CrystalPass: A Pattern-Based Password Generator

Joseph Bursey
University of California, Irvine
Jjbursey@uci.edu

Abstract

Passwords are simultaneously the most ubiquitous feature and
problem with online user authentication. Services require that
users make new passwords for each account, but the problem
of password generation falls to the user. In many cases, the
user is stuck re-using passwords or using weak ones making
themselves vulnerable to password cracking attacks. To help
mitigate this issue for users, we present CrystalPass, a novel
pattern-based password generator. The user can create and
tweak a password to their liking and with the help of accurate
entropy feedback, and CrystalPass will generate the password
for them. Even better, the patterns can be re-used to make
it easier for the user. In this work we will demsonstrate the
security of such passwords as well as carry out a user study
to discover users’ preference for this new kind of password
generator.

1 Introduction

Passwords are the most ubiquitous form of user authentica-
tion, yet simultaneously the most problematic. In order to
maintain the security of their accounts, users are required to
create strong passwords and maintain them in a secure manner.
However, this proves to be difficult for many users who may
not have the time, may misunderstand what makes a strong
password, or may not even understand that their passwords
are insecure. Even though users should maintain a different
password for each account they control, many are left reusing
passwords or are forced to create weaker ones they can re-
member. Furthermore, even users with the best of intentions
may create passwords with unseen biases or patterns that
make them easier for attackers to guess. On top of this, many
companies will enforce that their users or employees change
their passwords from time-to-time. Users may not want to put
in the necessary effort that makes these practices useful, so
they find ways to only slightly change their current passwords.
This leads to passwords that are easily guessed by attackers
who may know their victim’s practices.

In this project, we aim to help mitigate the issue of pass-
word generation through the use of patterns that can be used
and re-used to create new passwords on the spot. Using pat-
terns will have a distinct advantage in that a user can learn
to use a specific pattern shared among their passwords while
their individual passwords remain unique and secure. To ac-
complish this, we present CrystalPass, a pattern-based pass-
word generator. It takes a pattern in the form of a regular
expression made up of words, digits, punctuation, and letters,
and generates a password which follows that pattern. Since
the password is generated by CrystalPass in this manner, it has
several advantages over other strategies. First, the passwords
are more likely to be memorable to the user as they only need
to use a single pattern. Second, there are no human-created bi-
ases or patterns in the generated passwords, forcing attackers
to guess each password with equal probability. Third, we will
be able to give clear and accurate feedback on the strength
of the password before it is even generated (i.e., based on the
pattern). Since CrystalPass controls password generation, this
feedback can be proven accurate against even the strongest
attacker.

We implement this idea into a usable and distributable
Python application, making it very easy for users to install
and begin using'. We then perform a user study asking users to
use our CrystalPass application to generate strong passwords.
Lastly, we present the findings of our users study which cover
the users’ practices, the usability of CrystalPass, and their
preference to using CrystalPass.

In this work, we make the following contributions:

* We build CrystalPass, a pattern-based password gener-
ator, which will create passwords that are both proven
strong and usable.

* We implement an entropy-based feedback meter into
CrystalPass which is able to give accurate password
strength feedback based on the provided pattern.

'Our project is open-sourced at https://github.com/jtbursey/
crystalpass/

https://github.com/jtbursey/crystalpass/
https://github.com/jtbursey/crystalpass/

* We prove the security of the generated passwords even
in the face of an attacker who is knowledgeable of the
user’s pattern, and a user who has re-used the pattern.

* We perform a brief user study on the usability of our
tool and the preference of users to use pattern-based
passwords.

2 Background

Passwords are used for almost every instance of authentication
in the world today. Even when services use another method
as their primary form of authentication, passwords are usually
the ubiquitous fallback. However, for all their ease of use
from the service provider’s perspective, users have a much
harder time getting the full security out of passwords.

Consider user A. They have just gotten a new job and now
their company wants them to create a password for their work
account. A has already had a long day getting settled in their
new position, and aren’t terribly motivated to create a strong
password. So, they simply type in what comes to mind first:
worktimel23. Sadly, this is not an uncommon occurrence
as this password has appeared in over 16 password breaches
according to haveibeenpwned.com [1]. Now that A associates
this with their work account, they may also re-use it when
another work related service requires a password. This is
a very common case for users creating passwords. Unless
they are greatly invested in the security of their account, they
will likely choose a password that is simple or re-used from
another service.

In order to try to prevent users from creating weak pass-
words, websites will often employ password requirements to
ensure users will make brute-force resistant passwords. For
instance, a website might require a user to use at least one cap-
ital letter, one number, and one punctuation. However, in this
case our user A may just use the password workTimel23s,
which is not a very good password when considering stronger
attacks such as dictionary attacks.

2.1 Password Cracking

As weaker passwords are rampant, it has become relatively
easy for attackers to try to guess user passwords in attacks
known as password cracking. Password cracking usually
comes in two variants.

2.1.1 Online Attacks

In this attack, the attacker actively tries to login to the user’s
account by querying their guesses to the service. In a primitive
attack, this ends up being the weaker of the two types of
attacks. Typically, services will only let a user incorrectly
guess their passwords a set number of times, thus limiting the
number of guesses an attacker has. Alternatively, the attacker

may notice a flaw in the service and choose to exploit that. In
this case, they are not really attacking the password itself, but
the service.

2.1.2 Offline Attacks

In this attack, the attacker typically has access to the password
database already leaked from the service. This is typically con-
sidered to be the stronger attack against passwords since the
only thing standing between the attacker and the passwords
is raw compute power. Thanks to the rise of cryptocurrencies
where users compete to compute hashes, it is not difficult
for an attacker to attain 1 TH/s (terahash per second) or one
trillion hashes per second. Since hashes are the bottleneck in
this type of algorithm, an attacker could easily guess 1 trillion
hashes per second.

There are two common methods that services will use to
mitigate offline attacks. The first is the use of hashes. Most ser-
vices will not store user passwords in plaintext, but hash them.
A hash is a deterministic, one-way mathematical function that
takes an input and gives as output a string of seemingly ran-
dom numbers. Importantly, the input cannot be determined
for any given output. Then, when a user attempts to login to
their account, the given password is hashed and compared
to the hash in the database. If they match, the user is au-
thenticated. Using hashes greatly slows down attackers from
accessing passwords as they will have to make guesses, hash
those guesses, and then check if they exist in the database.
Additionally, services may salt their hashes. A salt is a ran-
dom number generated for each stored password. When the
password is hashed, the salt is concatenated to it and passed
as input to the hash. The purpose of the salt is not to make
the attacker guess the salt as well (in fact the salt is stored
as plaintext), but to slow down the attacker. Now instead of
making one guess, hashing it, and checking it against every
hash in the database, the attacker must hash with the salt, and
can only check against a single stored hash before getting a
new salt and trying again for the next entry. This slows down
an attacker by a factor of the number of users in the database.
In short, your password is a potato that the website stores as
hash browns. And it’s even better with a little salt!

2.2 Entropy

Entropy is a thermodynamic concept which measures the
disorder of a system. In the case of passwords, we use it to
represent the complexity of the password, which is then cor-
related to the number of guesses required to crack it. Entropy
in general is described as [2]:

E =1log,(C) bits (1
Cc=|s|F 2

In equation 1, entropy (E) is a log scale of the number of
possible passwords (or possible combinations) C, measured

1.0E+20

1.0E+17
1.0E+14
1.0E+11

1.0E+08

1.0E+05

5.8E-01 Years

1.0E+02
L0E01 105 115 125
1.0E-04

1.0E-07

Expected Years to Crack (log scale)

1.0E-10
1.0E-13
1.0E-16

1.0E-19

Password Entropy

Figure 1: The log-scale time-to-crack for passwords of various
entropies.

in bits. The total number of combinations for a password is
typically measured by the sets of symbols that are chosen
from. These sets are often uppercase and lowercase letters,
digits, and punctuation. If at least one symbol from a set is
used, the entire set is considered for entropy calculation. In
equation 2 above, S is the set of all symbols used in the pass-
word, and L is the length. This is how most entropy feedback
mechanisms work, and also why they can be so inaccurate.
They may not account for words or patterns in the password,
and give an overestimated strength as a result. This reveals
an important factor in password entropy: the entropy of a
password must be based on a specific attacker, and should
reasonably be based on the strongest attacker. Otherwise, the
entropy will be inaccurate.

Entropy is then directly related to the time it takes for an
attacker to crack a single password as shown in Figure 1.
Entropy is based on the total number of possible passwords,
but this is also the number of passwords an attacker would
need to guess in order to crack the password. It is expected that
the attacker would guess half the passwords before actually
cracking it. Then, based on the rate of hashes, say 1 TH/s, we
can directly calculate how long we expect until the attacker
cracks the password. From Figure | we can see that passwords
with less than 65 bits of entropy will get cracked in less than
a year, while passwords with 100 bits of entropy can take
upwards of 20 billion years.

3 Design

In this section, we present our model for pattern-based pass-
word generation.

The CrystalPass application is shown in Figure 2. In the
simplest use case, a user provides a pattern in the form of a
regular expression in the password pattern box. As they type
their pattern, the meter below will dynamically give strength
feedback based on the complexity of the pattern. Once the
user decides on a pattern they like, they click generate to get
their password.

By generating a password this way, CrystalPass gains sev-
eral advantages. It allows the user to have a single pattern
they like and to re-use that pattern, making the individual pass-
words easier to use. The random generation of the password
removes any human baises that would otherwise be hidden in
the password. And, since the generation is handled entirely
by CrystalPass, it can give accurate entropy feedback on the
user’s pattern before it is used to create a password.

3.1 Patterns

Patterns are written in the form of regular expressions and are
made up of a series of expressions. Each expression represents
what type of symbol or string comes next in the password.
Such expressions can be words, digits, letters, or punctuation,
and can also have various arguments attached to them such as
word length, whether to use capital letters, or range of digits.

The general syntax for an expression is as follows: The
expression begins with a backslash ’\’ and then the name
of the expression. Consider \word as the expression for a
single word. This on its own is acceptable and will result in a
random word being chosen from the wordlist. However, the
user can also add arguments with brackets directly following
the expression (i.e., \word[]). The valid arguments for \word
are length, caps, and subs. length determines one or more
lengths that the generated word can be. This can be in the form
of a number (i.e., 5) or a range (i.e., 4-7). caps determines
whether or not to use random capital letters as true or false.
For words, a user can also capitalize the first or last letter
or the word using begin or end. Note that using random
capital letters increases the entropy of the expression greatly,
but using begin or end does not. Lastly, subs determines
whether or not to use common ascii substitutions such as
changing ’a’ to *@’. So, a word expression might look like
\word[length=4-7, caps=true].

In addition to words, there are 6 other types of expressions
that can be incorporated into the pattern. \digit generates
a string of base ten digits. It can have to arguments length,
which determines how many digits to generate, as well as
the set or range of digits to choose from. The range can be
any sequence of digits in the form of 3-8. This range would
include all of the digits 3 through 8. The set is given as a string
in the form “12345”. In this case, the expression would choose
from any of the digits given in the string. So, a valid digit
expression might look like \digit [length=2,"12345"] or
\digit[1-5].

\letter generates a string of lowercase alphabetical char-
acters. The argument length determines how many letters
to generate, and the user can also provide a range or set of
characters to use. The caps argument can be either true or
false to use random capital letters.

\symbol generates a string of common ascii punctuation,
of which there are 32. The user can provide a length argu-
ment as well as a set of punctuation to use.

ﬂ CrystalPass

Password Pattern

\d[1=3]\s\w[1=4-7]\s\d[1=2]\w[1=4-7]\s\w[1=4-T7]1\s\d[1=3]

Password Strength
90.22 bits - Strong

9572hazier—1Thinder |classed+650

Digit:
Ex: \digit[length=2-3, 0-9]

\digit[...]
length : number length

Wizard | set : set of digits

This expression generates a random
number of the giwven length, using
the given set of digits. 'length'
is the length of the number (ex:
2-3 or 2). The digit set is the set
of digits used to generate the
number. It can be given as either a
range (i.e. 0-%) or a set (i.e.
"012345"). The word 'set' is not

clipboard

Generate Explain used.
Manual
Figure 2: The CrystalPass application window.
\character generates a string of digits, letters, and punc- # Wizard — b4
tuation from the set of all three. As above, the user can provide
a length as well as a set of ascii characters to use. Word — ‘

The \named expression is a little different. Provided for
usability, a \named expression copies whatever was gener-
ated by another expression. Any of the above expressions can
also take a name argument (i.e., name=pat1). This argument
simply applies an identifier to the expression so that it can be
referenced by a \named expression. By default, the referenced
expression is generated first, and then the \named expression
copies what was generated. Alternatively, the regen argu-
ment can be set to true, causing the \named expression to be
generated using the same expression and options as whatever
is being referenced. A user can use this to save keystrokes
when typing their pattern. Additionally, the result of a \named
expression can be reversed with the reverse argument.

Lastly, a 1iteral is any string of characters in the pattern
that is not a part of any expression. As one might expect, these
literals are copied directly into the generated password. Note
that literals do not add any entropy to the password and should
only be used to decorate a password if desired.

3.1.1 Shorthand

In order to make CrystalPass’s expressions easier to type and
to fit in the entry box, we implemented a form of shorthand.
This means that as long as the expression is not ambiguous,
a user does not have to write the whole expression type. For
example, \word can be shortened to \w.

Length: 4-7
Caps: False
Subs: False

Name:

Make it! |

Figure 3: The CrystalPass wizard subwindow.

3.2 Wizard

An important part of the usability of CrystalPass is its wizard
(Figure 3). Since most users will likely be unfamiliar with
regular expressions and they are not always easy to learn, the
wizard provides an easy-to-use interface to craft the next ex-
pression. By clicking the “Wizard” button next to the pattern
box, the wizard subwindow will pop up. There, the user can
choose from a dropdown menu which expression they wish to
use. Depending on the expression chosen, different argument
options will appear prefilled with the default options. Then,
once the user is happy with their expression, they click “Make
It!” to append the expression to their pattern. As we will
demonstrate in the user study, this feature makes CrystalPass
much easier for users to use.

Table 1: Binned entropy feedback.

Entropy Strength Time-to-Crack
0-59 Weak/Very Weak < 1 day
60-69 Reasonable < 200 days
70-79 Good 18-600 Years
80-99 Strong 62 Million Years
100+ Very Strong > 20 Billion Years

3.3 Entropy Meter

The entropy meter, located in the middle of CrystalPass’s
application window, provides dynamic feedback based on
the pattern the user has provided. For greater transparency,
the feedback is provided in both bits of entropy as well as a
binned strength score. The binned strength score is calculated
directly from entropy and follows Table 1. Up to 60 bits of
entropy, an attacker guessing 1 Trillion hashes per second
will guess the password in under a day. These patterns are
labelled as “Weak” or “Very Weak” in order to deter users
from using them. “Reasonable” passwords are likely to be
cracked in less than 220 days, but may be usable for lower-
security applications. A “Good” password is useful for most
everyday applications though should likely be changed often.
Finally, “Strong” and “Very Strong” passwords are likely to
stand up to any attack in the near future, taking millions or
Billions of years to crack. In addition to the strength rating,
the meter will gradually turn from red to green as the pattern
becomes stronger. The combination of the above makes it
very clear how strong a pattern is to the user before they use
it to make passwords.

3.4 Manual

In order to instruct users how to use CrystalPass, we included
two forms of Manual. The first is a quick guide which is al-
ways visible to the right of the main CrystalPass window. It
provides brief instruction on how to write each of the expres-
sion types. In order to pack more information into a small
sidebar, the quick guide dynamically changes based on what
type of expression the user is currently typing. So, if the user
begins to type a \word expression, the guide will change to
show how the expression should be written as well as what
arguments it takes.

If the user desires more information on how to construct ex-
pressions, how entropy is calculated, or the best practices for
password management, we have also provided a full manual.
By clicking the “Manual” button, a new window will open
containing a left sidebar and a display window. The user can
select any of the pages in the sidebar and the corresponding
manual page will be displayed. The manual is able to go into
much more depth than the quick guide and should be able to
answer any questions the user has.

4 Implementation

CrystalPass was written in 1,606 lines of Python code, not
including the manual text and the wordlists. Python was cho-
sen as it is easily protable to any operating system which has
Python installed. To this end, we only used built-in libraries to
make the application as distributable as possible. For instance,
we used the Python tkinter package to create the windowed
application.

In the remainder of this section, we will describe in detail
how various aspects of CrystalPass were implemented.

4.1 Pattern Parsing

The pattern is parsed in a single pass from left to right. The
parser begins by searching for the first expression, which is
denoted by a \, followed by any valid expression type. For
both expressions and arguments, CrystalPass performs longest
substring matching. This means that so long as the substring
is not ambiguous, shorthad versions can be used. For example,
\letter can be written out in full, or simply as \1. Since it
is the only expression to start with the letter *1’, it can be
correctly parsed as the \letter expression. The same is true
for arguments: 1=2 would be parsed as length=2, since that
is the only argument that starts with an *1°.

Once the expression type has been parsed, CrystalPass
identifies the argument bounds ’[* and ’]’. It then parses each
of the arguments between those bounds. It should be noted
that spaces withing the argument bounds are ignored during
parsing, so "length = 3 - 5 isthe same as *length=3-5".

Parsing occurs based on two actions: the user types a new
character in the pattern box, or the user presses the generate
button. The former is to update both the feedback meter and
the quick guide. This simply makes the dynamic feedback
snappier and easier to use. The latter makes more sense as
the pattern needs to be used to generate a password. Note, if
there are any parsing errors such as incorrect syntax, an error
is raised in the form of a pop-up window, but only in the case
where the user has attampted to generate the password. This
is done for usability concerns.

In the case that an expression is given a name argument,
that expression is stored in a map where the key is the name.
When the name is referenced in a \named expression, the
name is simply dereferenced in the map.

Lastly, as the pattern is parsed, it is stored as an array of data
structures, where each array element is its own expression.
This will allow for easy entropy calculation and password
generation in the following steps.

4.2 Password Generation

We will explain the password generation process first. Since
the pattern is stored in an array, all that remains is to traverse
the array and generate each expression in turn. In most cases

this simply means choosing random symbols from the set
defined in the expression, then applying any necessary modi-
fications. For any random choice CrystalPass makes, it uses
the Python secrets package, which uses the best random num-
ber generator available to the system. This is done to reduce
exploitable distributions in the generated passwords.

\symbol, \digit, and \character, are defined by the set
of symbols given in the arguments and their length. For these
expressions, CrystalPass chooses a random symbol in the set
for length number of times.

For \letter, capital letters can be used. So, it is generated
based on the set of lowercase letters for the given length,
and then each letter has a 50% change to be shifted to an
uppercase letter.

For any of the above expressions, if the length argument
is provided as a range, a random length is chosen from the
range first, then the expression is generated using that length.

\word expressions can have a word length given as a range,
as well as an addlist and a blocklist that modify the wordlist.
At generation time, CrystalPass creates a single array of all
the words in the wordlist that are of the given lengths and
follow the add and blocklists. CrystalPass then randomly
chooses a word from the list with uniform distribution. If
ascii substitutions are used, CrystalPass consults a map which
maps lowercase letters to common ascii substitutions. For
each letter that can be substituted, the substitution is used
50% of the time. After this, if capital letters are used, the
remaining letters are made uppercase with 50% chance.

If a \named expression is found, CrystalPass looks in the
name map to locate the referenced expression. Because of
this, an expression before the \named expression must have
a name argument with the name in question. By default, the
\named expression simply copies what was generated by the
referenced expression, though it can either reverse the gener-
ated expression or regenerate the expression altogether.

Any string found in the pattern that is not a part of an
expression is treated as a literal and copied directly into the
resulting password.

4.3 Entropy Calculation

Our entropy calculation is based on the attacker described in
§5.1. This is a strong attacker who knows what pattern was
used to generate the password.

Entropy calculation is performed on the pattern that has
been parsed and stored in an array. The calculation is fairly
simple: for each element, find the entropy that it adds to the
pattern, and add it to a summation. The entropy that an ex-
pression adds is based pruely on the number of symbols it can
choose from (i.e., words, letters, digits, etc.). In the case that
more than one symbol is generated for one expression, the set
of symbols is raised to the power of the number of symbols.
The log scale is then performed at the expression level, and

the logs are added together.

E =Y log,(|Sk[") bits 3)

xeX

In equation 3, the entropy is shown as the summation over all
expressions, where S, is the set of symbols in the expression,
and L, is the number of symbols to be generated. Note that this
would be the same as multiplying the number of combinations,
and then taking the log. The special cases are described below.

For \word expressions, the set of symbols is the final
wordlist, after the correct word lengths have been chosen
and the addlist and blocklist have been applied. If capitals
or ascii substitutions are used, these possible combinations
are accounted for when calculating the size of the symbol set
(Sx).

If an expression length is defined by a range, the average
of the range is taken to be the length of the expression.

A \named expression in the default mode of copying what
was generated by the referenced expression will not add any
entropy. The same is true if it only reverses what was gener-
ated. However, if it regenerates the expression, it has the same
entropy as the referenced expression.

4.4 Entropy Accuracy

Because we can accurately calculate the size of the symbol
set for each expression as well as the expected length of each
expression, we know the number of possible passwords that
could be generated by a given pattern. In addition, since we
use the strongest random number generator available on a sys-
tem, we assume that there is no percieved bias in the choices
CrystalPass makes. Thus, each password will be generated
with equal likelyhood. Taking this into account, we know the
expected number of guesses for an attacker to guess any one
password (half the total number of possible passwords). Since
our entropy calculation follows directly from this, we prove
that our entropy feedback is correct for an attacker who is
aware of the pattern used.

5 [Evaluation

In this section, we will discuss the evaluation of CrystalPass.
We will first present our threat model, then discuss various
aspects of generated password strength and the entropy meter.
Fianlly, we will present a small scare user study.

5.1 Threat Model

In order to ensure the strength of passwords generated by Crys-
talPass, we compare against a very strong attacker. Namely,
the attacker performs an offline attack against the hashed and
salted password(s) and knows what pattern was used to gen-
erate them. We note that because of the random generation,
knowing the pattern that was used is the most information ana

attacker can have short of knowing the actual password. We
then assume the reasonable compute capability of 1 TH/s or
one trillion guesses per second.

For this work, we do not consider direct attacks against
CrystalPass during password generation. We only consider
password cracking attacks once the generated password is in
use. We also assume that the passwords are properly hashed
and salted.

5.2 Password Strength

The first major question of this work is “Is it possible to
create strong passwords using patterns?” To this, the answer
is a resounding yes, but it can take some work. For instance,
a password that is simply 4 words back-to-back will have an
entropy around 63 bits. Since we assume the attacker knows
this pattern, it will only take them a few days to guess the
password. However, if we craft a password following the
pattern:

\d[1=2]\s\w[1=4-7]\s\w[1=4-7]
\s\w[1l=4-71\s\w[1l=4-7]\s\d[1=2]

we get an entropy of over 96 bits. A password of this strength
would take tens of millions of years to crack, even though the
attacker knows the pattern. And this pattern could be made
even stronger if random capital letters were used.

We do find that to get the highest entropy with the short-
est generated password, nothing beats purely random pass-
words. CrystalPass can support this with a single expression:
\c[1=20]. This expression generates a password of random
letters, numbers, and punctuation, of length 20, and achieves
an entropy of over 131 bits. The tradeoff is that these pass-
words are less usable.

We have found that a good strategy for building strong pat-
terns is to primarily use words as they have a high entropy and
are easier to remember. Then, to make the password stronger
as well as easier to read, we sprinkle some punctuation or
numbers between the words.

5.3 Entropy Meter Comparison

Most password feedback meters use some form of entropy
analysis in combination with a password blocklist. That is,
they provide an entropy analysis based on a brute-force at-
tacker, and then penalize the entropy score if the password
appears in the blocklist. The brute-force entropy analysis
accounts for the different sets of symbols that a password
contains. So, a password of length 20 that only contains upper
and lowercase letters would be weaker than a password of the
same length containing those letters in addition to punctua-
tion. This is a consequence of equation 2 in §2.2. This kind
of entropy analysis does not take into account words, which
should be treated as indivudual symbols. As a result, typical

entropy feedback meters grossly overestimate the strength of
passwords, providing users with a false sense of security.

CrystalPass has the advantage of being in control of pass-
word generation, namely ensuring that the password distribu-
tion is uniform. Based on the pattern provided, it is able to
count up the exact number of possible passwords, and calcu-
late entropy directly from that. This means that any password
generated through CrystalPass will have an accurate password
feedback based on our attacker.

Considering our attacker is very strong, CrystalPass holds
its passwords to a higher standard than most dictionary or
brute-force attacks. Because of this, a strongly rated pattern
will provide a password that can stand up to any weaker at-
tacks.

5.4 Pattern Re-use

The purpose of CrystalPass is for a user to have a single
pattern that they become familiar with as they re-use it to
generate several passwords. In light of this, we study the
strength of the generated passwords in the face of pattern
re-use.

For this work, we assume that the password hashes are
properly salted. In this case, an attacker must re-hash their
guesses for each entry in the database. It makes no difference
if the attacker tries to guess the passwords in turn or all at
once. So, due to the slowdown caused by salt, the attacker
does not gain any advantage when trying to guess any one of
many passwords generated from the same pattern.

Building on the passwords’ strength even against an at-
tacker who knows the pattern that was used, it is reasonable
for the user to store a sufficiently strong pattern in plaintext
for future use. We will touch on this more in §6.2, where we
lay out ideas for improving the re-usability of patterns.

5.5 User Study

We now present a user study conducted on a small group of
friends and family of the authors. We know that the group
contains both users with extensive computer experience as
well as those who do not have much experience. Out of about
12 people who were asked, 6 ended up completing the study
(n = 6). The purpose of this user study is to determine the
usability of CrystalPass to the average user, as well as the
users’ preference to using CrystalPass over other password
generation methods.

The user study was carried out independently by the users
in their own time. The users were asked to install the Crystal-
Pass application and use it to create a password to their liking.
They were then questioned based on their current practices,
the usability of CrystalPass, and their preference to use it in
the future.

5.5.1 User Practices

The first section of the questionair asked users how they cur-
rently generate passwords and how they manage them. Key to
this work, 50% (3/6) of users mentioned that they used a sin-
gle password that they changed slightly for different accounts
or re-used outright. In addition, 5/6 users thought that their
passwords were not strong enough. This is clear motivation
for an application like CrystalPass, which provides users with
usable yet secure passwords.

5.5.2 Usability

The usability of CrystalPass brought up several concerns to
first-time users. Namely, 5/6 users agreed that writing their
own expressions and patterns was too difficult. One user noted
that “It wasn’t obvious to me that I should actually include
the brackets in the options.” This indicates that the expression
syntax has a learning curve to it or may not be obvious how
to use. Thankfully, all users agreed that the wizard was much
easier to use. So, despite some concerns, there is a way for
users to make expressions that is easy to use.

In addition to the struggle of using expressions for the
first time, users appeared to struggle to make usable patterns.
We note that while \word was the most commonly used ex-
pression, few users used it more than once, failing to take
advantage of its usability. Instead, many users opted for ran-
dom letters or symbols as the source of their entropy. In
essence, users preferred more dense passwords - shorter, but
also harder to remember. For instance, one user generated
oCeanS@<~ | TYnpsszx, which is a single word followed by
many random characters. Despite the fact that strong patterns
can be made with words, users either did not trust them or did
not realise that words could be useful to make strong, usable
patterns.

One user suggested that the ascii substitutions option
should be modified so that is is not a simple true or false,
but that the user could determine what types of substitutions
are made. In their comment they suggested that a user could
“choose to add one or two symbols per word, or maybe just
turn vowels into symbols.”

Another user noted that the \named expression was too
complicated. They struggeled to understand the purpose of it
or how it works. The expression likely needs a more in-depth
manual page with more examples.

Lastly, we found it humerous that a user commented “Does
not know any words with more than 21 letters.” While this
is true, we note that CrystalPass uses the standard dictionary
that ships with Ubuntu 22.04. In addition, for users who are
willing to dig a little, we provide an addlist and blocking that
can be modified to add or remove words from the wordlist.

5.5.3 User Preference

While overall the feedback for CrystalPass was positive and
the users largely enjoyed the experience, only 3/6 expressed
a desire to use CrystalPass in the future. For one user, they
already used a password manager and reported that their pass-
words were strong. For the others, the complexity of expres-
sions and patterns were likely a deterrent.

That said, one user reported that CrystalPass is “Way better
than the stupid Apple password generator,” likely referring to
random passwords, and another said, “I rate it 5/7, very nice!”
From this we can draw that CrystalPass is a step in the right
direction for password generation, it just has some usability
issues holding it back.

Finally, one user reported “I mean of course I’m gonna use
it, 'm your wife, that’s like my job,” which was very cryptic
and we are still trying to figure out what that means.

6 Discussion

In this section, we will discuss some limitations of Crystal-
Pass, as well as avenues for future work.

6.1 Limitations

While we present CrystalPass as a complete work, there are
still some issues that it may face in practice.

6.1.1 Possible Vulnerabilities

CrystalPass does not make any guarantees on the security of
the application against direct attacks. For instance, an attacker
could easily read the application’s memory to skim a user’s
newly generated password. It also still falls to the user to
store their new password properly using a password manager.
Since CrystalPass is coded in Python, we did not make an
attempt at creating a password manager replacement. Such a
feat is likely infeasible using generic Python, and would not
be portable to mobile devices.

We also assume that there is not bias in the password gen-
eration process since we use the Python secrets package. In
reality, the password generator is only as good as the best the
host hardware can provide. If an attacker were to find a bias
in the hardware, they would also be able to perform a stronger
attack against CrystalPass.

6.1.2 Making Strong Patterns

In this work, we found that while making strong patterns is
possible, there is a bit of a learning curve to it. We demon-
strated in §5.5.2 that users struggle to find a balance between
strong patterns and usable ones. On the other hand, we did
not want to provide an example pattern directly for fear that
users would collectively use that single pattern.

In addition, we made the requirement for a password to
be rated as strong to be very high (804 bits of entropy in
Table 1). We note that while users struggled to hit this bar,
we are also unable to lower it in good conscience. That said,
it is clear that the majority of users will need some form of
assisntance or hints to get the full utility out of CrystalPass.

6.1.3 User Study

The user study has its own share of limitations. First, the user
base consists of n = 6 users who directly knew the author
as they were friends and family. While this provides the ad-
vantage of improved engagement, it also introduces a bias
where users are less likely to be critical or unknowingly rate
it higher than they otherwise would. We make note of this
and instead treat the user study as a pilot from which we can
improve CrystalPass for a future, more rigorous user study.

We also notice that the use of Python was a high entry bar
for some users who were unfamiliar with the language. Some
potential users were uncomfortable installing a tool that they
had never heard of, and thus did not take part in the study.
While it would reduce the portability of CrystalPass, this does
show the benefit of shiping pre-compiled code.

6.2 Future Work

Moving forward, we have three major improvements we
would like to make to CrystalPass.

First, users need an easier, more interactive way to make
patterns. The built-in wizard is great for first time users, but it
only appends the expression to the end of the current pattern.
Users will likely struggle then if they want to insert an expres-
sion somewhere in the middle of their pattern, or want to edit
an existing one. Admittedly, this kind of UI design may be
beyond me, but it is worth the try.

Second, CrystalPass needs a way to nudge users towards
patterns that are both strong and usable. The entropy me-
ter provided was enough to get users to try to make strong
patterns, but they often sacrificed usability. We see it as fu-
ture work to solve this problem without providing a blanket
example pattern.

And lastly, we want to build-in a way to save a user’s pattern
for future work. While a strong enough pattern could be stored
in plaintext, we do not want this to be the final solution. We
want our future work in this area to provide a secure method of
storing the password, likely encryption, that makes it difficult
for an attacker to directly read the user’s pattern. We expect
this to be an adventure in encryption practices.

7 Related Work

In this section, we will discuss some of the tools available to
users as well as password strength enforcement and feedback
seen in related works.

7.1 Password Cracking Attacks

Pass2Edit [10] is a first-look study into attacks against pass-
word tweaking, where a user only slightly changes their pass-
words for different accounts. If a password is known for a
user’s account, they attempt to guess that user’s passwords on
another account by applying common changes to the known
password. They demonstrate that in as few as 100 guesses,
their success rate is as high as 24%.

Nisenoff et al. [5] presents a full attack against re-used
and tweaked passwords created by university students. For
example, if a user has a password such as 321movies123
for their Netflix account, they may only slightly change the
password to 321mail123 for their email account. The authors
show that these slightly changed passwords become easy to
guess for a targeted user across many of their accounts. Their
success rate is as high as 32% for only students in the same
university as the authors.

Another common attack is the dictionary attack. A recent
example of this is put forward by Xu et al. [11]. They take
the basic dictionary attack which guesses random words and
common tweaks, and augment it to guess based on a known
distribution of common substrings, such as 4ever. Such at-
tacks are much stronger than current feedback meters can
account for because they take advantage of unseen patterns in
the password distribution.

CrystalPass will be able to defend against each of these
attacks. Since the password generation is done randomly,
there is no human bias to take advantage of. Also, since
the size of the wordlist is taken into account during entropy
calculation, we can prove that a strongly rated password will
withstand a dictionary attack. And lastly, since we assume
the attacker knows the pattern during entropy calculation,
we know that tha strongly rated password will withstand a
“pattern reuse” attack.

7.2 Password Strength

Sahin et al. [6] investigates the use of password policies in
websites, and finds that most policies are either used because
they are standard practice or relaxed due to usability concerns.
Tan et al. [8] studied the effects of how password require-
ments encourage users to make stronger passwords. They find
that requirements such as minimum-strength and minimum-
length are best for high-security applications, though their
strength measurement is based on a neural network, and may
be infeasible in practice. Tan et al. also studies the impact of
blocklists, but these are usually primitive in design and are
unable to block passwords that do not exist in their database.

Password strength meters are commonly used to inform
users of their password strength while they are creating it in
the hopes that it will nudge users to make stronger passwords.
Wang et al. [9] studies these meters and shows that they may
be inaccurate at best. In some cases, a meter could be fooled

into telling a user that password123_ is a strong password,
despite common knowledge dictating that it is not. To some
extent, this is because the meter cannot take into account that
a common word is being used as the core of the password.

Again, since the entropy feedback is calculated based on
the pattern, and the password is randomly generated, we can
prove that CrystalPass’s entropy feedback is accurate.

7.3 Password Generation

Most password generators available to users today simply
create random strings of characters. While it can be proven
that these are strong against every attack, they are also very
difficult for users to use due to their randomness and difficulty
to remember.

There has been some recent work into the creation of us-
able passwords that are still strong. AutoPass [3] presents an
end-to-end password generator and manager intended to span
multiple platforms. AutoPass generates a completely random
password for each site a user needs to create an account for.
The tool maintains security by splitting up the password and
its salt. In order to login to an account, AutoPass needs the
password from the user’s device, and the salt from the Au-
toPass server. The password is hashed with the salt and then
used to login to the user’s account. While in practice this work
promises to be seamless, it requires a user to switch entirely
to using AutoPass.

Alphapwd [7] takes a more fun approach to password gen-
eration. The authors begin with a very simple combination
of characters, then overlay those characters’ shapes onto a
keyboard. The password is then the series of keys pressed in
writing out the shapes of those characters. This strategy cre-
ates a relatively easy to remember password as the user only
needs to remember a few letters, yet strong since each charac-
ter expands to many key-presses. While novel and interesting,
the creation of passwords in this way will lead to a set of sim-
ilar substrings. These substrings can then be used in a type
of dictionary attack to guess passwords. In their paper, the
authors do test the security of their passwords, but the results
are not promising. They trained a machine learning model
on large datasets of leaked passwords and then attempted to
guess the passwords generated by Alphapwd. 40% of their
generated passwords were guessed in less than 10'® guesses.
These passwords are likely not strong enough to withstand
the attacks put forward by modern attackers.

Lastly, Glory et al. [4] puts forward a method of password
generation based somewhat on user input. The user is asked
to input 5 texts and 2 numbers which are then modified with
common substitutions (i.e.,’a’ and ’@’). The main issue here
is that this will still likely be weak to dictionary and tweaking
attacks. The user inputs will still have the same unseen pat-
terns that were used to crack passwords in [11]. In addition,
the authors’ entropy analysis shows that the passwords only
have between 47 and 88 bits of entropy. While the upper end

10

of that will withstand attacks for some time, 47 bits is far too
weak to use as a password.

CrystalPass will be able to outperform each of the above
password generators. We do not require that users use any
kind of end-to-end solution, we only generate strong pass-
words. We also allow users to choose a pattern that they will
find easier to use while still giving them strength guarantees
based on the pattern.

8 Conclusion

In this work, we aim to tackle the problem of users being
required to generate unique, strong passwords for each of their
accounts. We introduce CrystalPass, a pattern-based password
generator, which allows users to create strong and usable
passwords while re-using a common pattern. We demonstrate
the security of such patterns through a proven accurate entropy
analysis compared to a strong attacker. Lastly, we demsontrate
the usability of our tool through a user study.

References

[1] ’;—have i been pwned? https://haveibeenpwned.
com/Passwords, 2024.
[2] Password Entropy: The Value of Unpredictable Pass-
words. https://www.okta.com/identity-101/
password-entropy/, 2024.
[3] Fatma Al Magbali and Chris J Mitchell. Autopass: An
automatic password generator. In 2017 International
Carnahan Conference on Security Technology (ICCST),
pages 1-6. IEEE, 2017.
[4] Farhana Zaman Glory, Atif Ul Aftab, Olivier Tremblay-
Savard, and Noman Mohammed. Strong password gen-
eration based on user inputs. In 2019 IEEE 10th annual
information technology, electronics and mobile com-
munication conference (IEMCON), pages 0416-0423.
IEEE, 2019.
[5] Alexandra Nisenoff, Maximilian Golla, Miranda Wei,
Juliette Hainline, Hayley Szymanek, Annika Braun, An-
nika Hildebrandt, Blair Christensen, David Langenberg,
and Blase Ur. A {Two-Decade} retrospective analy-
sis of a university’s vulnerability to attacks exploiting
reused passwords. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5127-5144, 2023.
[6] Sena Sahin, Suood Al Roomi, Tara Poteat, and Frank Li.
Investigating the password policy practices of website
administrators. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 552-569. IEEE, 2023.

https://haveibeenpwned.com/Passwords
https://haveibeenpwned.com/Passwords
https://www.okta.com/identity-101/password-entropy/
https://www.okta.com/identity-101/password-entropy/

(71

(8]

(9]

Jianhua Song, Degang Wang, Zhongyue Yun, and Xiao
Han. Alphapwd: A password generation strategy based
on mnemonic shape. IEEE Access, 7:119052-119059,
2019.

Joshua Tan, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Practical recommendations for stronger,
more usable passwords combining minimum-strength,
minimum-length, and blocklist requirements. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1407-1426,
2020.

Ding Wang, Xuan Shan, Qiying Dong, Yaosheng Shen,
and Chunfu Jia. No single silver bullet: Measuring the
accuracy of password strength meters. In 32nd USENIX

11

[10]

(11]

Security Symposium (USENIX Security 23), pages 947—
964, 2023.

Ding Wang, Yunkai Zou, Yuan-An Xiao, Siqi Ma, and
Xiaofeng Chen. {Pass2Edit}: A {Multi-Step} gener-
ative model for guessing edited passwords. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 983-1000, 2023.

Ming Xu, Chuanwang Wang, Jitao Yu, Junjie Zhang, Kai
Zhang, and Weili Han. Chunk-level password guessing:
Towards modeling refined password composition repre-
sentations. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 5-20, 2021.

	Introduction
	Background
	Password Cracking
	Online Attacks
	Offline Attacks

	Entropy

	Design
	Patterns
	Shorthand

	Wizard
	Entropy Meter
	Manual

	Implementation
	Pattern Parsing
	Password Generation
	Entropy Calculation
	Entropy Accuracy

	Evaluation
	Threat Model
	Password Strength
	Entropy Meter Comparison
	Pattern Re-use
	User Study
	User Practices
	Usability
	User Preference

	Discussion
	Limitations
	Possible Vulnerabilities
	Making Strong Patterns
	User Study

	Future Work

	Related Work
	Password Cracking Attacks
	Password Strength
	Password Generation

	Conclusion

