzbot performed?” cannot be precisely answered. Syzbot
has found about 2.6 bugs per day over its lifetime, but we do
not know how many bugs were missed. Is Syzbot finding bugs
faster than they are being introduced? What is limiting it from
finding more bugs?

In the past, the aggregate time-to-find of bugs has been
used to evaluate and compare fuzzer performance. This metric
considers the period of time from when the bug was introduced
to when it was found by the fuzzer, regardless of change
to the fuzzer or target code base. However, in a small pilot
study (§IV), we find that time-to-find is inaccurate. Bugs are
not always findable by Syzbot, sometimes due to the fuzzer’s
capability or code in the kernel hiding the bug. Indeed, 68%
of bugs found by Syzbot have spent some amount of their
lifetimes hidden from the fuzzer.

Based on this observation, we divide the overall delay into
two parts: one where the bug is hidden from the fuzzer, and
another where the bug is revealed, but not yet found. We call
these delays D1 and D2 respectively, and use them as key
metrics in our study. These delays have the advantage of being

rooted in the context of a bug’s lifetime, while still being true
to the fuzzer’s capabilities.

We present SyzRetrospector, a tool purpose-built to identify
D1 and D2 by finding the dividing line between them.
SyzRetrospector is capable of going back in time to faithfully
recreate Syzbot’s fuzzing environment at a given point in time
in order to find the exact day and reason Syzbot was first able
to find a bug. The resulting reason, which we call the revealing
factor, is the dividing line between the two delays. Across 4.5
months, we used SyzRetrospector on a large scale to find the
revealing factors of 695 bugs1. With a solid understanding
of how long bugs are hidden for and how long until they
are found afterwards, we present our evaluation of Syzbot’s
performance over the past 7 years.

We identify 5 different revealing factors, each with different
behaviors, and highlight that some may be hard to improve
such that the bug finding delay decreases. We present a
breakdown of the bug finding delay as D1 and D2, and
show how they can be used to evaluate the fuzzer over
time. Importantly, we demonstrate that D1 and D2 follow
power law distributions and give strong evidence that they are
independent of each other. This means that the delays must
be improved by separate means. We also give evidence that
Syzbot is approaching a local ideal state of fuzzing where most
found bugs are revealed shortly after they are introduced. We
then provide strategies for improving D1 and D2 such as using
CVEs to find gaps in Syzbot’s syscall description set.

II. BACKGROUND: CONTINUOUS FUZZING AND SYZBOT

Continuous fuzzers run non-stop alongside development of
long-standing projects like Linux, finding bugs as they are
introduced. Such fuzzers can amass a large corpus of test cases
and maintain a complex fuzzer state across years of testing,
giving them a distinct advantage with time.

Syzbot, Google’s coverage-guided continuous fuzzer, began
fuzzing the Linux kernel in 2017, and continues today with 27
instances called managers, which are instances of Syzkaller (a
Linux kernel fuzzer). Each manager in turn fuzzes using 20

1We have open-sourced SyzRetrospector and the results of this study with
instructions on how to set up and run the tool. The repository can be found
on github: https://github.com/trusslab/syzretrospector

Introducing Date Revealing Date Finding Date

D1 D2

Fig. 1: The lifetime of a bug.

CPU cores spread across 10 virtual machines. To be clear,
Syzkaller interfaces with and fuzzes the kernel, while Syzbot
is the apparatus that allows Syzkaller to fuzz continuously.
Syzbot oversees each instance of Syzkaller, sharing test cases
between them and periodically updating both Linux and
Syzkaller. This way, Syzbot always fuzzes relevant kernel
versions and has the most up to date version of Syzkaller to
fuzz with.

A Syzkaller instance begins by generating a number of
test cases from syscall descriptions, a manually written API
describing the kernel syscalls available to Syzkaller. Syzkaller
runs these inputs on the target kernel and adds to the corpus
those that provide new coverage or generate a crash. It then
selects inputs from the corpus to be mutated and run again,
and the cycle repeats.

Sanitizers instrument the kernel and allow the fuzzer to
find specific types of bugs such as memory bugs. They are
particularly useful to fuzzers because they generate crashes
from bugs that would normally go unnoticed. For instance,
a pointer use-after-free would not normally generate a crash,
thus hiding it from a fuzzer. Instead, KASAN (Kernel Address
SANitizer) [2], identifies the use-after-free and generates a
crash, which the fuzzer reports. Syzbot makes use of many
such sanitizers to help it find undefined behavior, uninitialized
values, race conditions, deadlocks, and memory leaks.

III. DEFINITIONS

At any given time, Syzbot fuzzes a specific Linux commit
using a specific commit of Syzkaller. We call the combination
of Syzkaller and Linux Syzbot’s fuzzing environment. This will
be key for faithfully recreating Syzbot in our study.

Every bug has a commit in which it was introduced to the
kernel – its Introducing Commit. Our study focuses on bugs
that exist in the upstream (i.e., mainline) Linux repository, so
the introducing commit is the one that introduces the bug to
upstream. We mark the date of the introducing commit as the
Introducing Date.

At the Introducing Date, the bug may or may not be findable
by the fuzzer. We say a bug is findable if Syzbot is able
generate and run a test case that triggers the bug. For bugs
that are not yet findable, some change has to take place either
in Syzkaller or the Linux kernel in order for them to become
findable. This study revolves around identifying the precise
code changes or commits that caused bugs to be revealed. We
call these commits Revealing Commits.

Based on what the revealing commits change, we enumerate
5 reasons a bug could be revealed. These are (1) changes to
kernel code, (2) the removal of another kernel bug that was
blocking the fuzzer from reaching this bug (i.e., a blocking

bug), (3) an addition of or improvement to a kernel sanitizer,
(4) a change to how Syzkaller fuzzes, and (5) a change
to Syzkaller’s syscall description set. We refer to these as
Revealing Factors as they are the reason a bug has been
revealed. The day a bug is revealed marks its Revealing Date,
after which Syzbot can find it.

Lastly, the Finding Date is the date when a bug is first found
by Syzbot. On the finding date, Syzbot was fuzzing a particular
Linux commit, which we will call the Finding Commit. This
commit both marks the end of the bug’s finding delay and is
an anchor where we know the bug should reproduce.

Using these dates, we get two periods of time in a bug’s
life cycle. We define D1 as the period of time where the bug
is hidden (Revealing Date - Introducing Date). In order to
accurately evaluate Syzbot, D1 is truncated by the date Syzbot
first began fuzzing. Syzbot could not have fuzzed before it
existed, so it does not make sense to evaluate Syzbot on this
time. In this sense, the beginning of Syzbot acts as a revealing
factor for bugs that pre-date it and are not otherwise hidden.
Since we do not know the exact date Syzbot was turned on, we
will use the date of the first bug found by it: July 22nd, 2017.
D2 is the delay while the bug is revealed, but the fuzzer has
not found it yet (Finding Date - Revealing Date). This delay
is the actual time it takes for the fuzzer to find the bugs.

IV. PILOT STUDY AND REVEALING FACTORS

We performed a pilot study of 20 bugs in which we
manually identified their revealing factors in order to motivate
our study. We found that 9/20 bugs were not findable at their
introducing commits and were later revealed due to changes
in either Linux or Syzkaller. 3 bugs were revealed by changes
in kernel code, 2 bugs were hidden behind other bugs (i.e.,
blocking bugs), 3 bugs were hidden until a syscall description
update, and 1 was found due to a general Syzkaller update. The
bugs in our pilot study often have an overall delay (D1+D2)
of well over 300 days, but the bugs were only revealed for a
median of 46 days (D2). Next, we list each of the possible
revealing factors for a bug and provide real-world examples
of each.

1) Generic Kernel Commit: There are some cases where
the root cause of a bug and the kernel commit that reveals it
are not the same. By our definitions: the introducing commit is
the commit that introduces the root cause of a bug, while the
revealing commit reveals an already present flaw to the fuzzer.
This can be seen clearly in the following bug: WARNING in
rtl28xxu_ctrl_msg/usb_submit_urb [3]. The bug
arises when the message pipe directions do not match between
host and USB device, which can happen for some zero-length
control requests. This behavior had existed since February
3rd, 2015, but was not findable by Syzbot since it would
not generate a crash; the control request would simply fail.
On May 22nd, 2021, a warning was added to check the pipe
direction before handling the request, and thus the bug was
revealed. Syzbot found the bug 2 days after the revealing
commit was pushed. Added warnings and checks are the
easiest reveal to explain, but there are many others, such as

2

an additional function call that completes the code path to the
crash site [4]. In general, the kernel can already enter a buggy
state, and the revealing kernel commit turns this state into a
crash.

2) Blocking Bug: A blocking bug is a bug in the kernel
that somehow prevents Syzbot from finding another bug. It
is often a crash earlier in the call stack of the hidden bug
that triggers most of the time, thus preventing the fuzzer from
continuing. A good example is seen in the bug WARNING
in exception_type [5]. This bug occurs in KVM when
the guest’s maximum physical address (MAXPHYADDR) is
set to 1. However, another bug in KVM: WARNING in
x86_emulate_instruction, is triggered before the bug
in exception_type and prevents Syzbot from finding it.
The blocking bug was patched on May 28th, 2021, and the
warning in exception_type was found on August 29th,
2021.

3) Sanitizer Commit: A sanitizer commit is a commit that
specifically introduces or improves a sanitizer. Since sanitizers
are built into the kernel, it is a type of kernel commit. Despite
this, sanitizers are developed independently of the kernel and
are not intended to be built into consumer releases such as
Ubuntu. So, we consider them to be a separate revealing factor
from other kernel commits. We note that there were no bugs
revealed by sanitizer commits in our pilot study. However,
since sanitizers play such a huge role in finding bugs, it stands
to reason that their development could reveal bugs. We will
explain this revealing factor’s rarity in §IX-B2.

4) Syzkaller Commit: Bugs are sometimes revealed by
changes to Syzkaller itself. This occurs when Syzbot
gains additional hardware or software support, or
changes its fuzzing method for a specific module. In
the case of KASAN: slab-out-of-bounds Read
in packet_recvmsg [6], Syzbot was already capable
of fuzzing the buggy module (WireGuard), but needed
assistance in setting up network devices. Setting up complex
scenarios can be difficult for fuzzers as their input is entirely
random and may never create something as complex as a
valid network. A Syzkaller commit on February 13th, 2020
changed how Syzkaller fuzzed WireGuard by initializing its
virtual network with 3 devices. With this support, Syzbot was
able to find the bug on March 12th, 2022.

5) Syscall Description Commit: Syscall descriptions are
manually written descriptions for the kernel syscalls that
Syzkaller can use to generate test cases. Bugs are often
hidden behind syscall descriptions that have not yet been
implemented into Syzkaller. Consider a memory leak in
kobject_set_name_vargs [7]. In this case, the bug is
not in the kobject library, but a misuse of it in the nilfs
file-system. After deleting a kobject using kobject_del,
the calling function must call kobject_put in order to free
the object. Not doing so constitutes a memory leak. This bug
was introduced on August 8th, 2014, but even once Syzbot
began, it still lacked the proper syscall descriptions to fuzz
the nilfs module for another 3 years. Support for this file-
system was added along with support for 19 other file-systems

Bug

Retrospect Syscall
Descriptions

Linear Search
and Focused

Fuzz

Retrospect
Syzkaller

Bisect and
Focused FuzzRetrospect Kernel

Revealing Factor

Bisect and
Focused Fuzz

Focused Fuzz
at finding
commit

SyzRetrospector

Fig. 2: SyzRetrospector Workflow.

on September 20th, 2020. With the new descriptions built in,
Syzbot was able to find the bug 57 days later on November
16th, 2020. We refer to the commit that added these new
descriptions to Syzkaller as a syscall description commit.

For bugs revealed this way, it is important to note that
hidden refers to Syzbot’s ability to find the bug. Syzbot could
not find the bug because it lacked the syscall descriptions to
fuzz the vulnerable module. A bug like this may be exploitable
before it is revealed, as well as after; a 6 year window in this
case.

6) Never Hidden: A bug that could have been found on
its introducing date was never hidden from Syzbot. This is
the case for the bug WARNING in futex_requeue [8],
which existed for 13 days until Syzbot found it. Syzbot was
capable of finding it the entirety of this time.

V. OVERVIEW

Building on our pilot study, we construct SyzRetrospector,
an analysis tool capable of going back in time to faithfully
recreate Syzbot’s fuzzing environment at any point in time. In
this section, we provide a high-level overview of SyzRetro-
spector’s workflow (Fig. 2) and how it goes back in time to
identify a single revealing commit.

Given any bug, SyzRetrospector starts by fuzzing at that
bug’s finding commit, where we know the bug exists. Fuzzing
here tells SyzRetrospector whether finding the bug is feasible,
and how long the bug takes to reproduce. A feasible bug is
one that can be reproduced by SyzRetrospector in a reasonable
amount of time. If a bug is feasible, then its findability is
determined by whether it reproduces in a particular fuzzing

3

session. §IX-A demonstrates that SyzRetrospector uses this
implication to reach the correct revealing factor. Bugs that
are not feasible, often hard-to-find races, are skipped. We will
justify this decision in §XI.

In order to determine whether a bug is findable in a
commit, SyzRetrospector faithfully recreates Syzbot’s fuzzing
environment on the day of that commit and then fuzzes for
the bug. Syzbot’s fuzzing environment is comprised of a
kernel commit, a Syzkaller commit, and a syscall description
commit. Each of our 5 revealing factors is the result of one
of these types of commits, so SyzRetrospector will analyze
each of these commit types in turn. Whenever SyzRetrospector
chooses a commit to test, it completes the fuzzing environment
with commits of the other types from the same date as the
chosen commit. So, if SyzRetrospector is testing a syscall
description commit, it chooses Syzkaller and Linux commits
from the same day to complete the environment. This means
that as it switches from one commit type to the next, the
shrinking date range of where the revealing factor could be
carries over.

SyzRetrospector first gathers and retrospects all of the
relevant syscall description commits. It does this by parsing
the bug’s reproducer and Syzkaller’s git to see which commits
changed or added the syscall descriptions in it. SyzRetro-
spector then uses binary search to find the earliest syscall
description commit that is able to reproduce the bug, and
confirms or rules out whether this commit is the revealing
factor by rolling back the description set, but keeping the
same Syzkaller and Linux commits. This process is depicted
in Fig. 3. If the bug is found after the description commit,
but not before, the description commit must be the revealing
factor. This provides a simple algorithm to isolate and then
confirm whether a syscall description commit revealed the bug
in question. Otherwise, the revealing factor is either a Linux or
Syzkaller commit between the dates of this description commit
and the one before it.

Next, SyzRetrospector searches the kernel commits for a
revealing factor. Again, it uses binary search to narrow down
the commits. And once again, if the bug is found after a kernel
commit, but not before, then that commit is the revealing
factor. Otherwise, the revealing commit must be a Syzkaller
commit. Since kernel commits are pushed upstream daily, the
date range has shrunk to a single day.

Lastly, there are relatively few Syzkaller commits each day,
so SyzRetrospector searches them linearly going back in time.
Once the bug reproduces after, but not before a commit, that
commit must be the revealing factor.

VI. DESIGN

In this section, we will explain in more detail the workflow
laid out in §V, including how we focus Syzkaller to a specific
set of syscalls and how it arrives at a correct result.

A. Retrospection Preparation

Before retrospection begins, SyzRetrospector gathers every-
thing it needs related to the bug from Syzbot, including the

bug’s reproducer, its finding and introducing commits, and the
exact kernel configuration used by Syzbot. It also makes note
of any bugs which share the same patch as these are duplicates,
or different manifestations of the same bug. They are treated
as the same bug during retrospection.

Maximum Fuzzing Time: As shown in Fig. 2, SyzRetro-
spector begins by attempting to trigger the bug at the finding
commit. Here, SyzRetrospector fuzzes 3 times for 30 minutes
in order to understand how long it takes for the bug to
reproduce. It then recalculates the maximum fuzzing time by
using the mean + standard deviation of the 3 trials, which
can end up being greater than 30 minutes. For most bugs, the
new time is 10 minutes (a minimum set by us), and tops out
at around 33 minutes. SyzRetrospector uses this time going
forward except when the bug is harder to reproduce than it
originally thought. If any bug takes 80% of its maximum time
to reproduce, SyzRetrospector resets the maximum time to
30 minutes and fuzzes 5 times rather than 3. Calculating the
maximum time further decreases SyzRetrospector’s overall run
time by letting it better decide when a bug is not findable.
From our experience, the time needed to find a bug does not
change as we move back in time. So, the maximum fuzzing
time is not recalculated past the first fuzzing session.

B. Building the Fuzzing Environment

SyzRetrospector begins a fuzzing session by cutting down
the number of syscall descriptions to only those needed to
find the bug. If Syzkaller ran without any form of guidance,
it would simply try to maximize coverage and may never
find the bug in question. At the same time, we do not want
to change how Syzkaller fuzzes as that could invalidate our
results. Instead, we restrict what areas of code Syzkaller can
fuzz by focusing the syscall descriptions built into it. We call
this contribution focused fuzzing, and it is one of the core
reasons SyzRetrospector is able to scale to a large number
of bugs. Our focused fuzzing scheme greatly reduces the time
taken to find a single bug from many days to only a few hours.
To enable focused fuzzing, SyzRetrospector parses the large,
unfocused description set that Syzkaller pulls from randomly,
and narrows it down to only the descriptions and dependencies
required to reproduce the bug. After this, Syzkaller has a fully
functional subset of the original descriptions, usually around
20 syscall descriptions. Importantly, none of the descriptions
or underlying structures are changed. We have only limited
the ones Syzkaller is allowed to use.

We further decrease the time to reproduce the bug by
inserting the reproducers into the corpus as seeds. This creates
the beneficial scenario where Syzkaller will only fuzz a small
window of the kernel, and has just generated the test cases
to exercise the buggy code. By encouraging these test cases,
Syzkaller finds most bugs in 2 minutes. Importantly, we leave
Syzkaller’s mutation and scheduling algorithms unchanged.
Since mutation is left untouched, Syzkaller is still capable
of finding new paths to the same bug if the reproducer fails
to trigger it. We reason that using the reproducers does not
interfere with SyzRetrospector’s faithful recreation of Syzbot’s

4

… …
Date: 2021-11-16

 (hash)
Description: 1012
Syzkaller: 1012
Linux: 1360

Date: 2022-01-05

 (hash)
Description: 3024
Syzkaller: 3025
Linux: 5093

Date: 2022-01-05

 (hash)
Description: 3025
Syzkaller: 3025
Linux: 5093

Date: 2022-02-23

 (hash)
Description: 5576
Syzkaller: 5576
Linux: 9123

Bug Not Found Bug Not Found Bug Found Bug Found

Time
Fig. 3: SyzRetrospector determines which commit revealed the bug in question as the bug reproduces after, but not before, the
revealing commit with hash 3025. For ease of reading, the example hashes increase monotonically.

fuzzing environment since it does not change how the fuzzer
operates.

Next, the kernel is built. SyzRetrospector uses the exact
configuration used by Syzbot when the bug was found. Then,
SyzRetrospector chooses a suitable compiler based on the date
of the kernel commit from set of compilers that Syzbot has
used. This ensures the kernel builds without error.

C. Result Collection

Once retrospection is completed, SyzRetrospector outputs a
final report with a log of all the fuzzing sessions, the exact
revealing commit, and important dates in the bug’s lifetime.
SyzRetrospector differentiates between syscall description and
Syzkaller commits, but a kernel commit could represent a
sanitizer commit, a blocking bug, a generic kernel commit,
or the introducing commit. SyzRetrospector identifies bugs
that are never hidden (i.e., are findable at their introducing
commit), and lists potential blocking bugs that appear many
times throughout retrospection, especially when the original
bug is not found. The duty falls to the researcher to read
the log and determine if a listed bug is a blocking bug or
not. Similarly, sanitizer commits can be recognized by their
commit name. If all other options are ruled out, then a generic
kernel commit is what revealed the bug.

VII. IMPLEMENTATION

We faced and solved many implementation challenges to
successfully realize SyzRetrospector, which is comprised of
7,800 lines of C++ code and BASH script. Many of these
challenges stem from looking back in time to fuzz many
commits, and matching the scale of Syzbot.

A. Duplicate Bugs

Duplicate bugs can be difficult to identify automatically,
even though SyzRetrospector has some simple deduplication
built into it. When gathering a bug from Syzbot, it will check
for any other bugs with the same patch as they share the same
root cause, and are thus the same bug, a strategy used by a
previous study [9]. However, some duplicates are not found
by Syzbot. During analysis, if SyzRetrospector finds bugs that

appear to be duplicates, we manually study them and mark
them as such. We use heuristics such as similar stack trace,
same crashing function, same crash type, same sanitizer, etc.
to consistently mark duplicate bugs.

B. Syscall Description Parsing

In order to achieve focused fuzzing, SyzRetrospector needs
to be able to parse the syscall descriptions of any Syzkaller
commit. While more recent versions of Syzkaller allow a user
to enable only a subset of syscall descriptions, older versions
do not have this feature. SyzRetrospector must carve out a
new description set for each bug, and for each version of the
description set.

Syzlang, the custom language of the syscall descriptions, is
relatively straightforward to parse thanks to the rigorous and
consistent writing of the Syzkaller team. Each syscall depends
on a number of structures, resources, and other dependencies
that describe how data should be passed to the syscall. Most of
these are easy enough to find and add to the new description,
keeping in mind that those items may depend on yet more
items. Resources, however, pose a greater challenge.

Each resource must be produced, or provided as output from
a syscall in the description, and consumed, or used as an
input by another syscall, otherwise Syzkaller will not build.
The nuance arises because resources are not always easily
identified as input or output. A pointer in a syscall may be
labeled as in or out or inout (both in and out) [10]. Items
pointed to by that pointer will be used as input, output, or both,
which must be accounted for. In Fig. 4 for example, parent
is passed to consumer as an inout pointer, parent houses
the structure child as an in (input) structure, and finally
child has a member my_resource. So consumer uses
my_resource as an input.

Following the rules above, SyzRetrospector begins by pars-
ing all of the syscall descriptions from Syzkaller and classify-
ing each object. It then consults the reproducer to determine
which syscall descriptions are required and adds those to a
new description. SyzRetrospector then adds the dependencies
of the objects already in the new set. If a resource is added, it
adds up to two new syscalls: one that produces it, and one that

5

consumes it. While choosing these syscalls, SyzRetrospector
tries to select those that do not depend on other resources to
reduce the total number of syscalls in the end.

Thankfully, the language of Syzkaller’s syscall descriptions,
Syzlang, largely remains unchanged through the past 7 years,
and most changes are simply additions of features. The only
functional change we have had to account for is the meaning of
inout as an object attribute. This keyword currently means
that children objects, specifically resources, will be labeled
as either in or out as needed. This nuance allows the
developers to have members of the same structure function
as either producers or consumers in a single syscall. However,
in older versions of Syzkaller, inout meant that every child
object should be treated as both in and out. In this case,
the description parser needs to gather all children objects,
regardless of attribute.

C. Patches

SyzRetrospector goes back in time to look at Syzkaller and
Linux commits alike. However, large swathes of commits in
both Linux and Syzkaller either do not build or do not boot.
In order to obtain accurate retrospection, we have written a
series of patches for both the kernel and Syzkaller. Through
manual effort, we have denoted exact commit ranges to which
each patch needs to be applied.

We took care to patch the kernel as little as possible, but
some bugs required modifying the kernel. In one example, the
kernel built itself with the incorrect page size, and failed boot.
Our patch is based off of the one used in mainline Linux and
simply forces a 2 MB size page [11]. SyzRetrospector has 7
patches that it checks before building a kernel commit.

We also develop and maintain 9 patches for Syzkaller that
either build Syzkaller correctly, or ensure that Linux boots
properly. This usually meant modifying boot parameters or
changing the makefile. In total, there are 16 patches SyzRet-
rospector considers when building the fuzzing environment.

While we tried to keep these patches small and non-invasive,
they often dealt with core components such as memory.
Indeed, the very nature of applying patches means that we
are removing bugs from the kernel. We reason that if left
unpatched, thousands of commits would be unusable. We also
did not observe any of these patches introducing or removing
bugs during testing.

D. Unstable Commits

The patches in the previous section are a key part of
allowing SyzRetrospector to function over wide ranges of
Linux and Syzkaller commits, but it is infeasible to patch
every boot error or incompatibility. Instead, we implement
SyzRetrospector with the ability to work around errors.

SyzRetrospector is able to detect issues in two ways: it
can detect boot failures by reading the Syzkaller logs, and
it can detect incompatibility crashes by parsing the crashes. If
SyzRetrospector identifies an issue, it marks the fuzzing envi-
ronment as unstable. SyzRetrospector continues retrospection,
but attempts to work around the unstable commits by fuzzing

1 resource my_resource[intptr]
2
3 producer(num int32) my_resource
4 consumer(p ptr[inout, parent])
5
6 parent {
7 child child (in)
8 }
9
10 child {
11 rec my_resource
12 }

Fig. 4: An example syscall description

nearby commits. In the case that the revealing factor is inside
a range of unstable commits, SyzRetrospector reports this in
the final report. In most cases, SyzRetrospector successfully
works around the unstable commits and identifies the revealing
factor outside of them. We observe that without this feature,
SyzRetrospector would incorrectly assume that a bug was
hidden, negatively impacting our results.

E. Compiler Selection

In addition to choosing Linux commits to fuzz, SyzRet-
rospector multiplexes 6 versions of the C compiler GCC.
Using the correct compiler version is crucial to building older
kernel versions. In some cases, compiler warnings in older
GCC versions are treated as errors in newer versions. Older
kernel versions may not comply with the rules that were made
after them, so we need to use older GCC versions to facilitate
compilation. The GCC version used by Syzbot also naturally
changed over time. We have looked back on the history of
GCC compilers used by Syzbot and compiled a collection of
them to be multiplexed by SyzRetrospector. We choose the
compiler based on the date of the kernel commit we want to
build, and compare that to the compiler Syzbot used during
the same time frame.

F. Architecture

In addition to the x86 64 architecture, Syzbot also fuzzes
i386, using cross-compiled test cases. In these cases, kernel
compilation does not change, but parts of Syzkaller must be
cross-compiled. SyzRetrospector uses syz-env [12], a docker
container provided with Syzkaller, in order to handle cross-
compilation. We note Syzbot has a spread of 6 managers that
fuzz RISC-V and ARM versions. However, these managers
only fuzz auxiliary repositories, so their crash instances are
left out of our study. If their bugs are found in upstream, the
upstream crash is used for retrospection.

VIII. DATA SET

Each of the 695 bugs in our data set meets strict require-
ments to ensure valid results. We gathered the most recent
batch of bugs on May 17th, 2024, so recently fixed bugs are
not included. First, every bug needs a patch that contains a
Fixes tag. This tag is added by the kernel developer to denote

6

a bug’s introducing commit. Since we have found erroneous
cases where a bug was found before its introducing commit
or found after it was marked as fixed, we also perform a
sanity check that all of the dates for a bug are in order. The
bug also needs at least one reproducer to be used throughout
retrospection.

We found that auxiliary repositories such as linux-next
often undergo major changes, such as deleting branches,
leaving many commits dangling. These commits are often
the introducing and/or finding commits that SyzRetrospector
needs to study a bug. Due to the transient nature of these
repositories, we only study bugs that appear upstream.

We gathered a total of 1,407 bugs for SyzRetrospector to
study. However, many of these bugs failed to reproduce even
with their reproducer, and others encountered build errors that
remain unsolved. As we justify in §XI, these bugs were left
out of the study.

IX. FINDINGS

Here we present our findings after performing a large scale
retrospection of 695 bugs found by Syzbot. This process took
over 4.5 months and over 12,400 CPU hours.

A. Correctness Study
Due to the non-deterministic nature of both fuzzing and

some of the bugs in our data set, the bugs may not always
reproduce as we expect them to. This results in false negatives
for individual fuzzing sessions, and possibly incorrect results
overall. However, manually verifying each of the 695 bugs
in our data set is infeasibly labor-intensive. So, we randomly
sampled 50 bugs from our 695 bug data set, and check this sub-
set’s correctness. In this case study, we carefully retrospected
the revealing factors and dates given by SyzRetrospector in
order to check their correctness. In addition, we manually
looked for other possible revealing factors. Based on the results
of this study, we can infer the accuracy of SyzRetrospector for
all bugs in our data set.

Out of the 50 bugs studied, 45 of them had correctly identi-
fied revealing factors. So, we extrapolate that SyzRetrospector
reaches the correct result 90% of the time. The bugs that did
fail were hard-to-find bugs that managed to reproduce at their
finding commits, and then resulted in false negatives during
retrospection. On average, the incorrect results were off by 19
days. Compared to the relatively large D1 and D2, we argue
that the error is small enough that SyzRetrospector’s overall
results are reliable.

The following findings are derived from the entire data set
of 695 bugs, which we take to be accurate based on our manual
verification of the 50, randomly sampled bugs.

B. Revealing Factors
Fig. 5 shows the revealing factors and the percent of bugs

they are responsible for revealing. We see 68% of bugs were
hidden for some portion of their lives, the most prominent
categories being generic kernel commits, syscall description
commits, and blocking bugs. Each of these revealing factors
requires unique effort to induce the reveal.

31.51% 23.31%
20.58%

13.81%
10.50%

0.29%

Never
Hidden

Generic
Kernel
Commit

Syscall
Description

Blocking
Bug

Syzkaller
Commit

Sanitizer
Commit

Fig. 5: Percent of bugs revealed by each revealing factor.

1) Kernel-based Reveals: Among the 5 reveal groups,
generic kernel commits and blocking bugs are the hardest to
intentionally cause. For instance, any of the open bugs in Linux
could be a blocking bug. A developer has no way of knowing
which of the open bugs are blocking bugs before they are
patched - a circular dependency. The only way to improve D1

for these bugs is to speed up the patching process, which is
challenging due to the large number of players involved.

Generic kernel reveals are difficult to predict since it is
unknown what code change will reveal a bug. Consider a slab-
out-of-bounds bug in the Thrustmaster joystick driver [13].
The driver holds a pointer to a USB endpoint that has already
been freed, but the driver fails to check the endpoint before
attempting to use it. The bug was hidden for a long time since
even though the pointer enters a buggy state, it usually does
not point out of bounds. We now shift to the revealing factor:
a commit in the B-Tree Filesystem (BTRFS) module [14].
Periodically, BTRFS compresses inodes to save memory, but
prior to this commit, did not compress single-page inodes.
The Thrustmaster pointer happens to point into one of these
single-page inodes. Once the inode is compressed, the Thrust-
master pointer, which uses fixed offsets, points outside the
valid memory range, and can trigger KASAN. Many generic
kernel commit reveals are similar in that it is hard to predict
what change will reveal a bug. However, we will provide
suggestions on how to improve the chances of inducing generic
kernel commit reveals in our takeaways.

Finding 1. We find that 37% of bugs are hidden by
generic kernel commits (23.31%) and blocking bugs
(13.81%), and that it is hard to improve the D1 of
these bugs.

Sanitizers are an interesting revealing factor since it appears
they do not reveal many bugs. Despite 42% of bugs in our
data being found with the assistance of sanitizers, only 2 were
actually revealed by commits to sanitizers. A deeper look into
the sanitizers’ development reveals what is actually going on.
Take KASAN for example, one of the first sanitizers in Linux.
It has only seen around 500 commits since it was introduced
in 2015. Furthermore, most of the commits since 2019 are
minor fixes and selftests. It makes sense that none of these
commits would reveal many, if any, bugs.

7

0

2000

4000

6000

8000

10000

12000

14000

16000

2017 2018 2019 2020 2021 2022 2023

Li
ne

s
of

 C
od

e
Ch

an
ge

d
fs kernel drivers net

Fig. 6: Lines of code changed in syscall descriptions each year.

0

10

20

30

40

50

60

70

2017 2018 2019 2020 2021 2022 2023

N
um

be
r o

f B
ug

s R
ev

ea
le

d

Updated Added

Fig. 7: Syscall description reveals by year based on whether
an added syscall or an updated syscall caused the reveal.

KMSAN, however, is unique in that it was introduced to
Linux after Syzbot had already matured. To show the impact
of adding new sanitizers to the kernel, we manually studied 8
bugs found by KMSAN around the time it was introduced.
Until recently, Syzbot only used KMSAN in an auxiliary
repository, so these 8 bugs are not included in the retrospection
data set. We traced 4/8 of the bugs back to the commit that
added KMSAN. The remaining 4 bugs were revealed some
time after KMSAN was added. So, adding a new sanitizer
reveals an entirely new class of bugs to the fuzzer, but the
little development that occurs after does not reveal many bugs.

Finding 2. We find that new sanitizers bring a jump
in fuzzing capability, revealing several bugs. However,
the little development after this does not reveal many
bugs.

2) Syzkaller-based Reveals: Contrary to the revealing fac-
tors above, syscall description commits and Syzkaller commits
reveal bugs more predictably. In order to reveal a bug that is
hidden behind some syscall, that syscall must be added to the
description set. It follows that fewer lines of code changed
would result in a lack of bugs being revealed. We observe this
trend over the past 3 years. As syscall description development
has slowed since 2021 (Fig. 6), reveals attributed to those years
have also slowed (Fig. 7). As a result, there likely exists a large
group of bugs that Syzkaller is unable to find, hidden behind
syscall description development.

This is the primary challenge behind improving Syzkaller: it
must remain consistently up to date with kernel development

to achieve its best performance. Not only are more syscalls
being added to Linux via ioctl commands, but old syscall
descriptions become out-of-date. We looked into the syscall
description reveals identified by SyzRetrospector and found
that 42% of the reveals were a result of updating old syscalls,
not adding new ones. We note that this ratio stays fairly
consistent over time, and predict that it is unlikely to change
anytime soon.

Finding 3. We find the greatest challenge of improv-
ing Syzkaller is developing its description set, and that
maintaining old syscalls is just as important as adding
new ones.

Despite this challenge, there is a silver lining. The num-
ber of bugs reported by Syzbot has not dropped in re-
cent years [15]. In fact, despite fewer reveals coming from
Syzkaller development, we see a higher ratio of bugs that were
never hidden. This ratio has been slowly climbing from 28% of
bugs found in 2020, to 53% of bugs found in 2023. This shows
that all of the effort put into Syzkaller years ago continues to
pay off.

Finding 4. We find that Syzbot continues to find bugs
based on past improvements to its description set.

C. Bug Finding Delays

Figs. 8a and 8b show histograms of D1 and D2, where they
have been fit to a power law distribution with R2 values of
0.906 and 0.964 respectively. Following the power law means
many bugs will have shorter delays, but there is a long tail of
less common bugs with very large delays. For instance, D1

has a 25th percentile of 0 days, yet a median of 100 days,
and a 75th percentile of 531 days. It is this long tail that
we are concerned with. In this section, we will disprove any
correlation between D1 and D2, and then take a deeper dive
into the trends of each delay.

We investigate whether D1 and D2 are independent. To
do so, we present Fig. 8c, a scatter plot of D1 and D2, and
observe that there is no obvious correlation. We also perform
regression analysis and find that no regression line, linear or
curved, has an R2 value greater than 0.136. For any D1 we
cannot predict the value of D2. This is strong evidence that D1

and D2 are independent. This has an important implication:
it shows that separate efforts are needed to reduce each delay
and provides a bound on how much each solution can reduce
the delay.

Finding 5. We find strong evidence that D1 and D2

are independent components of the overall delay. This
implies that separate efforts are needed to reduce D1

and D2.

8

0

100

200

300

400

N
um

be
r o

f B
ug

s

Delay 1 (days)

y = 223.46*x^-1.293
R^2 = 0.906

(a) The distribution of D1.

0

100

200

300

400

500

N
um

be
r o

f B
ug

s

Delay 2 (days)

y = 321.37*x^-1.824
R^2 = 0.964

(b) The distribution of D2.

0
200
400
600
800

1000
1200
1400

0 1000 2000 3000

D
el

ay
 2

 (d
ay

s)

Delay 1 (days)

(c) A scatter plot of D1 and D2.

Fig. 8: Plots of D1 and D2.

0

200

400

600

800

1000

1200

2017 2018 2019 2020 2021 2022 2023

D
el

ay
 1

 (d
ay

s)

(a) Box plot of D1 by year.

0
20
40
60
80

100
120
140
160

2017 2018 2019 2020 2021 2022 2023

D
el

ay
 2

 (d
ay

s)

(b) Box plot of D2 by year.

Fig. 9: Box plots showing quartiles of D1 and D2 by year.
The minimums and maximums are omitted for readability.

1) Delay 1: We first consider D1 as shown in Fig. 9a. The
increase in D1 is expected as Syzbot begins fuzzing, noting
that D1 is measured from the time Syzbot began fuzzing for
bugs older than it. A general increase in D1 means that more
bugs are being found that were once hidden, and that those
bugs are often older than the fuzzer. We know that when
Syzbot first began in 2017, Linux was already much older
than it and had many bugs. So, Syzbot’s increasing D1 shows
that it is improving.

The upward trend of D1 comes to an abrupt halt in 2022
when it takes a nose-dive. We observe that a decrease in D1

means the fuzzer is finding fewer previously hidden bugs, and
that bugs are being revealed much earlier in their lifespans.
Indeed, Table I shows that bugs found in 2022 also largely
originate from 2022. In fact, the median D1 for 2022 is only 17
days. This is in stark contrast to the previous years, which have
a more even spread between bugs whose introducing commits
lie in the same year and those that are much older. The same
is true to 2023. So, Syzbot is finding fewer old bugs in recent
years, and the bugs it does find are not hidden as long.

TABLE I: Number of bugs found in each year (columns) by
the year they were introduced (rows). We note that 2005 is a
hard barrier as this is the year Linux began using git.

Year 2017 2018 2019 2020 2021 2022 2023

2005 0 0 9 9 3 2 0
2006 0 11 1 2 0 1 0
2007 0 2 2 2 0 0 0
2008 0 1 1 4 3 0 0
2009 0 0 3 1 4 2 0
2010 0 4 5 4 2 2 2
2011 0 0 2 3 2 2 1
2012 0 4 3 2 5 2 1
2013 0 5 6 4 2 2 0
2014 0 3 2 7 2 0 1
2015 4 4 0 1 1 2 1
2016 3 12 5 9 2 4 2
2017 9 8 11 20 5 2 1
2018 63 19 17 3 1 1
2019 66 32 6 3 0
2020 68 20 5 1
2021 32 11 3
2022 45 5
2023 32

From this, we reason that Syzbot is reaching an ideal state
of fuzzing. We define an ideal state of fuzzing as one where
all bugs are either revealed shortly after they are introduced
or are never hidden at all. In such a state, the fuzzer is able
to search for all bugs uninhibited by revaling factors which
would otherwise hide some bugs. However, based on our own
observations, we believe this ideal state is merely a local
ideal, with more improvement being possible. We observe
that Syzbot has not yet achieved 100% coverage of the Linux
kernel, and that syscall description development has slowed
from its peak in 2020 (Fig. 6). These clues point to the
conclusion that there are more hidden bugs lying in wait in the
kernel. In this sense, Syzbot has caught up on finding many of
the currently revealed bugs and is ready to have its capabilities
expanded and improved again. This behavior is important as
it demonstrates one thing: Syzbot is capable of converging to
an ideal state of fuzzing with the Linux kernel.

Finding 6. We find that based on the decreasing D1,
Syzbot is approaching a local ideal state of fuzzing,
but that more improvement is still possible.

2) Delay 2: D2 is the delay for Syzbot to find a bug while
the bug is revealed. We reason that D2 is largely related to
the compute power given to Syzbot. If a fuzzer is given more

9

44:25:29

30:03:45

22:28:24

12:24:01

18:59:06

5 VMs 10 VMs 15 VMs 20 VMs 30 VMs

Fig. 10: 75th percentile of D2 with varying numbers of VMs.

resources (i.e., compute power), it will fuzz the target with
greater throughput, which in turn will find bugs faster. In a
sense, this defines the rate at which Syzbot can find bugs. To
demonstrate this, we performed an experiment in which we
varied the amount of compute power given to Syzkaller.

Our study consisted of a single Syzkaller manager using a
varying number of VMs, each with 2 CPU cores. In this setup,
more VMs means more compute power. We ran Syzkaller 3
times for each number of VMs, each time with an identical
starting corpus. The D2 shown in Fig. 10 is the 75th percentile
D2 of bugs found in all runs - 39 bugs total. The Figure shows
a clear and significant decrease in D2 up until 30 VMs. Thus,
D2 can be roughly thought of as Syzbot’s fuzzing power, or
how fast it can find bugs in a target.

Concerning the increase in delay for 30 VMs, we believe it
is caused by a bottleneck in the host machine. With so many
VMs running on a single machine, it is likely that the host’s
KVM became bogged down and slowed the execution of test
cases. Syzbot, which runs VMs on separate machines, may
not have this same bottleneck.

Finding 7. We find that D2 is largely related to the
compute power given to Syzbot.

D. Delays by Location

Here we look at how bug finding delays vary for different
locations in the kernel. We use the root directories of Linux
(i.e., drivers, net, kernel, etc.) to describe the possible locations
where a bug could exist, focusing on the directories for which
we have more than 50 bugs in our data set. Those directories
are drivers, the file-system directory (fs), kernel, and network
(net).

Consider drivers and net as shown in Fig. 11. These two
directories alone account for over 68% of the compiled kernel,
and the median D1 of each is 275 and 208 days respectively.
Fuzzer development for these areas struggles greatly due to the
niche requirements of drivers and net. Drivers, for example,
often require emulated or actual hardware in addition to unique
syscalls for each driver. Net sees a similar issue where the
fuzzer often requires assistance in setting up networks. These
additional requirements mean it will take longer for Syzkaller
to improve enough to reveal bugs. Compare this to fs and
kernel, which only combine for 21% of the compiled kernel

0

200

400

600

800

1000

drivers fs kernel net

 Delay 1  Delay 2

Fig. 11: Box plot showing quartiles of D1 and D2 in root
directories of Linux.

and have a median D1 of less than 15 days. From this we see
that the size of a location is positively correlated with the time
it takes to reveal bugs in that location.

On top of this, description set development for these com-
plex locations does not always yield a proportional amount of
payoff. Recall Figs. 6 and 7, which show syscall description
development and syscall description reveals over time. In
2018, there was a huge effort to improve drivers related
descriptions, yet this effort revealed relatively few bugs. Again
in 2023, there was an uptick in development to the BPF related
descriptions, though we have yet to observe the payoff for
this. This serves to highlight the importance of research into
tools which aim to automatically generate syscall descriptions
for drivers [16]–[20]. We believe that this area of research is
promising and will help fuzzer developers keep up with driver
development.

Finding 8. We find that the D1 of a location is
determined by both the size and unique challenges of
that location.

Fig. 11 also reveals an interesting finding about D2. We see
that drivers, FS, and net all share a similar median D2 (about
15 days), meaning Syzkaller does not struggle to find bugs
in one location or another. But we also see that the kernel
directory has roughly half the D2 of other directories at only
8 days. Kernel is a small directory and most test cases go
through it during their execution, so it has a higher “coverage
frequency” (i.e., how often code is fuzzed). This correlation
shows that coverage frequency plays a role in determining D2.

Finding 9. We find that the fuzzer’s compute power
is not distributed equally between different locations
in the kernel. Some locations see a higher “coverage
frequency” and hence a lower D2.

X. TAKEAWAYS

Based on our experimental results and understanding of
continuous fuzzing, we provide some suggestions to improve
Syzbot’s bug finding delay.

10

1) Improving D1: In order to improve the D1 of generic
kernel commit reveals, we look to the core reason why these
bugs are hidden. There exists a buggy state in the kernel that
does not trigger a crash, thus the fuzzer cannot find it. So,
we propose using warning and bug assertions that explicitly
turn these buggy states into crashes. One could imagine a tool
which uses static analysis to insert checks in high-risk areas.
Such a tool could be opportunistic and would likely require
less development effort than a full-blown sanitizer. Recall a
bug from §IV-1 which was revealed and found due to an added
warning. Since the buggy state is a pipe direction mistake
that quietly fails, it is hard to imagine the bug would ever be
revealed except through a warning or bug assertion. We believe
there are many more bugs like this that could be revealed
through similar means. In addition, bugs found this way may
be easier to patch as the exact buggy state is already known.
We believe this line of work is promising for reducing the D1

of otherwise hidden bugs.

Takeaway 1. We suggest the use of automation
to insert more warning and bug assertions and reveal
more bugs.

In order to improve Syzkaller, members of the commu-
nity must identify areas that need work and use their do-
main knowledge to create syscall descriptions. Here, we
look for a method to better focus developers’ time. We
surveyed 30 recent CVEs and found that 13 were hidden
from Syzbot. Consider CVE-2022-29156, a double free in
the Infiniband RDMA Transport Server (RTRS) module. The
correct syscall, write$RDMA_USER_CM_CMD_CONNECT,
is in Syzkaller’s description set, but it does not have the proper
flag, RTRS_MSG_CON_REQ, to reach the RTRS module. In
our experience, it is a common trend that Syzbot cannot find
CVEs due to an incomplete syscall description set. We suggest
taking advantage of this trend. CVEs point to areas in the
kernel where vulnerabilities exist, and where Syzkaller needs
more development. This is an easy way to identify incomplete
descriptions that are key to fuzzing vulnerable areas.

Takeaway 2. We suggest using CVEs that are not
found by Syzbot as an external trigger to develop
syscall descriptions for vulnerable code.

2) Improving D2: The goal of Syzbot is to identify, track,
and assist in removing bugs from Linux. However, keeping
up with kernel development is no small feat. Linux makes
major releases such as 5.14 or 5.15 every 63 or 70 days – its
release cycle. We studied 90 recent bugs and found that 76%
of bugs are patched within 70 days of being found – their
time-to-fix. To set an attainable goal, we focus only on D2 as
it is independent of D1, and on shortening its long tail. Even
with just D2 and time-to-fix, bugs could exist in more than 3
releases before they are patched. We also note that due to the
time-to-fix being as long as a release cycle, it is unreasonable

to set a goal of removing all bugs from all releases. Instead,
we set a goal of lowering the 75th percentile of D2 to less
than 60 days, ensuring most bugs exist in only 2 releases.

To reach this goal, we suggest adding more VMs to each
manager under Syzbot. To find out how many VMs should be
added, we look back to our study in § IX-C2. We note that
each Syzbot manager uses 10 VMs. Based on Fig. 10, we find
that doubling the compute power of Syzbot has the potential
to halve its D2. We estimate that doubling the number of VMs
in each manager would be able to cut even the 80th percentile
down to just 60 days from 119 days.

Takeaway 3. To best fit the release cycle of Linux, we
set a goal of D2 ≤ 60 days, and estimate that doubling
the VMs used by Syzbot will more than meet this goal.

XI. THREATS TO VALIDITY

1) Bias 1: Infeasible Bugs: Despite our efforts, certain bugs
cannot be completely retrospected and must be left out of
our data set. The majority of these bugs are ones that fail to
reproduce in a timely manner. Bugs that take longer than 30
minutes to reproduce could take several days to a week to
complete retrospection, making a large scale study infeasible.
We observe that these bugs are largely races or other non-
deterministic bugs with tight windows such that it is near
impossible for Syzkaller to find them quickly and consistently.
Such bugs are not feasible to find, and thus cannot continue
retrospection. It follows that hard-to-find bugs are left out of
this study. However, we can generally reason that hard-to-find
bugs have a longer D2 in Syzbot. As we demonstrated in our
findings (§IX-C2), D1 and D2 are independent of each other,
meaning only D2 is underestimated. This bias may affect our
results presenting D2, such that the true aggregate D2 is higher
than reported. For the subset of bugs that we did retrospect
successfully, D2 is correct.

Other bugs suffered from build errors in either Syzkaller or
Linux that remain unpatched. However, we believe that the
occurrences of such errors are distributed randomly enough to
not introduce a bias in our results.

2) Bias 2: Crash Instance Choice: Since we only con-
sider crash instances in upstream, the finding date used by
SyzRetrospector may be inaccurate when a bug is found in
another repository before it is found in mainline. However,
we analyzed this difference and found that well over half of
the bugs are found on the same day, and over 84% are found
within 10 days. Compared to the relatively long lifespans of
bugs, this difference is small. This may affect our results on
D2 for specific bugs, which may vary ±10 days.

XII. DISCUSSION

Our study carried out by SyzRetrospector focuses on the
fuzzer-target pair, Syzbot and Linux. While SyzRetrospector
is specifically designed to identify D1 and D2 for this pair,
and thus is not directly usable with other fuzzers or targets,
our key metrics and methodology are transferrable. Our two

11

delays arise from the idea that bugs are not always findable by
fuzzers due to factors in the fuzzer’s algorithm, its interface, or
the target code. For example, OSS-Fuzz [21] is a framework
provided by google that allows developers to submit their
projects as well as fuzzers to perform fuzz testing over time.
Our study method could apply to individual fuzzer-target pairs
to identify D1 and D2, assuming both the target and fuzzer
are updated over time. In our example, OSS-Fuzz targets user-
space programs, so there is no syscall interface, and input can
vary widely between projects. This input space, the interface
with which the fuzzer interacts with the target, can possibly
hide bugs from the fuzzer if it is not complete. This is similar
to, but not an exact match to our revealing factor relating to the
syscall description set. So, while the exact revealing factors
would likely differ, D1 and D2 are generalizable to other
fuzzer-target pairs in continuous settings. We chose to focus on
Syzbot and Linux since both projects receive daily or almost
daily commits, and the bugs found are well documented.

XIII. RELATED WORK

Despite the prominence of continuous fuzzers in project
development, we have seen few empirical studies of their
performance. The study from Rouhonen et al. [22] analyzes
bugs found by Syzbot to understand their time-to-fix with
regards to operating system and bug type. Ding and Goues [23]
perform a more in-depth study of OSS-Fuzz [21]. The authors
explore the idea of “fuzz blocker”, similar to our idea of
blocking bugs (§IV-2). They also analyze the flakiness of
bugs, whether the bug is patched, and whether it has a CVE.
Both of these studies rely on statistics and static analysis. By
contrast, our work with SyzRetrospector is the first large-scale,
dynamic analysis of bug lifetimes with regard to Syzbot, or
any continuous fuzzer. We not only demonstrate that certain
metrics like bug finding delay are inaccurate, but develop our
own metrics to clearly analyze Syzbot’s performance over 7
years.

Mu et al. [9] provide a comprehensive study of dupli-
cate Linux kernel bugs found by Syzbot. In their paper,
they organize Linux experts to identify duplicate bug reports
through great manual effort. Then, building on the reasons for
duplication, they prototype tools capable of testing whether
two bug reports are duplicates of each other. The paper finds
that 47% of the studied bug reports are duplicated with at least
one other report. SyzRetrospector uses similar ideas to identify
duplicate bugs during retrospection such as grouping bugs with
the same patch. Such an improvement allows SyzRetrospector
to get more accurate results by reducing false negatives.

Magma [24], LAVA [25], and more [26]–[28], are evaluation
tools for a wide array of fuzzers. They use test suites of
bugs and measure how quickly a fuzzer can find bugs as
well as which bugs it can find. This information can then
be used to compare fuzzing strategies and high-level capabil-
ities such as directed fuzzing strategies or the capability to
interleave threads. So, these tools benchmark fuzzers against
each other. Our study compares Syzbot to itself as its fuzzing
environment improves over time. SyzRetrospector leverages

the great lengths of time involved in continuous fuzzing, which
is not captured by benchmarking tools. Because of this, current
benchmarking tools are not a good fit for evaluating continuous
fuzzers like Syzbot.

Additional studies have evaluated specific types of bugs
or their security impacts. A number of studies, e.g., SyzS-
cope [29], KOOBE [30], and others [31]–[33], analyze the
impact of Linux kernel bugs, looking for high-risk conse-
quences. These works give a key reason to uncover and patch
bugs quickly. Other studies [34]–[37] use post processing on
information like core dumps, stack traces, and thread execution
logs to better understand bugs. Still others [38]–[41] focus
on record and replay to debug. Execution Synthesis [42] and
Star [43] study concurrency bugs by reproducing them. Our
study is not concerned with a bug’s impacts or its inner
workings, rather we study its lifetime with relation to Syzbot.

Bisection is well known throughout the community and
closely related to our strategies in SyzRetrospector. It has been
implemented in git [44] and is already used in Syzbot to assist
developers [45]. Other works [46]–[51] have built on bisection
and explored new methods of root cause analysis. Our tool
builds on bisection to include Syzkaller and syscall description
commits to determine when a bug was revealed, not its root
cause.

SyzDescribe [16], Syzgen [52], SyzSpec [53] DIFUZE [17],
and more [18]–[20], [54], provide solutions for fuzzing ker-
nel interfaces without syscall descriptions by automatically
generating their own descriptions. Each of these works has
the potential to be invaluable for fuzzing areas of code that
lack syscall descriptions. Though Difuze was integrated into
Syzkaller for testing on Android, Syzkaller still depends on
manual description generation for Linux.

Bowknots [55] and Talos [56] both provide workarounds for
found bugs that are not patched yet. These strategies represent
possible solutions for blocking bugs until they are patched out,
though they are not in use with Syzbot.

Much previous work has been done in kernel fuzzing in
recent years. HFL [57] is a hybrid fuzzer that combines
syzkaller with symbolic execution. SyzDirect [58] is a directed
fuzzer that is capable of handling cross-syscall dependencies
in the kernel [59]. HEALER [60] improves the quality of test
cases and improves code coverage by learning the relationships
between syscalls. SyzVegas [61] uses reinforcement learning
to dynamically optimize the fuzzing strategies and maximize
coverage. Other fuzzers focus on concurrency bugs [62]–[64],
often controlling how threads are interleaved. Our contribution,
focused fuzzing, is different in that we remove some syscall
descriptions from Syzkaller without changing the fuzzing algo-
rithm. Furthermore, focused fuzzing is not meant to compete
with these fuzzers. Indeed directed fuzzers are faster and more
reliable than focused fuzzing, but using them would nullify our
ability to retrospect Syzbot.

XIV. CONCLUSION

In this paper, we undertook a large-scale study to provide
a better understanding and quantification of Syzbot’s bug-

12

finding performance and improvements. We used our tool,
SyzRetrospector, to analyze 695 bugs and found that 40%
of bugs are hidden for more than 258 days before they are
revealed. We presented findings on the behaviors of revealing
factors, the effort required to induce these reveals, and the
trends in delays over the past 7 years. Finally, we provide
takeaways for improving Syzbot’s delays based on our findings
and experience.

XV. ACKNOWLEDGMENTS

This work was supported in part by NSF Awards #1953932,
#1953933, #2247880, #2247881, NSA Award #H98230-22-1-
0308, and DARPA under Agreement No. FA8750-24-2-0002.
The authors thank the anonymous reviewers and the shepherd
for their insightful feedback.

REFERENCES

[1] “syzbot,” https://syzkaller.appspot.com/upstream, 2024.
[2] “The Kernel Address Sanitizer (KASAN),” https://docs.kernel.org/dev-

tools/kasan.html, 2023.
[3] “WARNING in rtl28xxu ctrl msg/usb submit urb,” https://syzkaller.

appspot.com/bug?id=e98d2e8aa7283d11aa8e0b718d8afa1a058e6ae0,
2021.

[4] “WARNING in dlfb submit urb/usb submit urb,” https://syzkaller.
appspot.com/bug?id=9c2df342be9d102da75f9532e168a95b9c379ae4,
2022.

[5] “WARNING in exception type,” https://syzkaller.appspot.com/bug?id=
dccafc201251e8dfa52f17986d33f7ecbd6747fc, 2021.

[6] “KASAN: slab-out-of-bounds Read in
packet recvmsg,” https://syzkaller.appspot.com/bug?id=
7c7245f9088053e9e49b97a341dee26c9ed40a2c, 2022.

[7] “memory leak in kobject set name vargs (4),” https://syzkaller.appspot.
com/bug?id=89c3ddb9936d3552995130298f1d2633ab9d3541, 2021.

[8] “WARNING in futex requeue,” https://syzkaller.appspot.com/bug?id=
03f29b6252786a6f17661d727c03c83a7f70c86e, 2021.

[9] D. Mu, Y. Wu, Y. Chen, Z. Lin, C. Yu, X. Xing, and G. Wang, “An
in-depth analysis of duplicated linux kernel bug reports,” in Network
and Distributed Systems Security Symposium (NDSS), 2022.

[10] “Syzkaller: Syzcall Description Language,” https://github.com/google/
syzkaller/blob/master/docs/syscall descriptions syntax.md, 2022.

[11] H.J. Lu, “x86/build/64: Force the linker to use 2MB page size,”
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=e3d03598e8ae7d195af5d3d049596dec336f569f, 2018.

[12] “How to contribute to syzkaller,” https://github.com/google/syzkaller/
blob/master/docs/contributing.md, 2018.

[13] “KASAN: slab-out-of-bounds Read in thrust-
master probe,” https://syzkaller.appspot.com/bug?id=
e1c3525a4f4e2e4b6c1f73611ceaf61ef462700c, 2022.

[14] Qu Wenruo, “Revert ”btrfs: compression: don’t try to
compress if we don’t have enough pages”,” https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
4e9655763b82a91e4c341835bb504a2b1590f984, 2021.

[15] “Upstream Bugs Found per Month,” https://syzkaller.appspot.com/
upstream/graph/found-bugs, 2024.

[16] Y. Hao, G. Li, X. Zou, W. Chen, S. Zhu, Z. Qian, and A. A.
Sani, “Syzdescribe: Principled, automated, static generation of syscall
descriptions for kernel drivers,” in 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2023, pp. 3262–3278.

[17] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2123–2138.

[18] Z. Shen, R. Roongta, and B. Dolan-Gavitt, “Drifuzz: Harvesting bugs in
device drivers from golden seeds,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 1275–1290.

[19] A. Bulekov, B. Das, S. Hajnoczi, and M. Egele, “No grammar, no prob-
lem: Towards fuzzing the linux kernel without system-call descriptions.”
in Proc. Internet Society NDSS, 2023.

[20] H. Sun, Y. Shen, J. Liu, Y. Xu, and Y. Jiang, “KSG: Augmenting kernel
fuzzing with system call specification generation,” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22), 2022, pp. 351–366.

[21] K. Serebryany, “Oss-fuzz-google’s continuous fuzzing service for open
source software,” in USENIX Security symposium. USENIX Associa-
tion, 2017.

[22] J. Ruohonen and K. Rindell, “Empirical notes on the interaction between
continuous kernel fuzzing and development,” in 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW).
IEEE, 2019, pp. 276–281.

[23] Z. Y. Ding and C. Le Goues, “An empirical study of oss-fuzz bugs,”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 2021, pp. 131–142.

[24] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth fuzzing
benchmark,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 4, no. 3, pp. 1–29, 2020.

[25] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnera-
bility addition,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 110–121.

[26] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools,” in Workshop on the
evaluation of software defect detection tools, vol. 5. Chicago, Illinois,
2005.

[27] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: an open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM joint meeting on European software
engineering conference and symposium on the foundations of software
engineering, 2021, pp. 1393–1403.

[28] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng et al., “Unifuzz: A holistic and pragmatic metrics-
driven platform for evaluating fuzzers.” in USENIX Security Symposium,
2021, pp. 2777–2794.

[29] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “SyzScope: Revealing
High-Risk security impacts of Fuzzer-Exposed bugs in linux kernel,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
3201–3217.

[30] W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards facilitating
exploit generation of kernel out-of-bounds write vulnerabilities,” in
Proceedings of the 29th USENIX Conference on Security Symposium,
2020, pp. 1093–1110.

[31] Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and K. li, “Unveiling
exploitation potential for linux kernel bugs,” in 2022 IEEE Symposium
on Security and Privacy (SP), 2022, pp. 3201–3217.

[32] X. Zou, Y. Hao, Z. Zhang, J. Pu, W. Chen, and Z. Qian, “Syzbridge:
Bridging the gap in exploitability assessment of linux kernel bugs in the
linux ecosystem,” in Proc. Internet Society NDSS, 2024.

[33] Z. Liang, X. Zou, C. Song, and Z. Qian, “K-leak: Towards automating
the generation of multi-step infoleak exploits against the linux kernel,”
in Proc. Internet Society NDSS, 2024.

[34] D. Weeratunge, X. Zhang, and S. Jagannathan, “Analyzing multicore
dumps to facilitate concurrency bug reproduction,” in Proceedings
of the fifteenth International Conference on Architectural support for
programming languages and operating systems, 2010, pp. 155–166.

[35] F. A. Bianchi, M. Pezzè, and V. Terragni, “Reproducing concurrency
failures from crash stacks,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 705–716.

[36] J. Huang, C. Zhang, and J. Dolby, “Clap: Recording local executions
to reproduce concurrency failures,” Acm Sigplan Notices, vol. 48, no. 6,
pp. 141–152, 2013.

[37] N. Machado, B. Lucia, and L. Rodrigues, “Production-guided concur-
rency debugging,” in Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2016, pp. 1–12.

[38] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating
systems with time-traveling virtual machines,” in Proceedings of the
2005 USENIX Technical Conference, 2005, pp. 1–15.

[39] S. M. Srinivasan, S. Kandula, C. R. Andrews, Y. Zhou et al., “Flash-
back: A lightweight extension for rollback and deterministic replay for
software debugging,” in USENIX Annual Technical Conference, General
Track. Boston, MA, USA, 2004, pp. 29–44.

[40] J. Huang, P. Liu, and C. Zhang, “Leap: Lightweight deterministic multi-
processor replay of concurrent java programs,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering, 2010, pp. 207–216.

13

[41] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn, “Respec: efficient online multiprocessor replayvia speculation
and external determinism,” ACM Sigplan Notices, vol. 45, no. 3, pp.
77–90, 2010.

[42] C. Zamfir and G. Candea, “Execution synthesis: a technique for au-
tomated software debugging,” in Proceedings of the 5th European
conference on Computer systems, 2010, pp. 321–334.

[43] N. Chen and S. Kim, “Star: Stack trace based automatic crash re-
production via symbolic execution,” IEEE transactions on software
engineering, vol. 41, no. 2, pp. 198–220, 2014.

[44] “Git Bisect,” https://git-scm.com/docs/git-bisect, 2020.
[45] D. Vyukov, “syzbot Bisection,” https://github.com/google/syzkaller/

blob/master/docs/syzbot.md\#bisection, 2018.
[46] R. Saha and M. Gligoric, “Selective bisection debugging,” in Fundamen-

tal Approaches to Software Engineering: 20th International Conference,
FASE 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings 20. Springer, 2017, pp. 60–77.

[47] G. An, J. Hong, N. Kim, and S. Yoo, “Fonte: Finding bug inducing com-
mits from failures,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 589–601.

[48] L. Bao, X. Xia, A. E. Hassan, and X. Yang, “V-szz: automatic identifi-
cation of version ranges affected by cve vulnerabilities,” in Proceedings
of the 44th International Conference on Software Engineering, 2022,
pp. 2352–2364.

[49] S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich, “V0Finder: Discovering
the correct origin of publicly reported software vulnerabilities,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 3041–
3058.

[50] J. Dai, Y. Zhang, H. Xu, H. Lyu, Z. Wu, X. Xing, and M. Yang,
“Facilitating vulnerability assessment through poc migration,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 3300–3317.

[51] Z. Zhang, Y. Hao, W. Chen, X. Zou, X. Li, H. Li, Y. Zhai, and B. Lau,
“SymBisect: Accurate bisection for Fuzzer-Exposed vulnerabilities,” in
33rd USENIX Security Symposium (USENIX Security 24), 2024, pp.
2493–2510.

[52] W. Chen, Y. Wang, Z. Zhang, and Z. Qian, “Syzgen: Automated
generation of syscall specification of closed-source macos drivers,” in
Proc. ACM CCS, 2021.

[53] Y. Hao, J. Pu, X. Li, Z. Qian, and A. A. Sani, “Syzspec: Specification
generation for linux kernel fuzzing via under-constrained symbolic
execution,” in Proc. ACM CCS, 2025.

[54] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge, “Fans:
Fuzzing android native system services via automated interface analy-
sis.” in USENIX Security Symposium, 2020, pp. 307–323.

[55] S. M. S. Talebi, Z. Yao, A. A. Sani, Z. Qian, and D. Austin, “Undo
workarounds for kernel bugs,” in USENIX Security Symposium, 2021.

[56] Z. Huang, M. DAngelo, D. Miyani, and D. Lie, “Talos: Neutralizing
vulnerabilities with security workarounds for rapid response,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 618–
635.

[57] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “HFL:
Hybrid Fuzzing on the Linux Kernel,” in Proc. Internet Society NDSS,
2020.

[58] X. Tan, Y. Zhang, J. Lu, X. Xiong, Z. Liu, and M. Yang, “Syzdirect:
Directed greybox fuzzing for linux kernel,” in ACM CCS, 2023.

[59] Y. Hao, H. Zhang, G. Li, X. Du, Z. Qian, and A. Amiri Sani,
“Demystifying the Dependency Challenge in Kernel Fuzzing,” in Proc.
IEEE/ACM ICSE, 2022.

[60] H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui,
“HEALER: relation learning guided kernel fuzzing,” in SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, R. van Renesse and
N. Zeldovich, Eds. ACM, 2021, pp. 344–358. [Online]. Available:
https://doi.org/10.1145/3477132.3483547

[61] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and
N. B. Abu-Ghazaleh, “Syzvegas: Beating kernel fuzzing odds with
reinforcement learning.” in USENIX Security Symposium, 2021, pp.
2741–2758.

[62] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 754–768.

[63] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzzing for
kernel file systems,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 1643–1660.

[64] P. Fonseca, R. Rodrigues, and B. B. Brandenburg, “SKI: Exposing kernel
concurrency bugs through systematic schedule exploration,” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), 2014, pp. 415–431.

14

