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�� INTRODUCTION

Four centuries ago� Descartes pondered the mind�body problem� how can incorpo�
real minds interact with physical bodies� He posited that the solution lay in the
pineal gland� here� perhaps� was the place where the senses of the body provoked
the images of the mind� and where the intentions of the mind initiated the actions
of the body� �For a modern take on these medieval musings� I recommend Dennett�s
Consciousness Explained 	
���
Today� computing scientists face their own version of the mind�body problem�

how can virtual software interact with the real world� In the beginning� we merely
wanted computers to extend our minds� to calculate trajectories� to sum 
nances�
and to recall addresses� But as time passed� we also wanted computers to extend
our bodies� to guide missiles� to link telephones� and to pro�er menus�
The classic models of computation are analogous to minds without bodies� For
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Turing�s machine� a calculation begins with a problem on its tape� and ends with an
answer there� For Church�s calculus� reduction begins with a lambda term� and ends
with its normal form� For Floyd�s �owcharts and Hoare�s triples� a program begins
in a state satisfying a precondition� and ends in a state satisfying a postcondition�
How the initial tape or term or state is input� and how the 
nal one is output� are
questions neither asked nor answered� These theories conform to the practice of
batch computing�
Eventually� interactive models of computation emerged� analogous to minds in

bodies� For Petri�s nets� tokens enter and leave locations� For Kahn and Mac�
Queen�s streams� data circulates between coroutines� For Milner�s and Hoare�s
process calculi� messages are sent and received along channels� Inputs and outputs
require no special treatment� as they are represented simply as additional token
sources and sinks� additional streams� or additional channels� A single input at
initiation and a single output at termination is now superseded by multiple inputs
and outputs distributed in time and space� These theories conform to the practice
of interactive computing�
Interaction is the mind�body problem of computing� It poses a challenge to all

computer scientists� but the challenge it poses to those of us interested in declara�
tive languages is particularly acute� Although Turing machines and �owcharts are
classi
ed as imperative� the classic models of computation are essentially declar�
ative� since a program behaves as a function from �or� if you prefer� a predicate
relating� inputs to outputs� But the interactive models of computation appear in�
herently imperative� since the whole point of augmenting minds with bodies is to
make it possible to do something�
This tutorial reviews a solution to the interaction problem that has become pop�

ular within the functional programming community� It is based on the notion of a
monad�
Monads arose in category theory 	���� Eugenio Moggi noted that monads could be

used to model a wide variety of language features� including non�termination� state�
exceptions� continuations� and interaction 	��� ���� Moggi�s technique of structuring
a denotational semantics adapts directly for use in structuring functional programs�
and my own contribution was to foster this adaptation 	�
� ��� ����
This paper provides an introduction to the use of monads to add interaction to a

pure functional language� as described in previous work by Simon Peyton Jones and
myself 	���� Similar models have been proposed by Cupitt 	�� and Gordon 	���� For
a history of approaches to input�output in functional programming� I recommend
Gordon�s thesis 	����
These ideas have been tested in the standard lazy functional language Haskell

	���� The ideas were originally incorporated in the Glasgow Haskell compiler� sub�
sequently added to the Chalmers and Yale Haskell compilers� and adopted for
inclusion in the revised Haskell standard 	�
�� This paper presents a somewhat
simpli
ed version of the new Haskell standard� This style of interaction has been
tested extensively� including its use in programs tens of thousands of lines long� and
in a range of applications including graphical user interfaces� These ideas have also
been adopted by the declarative language Escher 	���� which combines functional
and logic programming�
Monads have also served as a basis for adding other features to a functional
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language� notably state and concurrency� Little will be said about these topics
here� except to give a few pointers to the relevant literature� In particular� although
interaction is often associated with concurrency and non�determinism� the model
pursued here will be deterministic and sequential�
The reader is assumed to have a passing familiarity with the basics of functional

programming in pure languages such as Haskell 	��� �
�� and impure languages such
as SML 	��� ���� For general background see Bird and Wadler 	�� and Paulson 	����
No knowledge of category theory is assumed�
A shorter version of this paper appeared previously 	���� Material in Sections �

and � is new�
The remainder of this paper is organised as follows� Section � introduces a

monad for interaction� Section � relates the monad approach to other approaches to
interaction� Section � describes related work� Section � sketches how monads might
be incorporated into a 
rst�order language for logic programming� and concludes�

�� A MONAD APPROACH TO INTERACTION

This section introduces� step by step� an abstract type to support interaction� called
a monad�

��� Commands

The type of simple commands is written IO ��� Ignore the trailing �� for now �
its purpose will become apparent later�
The mind�body distinction is essential to this enterprise� A term of type IO ��

denotes an action� but does not necessarily perform the action� it is of the realm
of the mind� rather than the realm of the body�
Here is a function to print a character�

putc �� Char �� IO ��

For instance� putc ��� denotes the command that� if it is ever performed� will
print an exclamation mark�
Here is a constant to do nothing�

done �� IO ��

The term done doesn�t actually do nothing� it just speci
es the command that� if
it is ever performed� won�t do anything� Compare thinking about doing nothing to
actually doing nothing� they are distinct enterprises�
Here is a function to combine commands� it is roughly the analogue of semicolon

in conventional imperative languages�

���� �� IO �� �� IO �� �� IO ��

If m and n are commands� then m �� n denotes the command that� if it is ever

performed� 
rst does m and then does n� �In Haskell� m �� n is syntactic sugar for
���� m n��
Here is a function that takes a string and returns a command that prints the

string�

puts �� String �� IO ��
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puts 	
 � done

puts �c�s� � putc c �� puts s

If the string is empty� then the command does nothing� If the string has head c

and tail s� then the command 
rst prints character c and then prints string s� So
puts ��
� is equivalent to

putc ��� �� �putc �
� �� done�

and both of these denote a command that� if it is ever performed� prints an excla�
mation followed by a question�
�In Haskell� a string is just a list of characters� Hence ��
� �� String is just

an abbreviation for 	�����
�
 �� 	Char
� The latter in turn is an abbreviation
for ������
��	
�� where � is pronounced �cons� and 	
 is pronounced �nil���
By now the reader will be desperate to know how is a command ever performed�

In other words� how does the mind connect to the body� In Haskell� this is accom�
plished with the distinguished top�level variable main� which is bound to a value
that speci
es the command to be performed by the program� Thus executing the
program

main �� IO ��

main � puts ��
�

prints an indicator of perplexity� Thus main is the link from Haskell�s mind to
Haskell�s body � the analogue of Descartes�s pineal gland�
One may be disappointed that commands can only appear at the top�level of a

program� Surely such a narrow interface as main will prove a bottleneck� But� as
we will see� our type of commands is highly expressive� and can include arbitrary
blends of interaction and computation� Just as Descartes believed that a soul could
infuse an entire body through the pineal gland� so can a program interact with the
entire world via main�

��� Equational reasoning

Equational reasoning is a principle of such importance that it goes by many names�
�referential transparency�� �the rule of Leibniz�� or more plainly �substituting
equals for equals�� Our approach to commands preserves simple equational rea�
soning� which an approach based on side e�ects does not�
To see this� let�s compare the use of monads in Haskell with the use of side e�ects

in SML� For direct comparison� we assume a primitive putcML such that evaluating
the expression

putcML ��h�� putcML ��a��

putcML ��h�� putcML ��a�

prints �haha� as a side e�ect� �The character written �h� in Haskell is written ��h�

in the most recent revision of SML 	����� If we attempt to capture the commonality
in this program by writing

let val

x � �putcML ��h�� putcML ��a��

in x� x end
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then the laugh is on us� the program prints only a single �ha�� at the time variable
x is bound� In the presence of side e�ects� equational reasoning in its simplest form
becomes invalid�
One can use a more complex form of equational reasoning in SML� Writing

let fun

f �� � �putcML ��h�� putcML ��a��

in f ��� f �� end

de
nes a function f with dummy argument ��� and properly abstracts the interac�
tion� Thus in SML one must abstract values and interactions di�erently�
In Haskell� the expression

putc �h� �� putc �a� ��

putc �h� �� putc �a�

and the expression

let

x � �putc �h� �� putc �a��

in x �� x

are entirely equivalent� Thus in Haskell one may abstract values and interactions
in exactly the same way� Equational reasoning is kept simple by an appropriate
distinction between the roles of mind and body�

��� Commands that yield values

The above is adequate for output� but needs to be generalised for input� If a is
a type� then IO a is the type of commands that yield a value of type a� So far�
we have considered the special case IO ��� �In Haskell� �� is the trivial type that
contains just one proper value� which is also written ����
Here is a function to read a character�

getc �� IO Char

Performing the command getc when the input contains ABC yields the value �A�

and remaining input BC�
Generalising the command done� which does nothing and yields no value� is the

command return x� which does nothing and yields value x�

return �� a �� IO a

Performing the command return �� when the input contains ABC yields the value
�� and an unchanged input ABC� �Here a is a type variable� which thanks to the
wonders of polymorphism may be instantiated to any type� in this case Int��
Combining commands is a little tricky� One common approach is to de
ne an

operation which takes a pair of commands that yield values to a command which
yields a pair of values�

����� �� IO a �� IO b �� IO �a�b�

Performing the command getc ��� return �� when the input contains ABC yields
the value ��A����� and remaining input BC�
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Continuing this approach� one may also provide an operation which applies a
function to the result of a command�

����� �� IO a �� �a �� b� �� IO b

Performing the command getc ��� �c�� 	c�c
 when the input contains abc�
yields the value �AA� and remaining input BC� �In Haskell� �x�� e is the equiv�
alent of the lambda expression �x� e� so applying the function �c�� 	c�c
 to the
character �a� yields the string �aa���
Here is a function to read a given number of characters�

gets �� Int �� IO String

gets � � return 	


gets �i��� � �getc ��� gets i�

��� ��c�s��� c�s

Performing the command gets � when the input contains ABC yields the value �AB�
and remaining input C�
The set of combinators based on ��� and ���� which seems natural enough� leads

to a style in which even as simple a function as gets is not especially easy to read�
Fortunately� there is another set of combinators that� though it appears less natural�
leads to a style in which functions are easier to read�

��� An analogue of let

The new combinator is written ��� and pronounced �bind��

����� �� IO a �� �a �� IO b� �� IO b

If m �� IO a is a command yielding a value of type a� and k �� a �� IO b is a
function from a value of type a to a command yielding a value of type b� then
m ��� k �� IO b is the command that� if it is ever performed� behaves as follows�

rst perform command m yielding a value x of type a� then perform command k x

yielding a value y of type b� then yield the 
nal value y�
Although it may seem odd at 
rst sight� this combinator is reassuringly similar to

the familiar let expression� Those familiar with type inference rules will recognise
the rule for let�

� m �� a x �� a � n �� b

� let x�m in n �� b

This rule states that if term m has type a� and �assuming that variable x has
type a� term n has type b� then the term let x�m in n has type b� To compute
let x�m in n� 
rst compute m� then bind x to the value yielded� then compute n�
Typically� bind is combined with lambda expressions in a way that resembles let

expressions� Here is the corresponding type rule�

� m �� IO a x �� a � n �� IO b

� m ��� �x�� n �� IO b

If term m has type IO a and �assuming that variable x has type a� term n has type
IO b� then the term m ��� �x�� n has type IO b� To perform m ��� �x�� n� 
rst
perform m� then bind x to the value yielded� then perform n�
Note the similarity to the SML let expression�
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let val x � m in n end

To compute this� 
rst compute m �and perform its side e�ects�� then bind x to the
value yielded� then compute n �and perform its side e�ects�� The key di�erence is
that ��� preserves equational reasoning� while the SML let with side e�ects does
not�
Because of this similarity� one may wish to introduce a variant let expression

such as

let x �� m in n

�where the equal sign has been replaced by an arrow� as equivalent to m ��� �x�� n�
We�ll return to this in the conclusion�
The combinator ��� may be de
ned in terms of return and ����

����� �� IO a �� IO b �� IO �a�b�

m ��� n � m ��� �x��

n ��� �y��

return �x�y�

This has a straightforward reading� To perform m ��� n� 
rst perform m� bind its
value to x� then perform n� bind its value to y� and yield the value �x�y��
Consider performing getc ��� getc when the input contains ABC� Performing

the 
rst getc yields value �A�� which is bound to x� and remaining input BC�
Performing the second getc yields value �B�� which is bound to y� and remaining
input C� Performing return �x�y� yields the 
nal value ��A���B���
The combinator ��� is also easily de
ned�

����� �� IO a �� �a �� b� �� IO b

m ��� f � m ��� �x��

return �f x�

To perform m ��� f� 
rst perform m� then bind x to the value yielded� and 
nally
yield the value f x�
But we no longer require ��� and ���� because it is easier to de
ne a function

like gets directly in terms of ��� and return�

gets �� Int �� IO String

gets � � return 	


gets �i��� � getc ��� �c��

gets i ��� �s��

return �c�s�

Again� this has a straightforward reading� To get a string of length i��� 
rst get
a character� bind it to c� then get a string of length i� bind it to s� then yield the
string c�s�
The command done is a special case of return� and the combinator �� is a special

case of ����

done �� IO ��

done � return ��
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���� �� IO �� �� IO �� �� IO ��

m �� n � m ��� ����� n

�Recall that �� stands for both the trivial type and its one value��
Several researchers� including myself� have published combinators for parsing

based on operations analogous to ��� and ��� 	��� ��� ���� I now believe that ���
provides a far superior style� Others may have been clever enough to make the
switch from ��� and ��� to ��� on their own� but in my case I would attribute the
improvement directly to my contact with Moggi�s work� and indirectly to Kleisli�s
abstract formulation of a monad in category theory�
To summarise� here is an interface for the input�output monad�

data IO a

return �� a �� IO a

����� �� IO a �� �a �� IO b� �� IO b

putc �� Char �� IO ��

getc �� IO Char

The 
rst line states that IO a is an abstract data type� There are four operations
on this type� the two combining forms� return and ���� and the two primitives�
putc and getc� Everything else� such as done and ��� can be de
ned in terms of
these�
Operations of an abstract data type can often be characterised by the laws they

satisfy� and we now turn to that question�

��� Monad laws

The command done is a left and right unit for ��� and �� is associative�

done �� m � m

m �� done � m

m �� �n �� o� � �m �� n� �� o

In other words� done and ���� form a monoid�
Analogously� there is a sense in which return is a left and right unit for ���� and

��� is associative�

return v ��� �x�� m � m	x��v


m ��� �x�� return x � m

m ��� �x�� �n ��� �y�� o� �

�m ��� �x�� n� ��� �y�� o

In the 
rst line� variable x may appear free in term m and m	x��v
 stands for term
m with each free occurrence of variable x replaced by term v� In the third line�
variable x may appear free in term n but not in term o� and variable y may appear
free in term o�
Categorists are infamous for stealing terms from philosophy� starting with the

theft of category itself from Kant� The theft of monad from Leibniz to name the
above structure was aided and abetted by the pun on monoid� �For Leibniz� monads
were central to the mind�body problem� since each soul is a monad� as is God��
In general� a monoid is a type M together with operators of types



How to Declare an Imperative � 	

done �� M

���� �� M �� M �� M

satisfying the 
rst set of three laws above� The speci
c operators done and ����

discussed here form a monoid� but so do many others� For instance� take M to be
the integers� take done to be zero� and take �� to be addition�
Similarly� for functional programmers a monad is a type constructor M� together

with operators of types

return �� a �� M a

����� �� M a �� �a �� M b� �� M b

satisfying the second set of three laws above� Again� the speci
c operators return
and ����� described here form a monad� but many others do as well� �We will
discuss one other in Section �����
The three monad laws have analogues in let notation�

let x�v in m � m	x��v


let x�m in x � m

let y��let x�m in n� in o �

let x�m in �let y�n in o�

These law are not merely true� they are very true� They hold even in a language
such as SML� where the presence of side e�ects disables many forms of equational
reasoning� For the 
rst law to be true� v must be not an arbitrary term but a
value� that is� a variable or a lambda expression but not an application� A value
immediately evaluates to itself� hence its evaluation always terminates and can have
no side e�ects� Unlike SML� Haskell distinguishes ��� on commands from let on
values� While in SML one only has the above three laws for let� in Haskell one has
a much stronger law�

let x�m in n � n	x��m


Here one may replace a variable by any term� rather than replace a variable by a
value�
Using the monad laws� it is straightforward to prove some properties of programs�

Write �� for list concatenation� with the usual de
nition�

	
��s � s

�c�r���s � c��r��s�

Proposition� Two puts operations may be combined as follows�

puts r �� puts s � puts �r��s�

Proof� The proof is by induction on r�
Case 	
�

puts 	
 �� puts s

� � definition puts �

done �� puts s

� � left identity �� �

puts s
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� � definition �� �

puts �	
��s�

Case c�r�

puts �c�r� �� puts s

� � definition puts �

�putc c �� puts r� �� puts s

� � associativity �� �

putc c �� �puts r �� puts s�

� � inductive hypothesis �

putc c �� puts �r��s�

� � definition puts �

puts �c��r��s��

� � definition �� �

puts ��c�r���s�

�

Proposition� Two gets may be combined as follows�

gets i ��� �r��

gets j ��� �s��

return �r��s�

�

gets �i�j�

Proof� The proof is by induction on i�
Case ��

gets � ��� �r��

gets j ��� �s��

return �r��s�

� � definition gets �

return 	
 ��� �r��

gets j ��� �s��

return �r��s�

� � left unit ��� �

gets j ��� �s��

return �	
��s�

� � left unit �� �

gets j ��� �s��

return s

� � right unit ��� �

gets j

� � arithmetic �

gets ���j�

Case i���

gets �i��� ����r���

gets j ����s��
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return �r���s�

� � definition gets �

�getc ����c��

gets i ����r��

return �c�r�� ����r���

gets j ����s��

return �r���s�

� � associativity ��� �

getc ����c��

gets i ����r��

�return �c�r� ����r���

gets j ����s��

return �r���s��

� � left unit ��� �

getc ����c��

gets i ����r��

gets j ����s��

return ��c�r���s�

� � definition �� �

getc ����c��

gets i ����r��

gets j ����s��

return �c��r��s��

� � left unit ��� �

getc ����c��

gets i ����r��

gets j ����s��

�return �r��s� ����t��

return �c�t��

� � associativity ��� �

getc ����c��

�gets i ����r��

gets j ����s��

return �r��s�� ����t��

return �c�t�

� � inductive hypothesis �

getc ����c��

gets �i�j� ����t��

return �c�t�

� � definition gets �

gets ��i�j����

� � arithmetic �

gets ��i����j�

�

Each of these proofs is entirely straightforward� using a style common in func�
tional programming community 	��� Here only the three monad laws are required
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for the proof� and we need no laws to describe the behaviour of getc or putc�
While the three monad laws are solidly established and helpful� further work is

required on the best way to describe speci
c e�ects within a monad� For instance�
one might want to specify that if a stream of characters is written to a 
le then the
same stream will be read from the 
le� if no other program changes the 
le in the
interim�

��	 Monads and imperative programming

Here is a command which echoes one line of the input to the output� The newline
character ��n� terminates the input line� but is not copied to the output�

echo �� IO ��

echo � getc ��� �c��

if �c �� ��n�� then

done

else

putc c ��

echo

This looks remarkably like a program in an imperative language� such as C�

echo �� �

int c�

loop� c � getchar���

if �c �� ��n�� �

return

� else �

putchar�c��

goto loop�

�

�

Does the monadic style force one� in e�ect� to write a functional facsimile of an
imperative program�
In one sense� the answer is yes� and rightly so� Some interactions appear most

straightforward to express in an imperative style� and we should not hesitate to do
so� In another sense� the answer is certainly not� For those portions of a program
which are independent of interaction� all of the functional techniques that functional
programmers have come to know and love still apply�
The similarity of the two programs is not in vain� the former compiles into

something closely resembling the latter� This is accomplished by extensive use of
equational reasoning in the Glasgow Haskell compiler� Whereas some declarative
programmers only pay lip service to equational reasoning� users of functional lan�
guages exploit them every time they run a compiler� whether they notice it or
not�
Combinations of imperative and functional style are possible� Here is a function

that takes a list of commands that yield values to a command that yields a list of
values�

prod �� 	IO a
 �� IO 	a
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prod 	
 � return 	


prod �m�ms� � m ��� �x��

prod ms ��� �xs��

return �x�xs�

Using this one may rewrite puts and gets in a higher�order style�

puts s � prod �map putc s� ��� ����

return ��

gets i � prod �take i �repeat getc��

�This uses Haskell library functions� map f xs applies function f to each element
of list xs� and take i xs computes the 
rst i elements of list xs� and repeat x

computes a list consisting of x repeated inde
nitely��
The ability to write higher�order functions such as prod is a bit like the ability

to de
ne new� special�purpose constructs in an imperative language�

��
 Calling C directly

The mechanism described above extends to integrate Haskell directly with C� The
Glasgow Haskell compiler augments the language with a new form of expression

ccall proc e� ��� en

where proc is the name of a C procedure� and e� through en are Haskell expressions
of type Char� Int� or Float� the expression as a whole has type IO Char� IO Int�
or IO Float� The Haskell compiler checks that the number and type of arguments
conform to the types declared in C�
Here� slightly simpli
ed� are de
nitions of getc and putc�

putc c � ccall putchar c

getc � ccall getchar

The ccall directly invokes the corresponding C library function� A practical conse�
quence of this approach is that most of our IO system is written directly in Haskell�
with a smattering of low�level calls to C where needed�
This mechanism amounts to allowing an arbitrary set of primitives� one for each C

library function that appears in ccall� to be added to the abstract type summarised
at the end of Section ����
At present� we only allow values of base type to be passed between Haskell and

C� It is possible� but not especially convenient� to write special�purpose routines
enabling more complex structures to pass across this narrow interface� Enabling
smooth sharing of more complex data remains a challenge for the future�

�� OTHER APPROACHES TO INTERACTION

This section relates the monad approach to input�output to four other widely used
approaches� synchronised streams� as used in earlier versions of Haskell� continua�
tions� as used in Hope� linear types� as used in Clean� and side e�ects� as used in
SML� In each case� the presentation will be streamlined to two basic operations� to
read and write a single character�
Recall that the monad approach to interaction is based on the type IO a and

four operations provided by the system�
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����� �� IO a �� �a �� IO b� �� IO b

return �� a �� IO a

putc �� Char �� IO ��

getc �� IO Char

In turn� the user must provide the value of a distinguished variable�

main �� IO ��

This value acts as a �pineal gland�� connecting thought to action�
For each of the four other approaches� the presentation follows a similar plan�

First� a set of appropriate types and operations is presented� and an appropriate
distinguished variable is described� Second� the program to echo a line of input is
rewritten in the new style� Third� tradeo�s between the two styles are assessed�
Fourth� it is shown how to de
ne the monad model in terms of the new model�
Fifth� if possible� it is shown how to de
ne the new model in terms of the monad
model�
This provides a 
rst step toward comparing and relating the di�erent approaches�

Similar programs of comparison� implementing various input�output models in
terms of others� have been carried out by Hudak and Sundaresh 	���� Gordon 	����
and Peyton Jones and Wadler 	����

��� Interaction by synchronised stream

Like many features of functional languages� the stream model of input�output arose
out of work in denotational semantics� The stream model appears in the seminal
work of Landin 	���� and the re
nement to synchronous streams is due to Stoye 	����
Early versions of Haskell used streams for input�output 	���� while later versions
use monads 	�
�� Since streams are often used as a semantics for input�output� the
de
nition of monads in terms of streams� presented below� may be regarded as a
semantics for the input�output monad�
Review of interaction by synchronised streams� In the stream model� at the top�

level a program is represented by a dialogue� a function that yields a stream of
requests and accepts a stream of responses� In a lazy language� a stream may be
represented by a list�

type Dialogue � 	Response
 �� 	Request


This approach to input�output depends on lazy evaluation� as each request must
be returned from the program before the corresponding response is generated�
A request is either of the form Getq� indicating a character should be read� or of

the form Putq c� indicating that character c should be written� Dually� a response
is either of the form Getp c� indicating that character c has been read� or of the
form Putp� indicating that a character has been written�

data Request � Getq � Putq Char

data Response � Getp Char � Putp

Here we abbreviate �request� to �req� and thence �q�� and �response� to �resp� and
thence �p��
The behaviour of the entire program is speci
ed by a distinguished variable� here

called mainD�
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mainD �� Dialogue

Thus synchronous streams share with monads the notion of a single link� anal�
ogous to the pineal gland� between thinking and doing� Indeed� all the models
of interaction that we consider will have this property� with the exception of side
e�ects�
Here is the program which echoes a line of its input to its output� implemented

with synchronous streams�

echoD �� Dialogue

echoD p �

Getq �

case p of

Getp c � p� ��

if �c �� ��n�� then

	


else

Putq c �

case p� of

Putp � p�� �� echoD p��

The program 
rst issues the request Getq on its request stream� indicating a char�
acter should be read� causing the response Getp c to appear on its response stream�
indicating character c was read� If the character is end of line� it then terminates
the request stream� indicating the end of the program� Otherwise� it next issues
the request Putq c on its request stream� indicating character c should be written�
causing the response Putp to appear on its response stream� indicating the write
occurred� It then repeats the loop�
For instance� if the input begins with �AB�n� then the two characters preceding

the newline will be echoed to the output� as speci
ed by the following requests and
responses�

echoD 	Getp �A�� Putp� Getp �B�� Putp� Getp ��n�


� 	Getq� Putq �A�� Getq� Putq �B�� Getq 


These streams represent the entire history of the process� with all indications of
causality erased�
Using the language of denotational semantics� one may express the history by a

sequence of approximations converging to a 
xed point� We write bottom to denote
a stream about which nothing is known�

echoD �bottom�

� Getq � bottom

echoD �Getp �A�� bottom�

� Getq � Putq �A�� bottom

echoD �Getp �A�� Putp � bottom�

� Getq � Putq �A�� Getq � bottom

echoD �Getp �A�� Putp � Getp �B�� bottom�

� Getq � Putq �A�� Getq � Putq �B�� bottom

echoD �Getp �A�� Putp � Getp �B�� Putp � Getp ��n�� bottom�
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� Getq � Putq �A�� Getq � Putq �B�� Getq � 	


echoD �Getp �A�� Putp � Getp �B�� Putp � Getp ��n�� 	
�

� Getq � Putq �A�� Getq � Putq �B�� Getq � 	


This view restores the causality� 
rst there are no responses and the request Getq
is issued� next the response Getp �A� appears and the request Putq �A� is issued�
and so on�
What is the trade o� between monads and streams� Synchronous streams require

that you mind your ps and qs� you must take care to ensure that a request is
always issued before the corresponding response is consumed� Monads hide this
level of detail� Further� monads are more modular than synchronous streams� With
monads� you may simply write echo �� echo to echo two lines from the input to
the output� To support similar modularity with the synchronous stream version of
echo is di�cult� at best�
For these reasons� monads are now generally considered preferable to synchronous

streams in practice� though the stream model remains a useful theoretical tool� In
particular� the de
nition of the monads in terms of streams� given below� can be
regarded as providing a denotational semantics for the monad model�
From streams to monads� We now consider how to de
ne monads in terms of

synchronous streams� The type IO a stands for a computation that generates a
part of the request stream� and consumes a corresponding part of the response
stream� as well as returning a value of type a�

type IO a � �	Response
�	Request
� ��

�a�	Response
�	Request
�

A typical use of computation m �� IO a has the form

�x�p��q� � m �p�q��

where p is the stream of responses passed to the computation� q is the stream of
requests returned by the computation� p� is the stream of responses to be consumed
after the computation� q� is the stream of requests to be generated after the com�
putation� and x is the value of type a returned by the computation� This depends
critically on lazy evaluation� because the stream q� of remaining requests passed
to the computation may depend on the value x returned by the computation�
Given this formulation� it is straightforward to de
ne monads in terms of streams�

����� �� IO a �� �a �� IO b� �� IO b

m ��� k � ��p�q����� let

�x�p��q� � m �p�q��

�y�p���q�� � k x �p��q���

in

�y�p���q�

return �� a �� IO a

return x � ��p�q��� �x�p�q�

putc �� Char �� IO ��

putc c � ��p�q���� let
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q � Putq c � q�

Putp � p� � p

in

����p��q�

getc �� IO Char

getc � ��p�q���� let

q � Getq � q�

Getp c � p� � p

in

�c�p��q�

Note that the let clause de
ning ��� is mutually recursive and uses laziness in an
essential way� the 
rst line binds p�� which depends on q�� while the second line
binds q�� which depends on p��
It is equally straightforward to relate the distinguished variables for streams and

monads�

mainD �� Dialogue

mainD � �p�� let

�x�p��q� � main �p�q��

q� � 	


in

q

Here the stream of requests q� to perform after main is empty� and hence so is the
stream of responses p�� And x must have value �� since main has type IO ���
�There is one subtlety here� One might naively expect that replacing �x�p��q�

by ����	
�q� would yield an equivalent de
nition� but it does not� The de
nition
as it stands returns q before the values assigned to x and p� are computed� which
is essential because the list of responses p depends on the list of requests q� The
altered form cannot return q until it checks that x is �� and p� is 	
� and this
introduces a deadlock��
Laws� It is a straightforward exercise to show that the three monad laws are

satis
ed� For instance� we show

return x ��� k � k x

by the following calculation�

�return x ��� k� �p�q���

� � definition ��� �

let

�x��p��q� � return x �p�q��

�y�p���q�� � k x� �p��q���

in

�y�p���q�

� � definition return �

let
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�x��p��q� � �x�p�q��

�y�p���q�� � k x� �p��q���

in

�y�p���q�

� � simplify �

let

�y�p���q�� � k x �p�q���

in

�y�p���q��

� � simplify �

k x �p�q���

The other two laws are proved similarly�
From monads to streams� One may also ask whether the stream model can be

implemented in terms of the monad model� The answer is yes and no� One can
write such a function� but it turns out to be incredibly ine�cient� So monads are
easily de
ned in terms of synchronous streams� but not conversely� For details of
the conversion� see 	����

��� Interaction by continuations

The previous section showed that the naked style of synchronised streams is unap�
pealing� but can be improved by dressing it up in monads� Continuations may also
be used for this purpose� as was done in earlier versions of Haskell 	���� Further�
just as monads can be treated either as the old stream type in a new package or
as an abstract data type in its own right� so too can continuations� as was done in
Hope 	���� Here we give the formulation of continuations as an abstract type�
Historically� continuations are a direct predecessor of monads� Continuations�

like monads� arose in denotational semantics� originally as a way to model �ow of
control� The canonical formulation is due to Plotkin 	���� and an engaging history
has been penned by Reynolds 	����
Review of interaction by continuations� In the continuation model� each opera�

tion takes an additional argument� itself called the continuation� that denotes the
the entire remainder of the computation� At 
rst sight this appears to be a remark�
ably unmodular notion � every action incorporates all succeeding actions� But�
paradoxically� this style actually increases modularity�
In continuation style� the 
nal result of the program is given the type Answer�

In Hope Answer is an abstract type� while in earlier versions of Haskell Answer it
is taken as equivalent to the Dialogue type of the previous section�
There are two primitives� one to write a character to the output and one to read

a character from the input�

putcK �� Char �� Answer �� Answer

getcK �� �Char �� Answer� �� Answer

Excecuting putcK c k writes the character c to the output and then behaves as
the continuation k� while executing getc k reads a character from the input� say
c� and then behaves as the continuation k c� In the 
rst case the continuation
simply has type k �� Answer since writing a character yields no result� while in
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the second case the continuation has type k �� Char �� Answer since reading a
character yield a result of type Char which is passed to the continuation�
Each primitive yields an Answer� and requires a continuation involving Answer as

its argument� To terminate this in
nite regress� there is a primitive corresponding
to no action at all�

doneK �� Answer

The behaviour of the entire program is speci
ed by the distinguished variable mainK�

mainK �� Answer

This should be bound to the 
nal answer�
Here is the program which echoes a line of its input to its output� implemented

with continuations�

echoK �� Answer

echoK � getcK ��c��

if �c �� ��n�� then

doneK

else

putcK c �

echoK��

This is remarkably close to the monad style� except that all appearances of ��� and
�� have been elided� More precisely� they have been built�in to the corresponding
primitives� where before one wrote getc ��� k now one writes getcK k� and where
before one wrote putc c �� k now one writes putcK c k�
However� there is an essential di�erence between the monad and continuation

styles� As we saw before� with monads one may simply write

main �� IO ��

main � echo �� echo

to echo two lines� There is no equivalent form of composition that works for the echo
program above� But� unlike with synchronous streams� there is an easy 
x� Just
rewrite the echo program so that� like the primitives� it too accepts a continuation�

echoK� �� Answer �� Answer

echoK� k � getcK ��c��

if �c �� ��n�� then

k

else

putcK c �

echoK� k��

The new program accepts a continuation k� which appears where doneK appeared
formerly� Now one may simply write

mainK �� Answer

mainK � echoK� �echoK� doneK�

to echo two lines from the input to the output�
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The moral� with streams� it is di�cult to write a version of echo that composes�
with continuations� it is easy to write a version of echo that composes� if you
remember to include a continuation argument� and with monads� it is impossible

to write a version of echo that does not compose�
What is the trade o� between monads and continuations� The program struc�

tures used are almost identical� so in that sense there is little to choose between
them� Monads have the adavantage of being slightly more abstract� in that code
remains uncluttered by mention of a continuation variable� Continuations have the
advantage of directly supporting error jumps and other changes in �ow of control�
However� error jumps can also be supported by monads� as in the current version
of Haskell 	�
�� and monads can support the full power of continuations by building
in a �call with current continuation� operation� as described in 	����
Nonetheless� monads and continuations support very similar program structures�

Perhaps the most remarkable comparison between monads and continuations is
that the former has so far outstripped the latter in terms of popularity� when the
underlying concepts are so similar�
From continuations to monads� We now consider how to de
ne monads in terms

of continuations� The type IO a stands for a function that accepts a continuation�
which accepts a value of type a and yields an answer� and itself yields an answer�

type IO a � �a �� Answer� �� Answer

A typical use of the computation m �� IO a has the form m k �� Answer� where
k �� a �� Answer is the continuation� Here m k denotes an action that 
rst be�
haves as speci
ed by m� yielding the value x� and then behaves as speci
ed by k x�
Given this formulation� it is straightforward to de
ne monads in terms of contin�

uations�

����� �� IO a �� �a �� IO b� �� IO b

m ��� k � �j�� m ��x�� k x ��y �� j y��

return �� a �� IO a

return x � �j�� j x

putc �� Char �� IO ��

putc c � �j�� putcK c �j ���

getc �� IO Char

getc � �j�� getcK j

In each case� the types work out� For instance� in the de
nition of ����� we have
m �� �a��Answer���Answer� k �� a���b��Answer���Answer�
j �� b��Answer� x �� a� and y �� b� Hence�
��x�� k x ��y �� j y�� �� a��Answer� as required� Observe that k and j both
behave somewhat like continuations� but at di�erent levels�
It is equally straightforward to relate the distinguished variables for continuations

and monads�

mainK �� Answer

mainK � main ������ doneK�
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Here main �� IO �� takes the continuation ������ doneK� �� ����Answer� which
accepts the trivial value and does nothing more�
Laws� Again� it is a straightforward exercise to show that the three monad laws

are satis
ed� For instance� we show

return x ��� k � k x

by the following calculation�

�return x ��� k�

� � definition ��� �

�j�� return x ��x�� k x j�

� � definition return �

�j�� ��j�� j x� ��x�� k x j�

� � simplify �

�j�� ��x�� k x j� x

� � simplify �

�j�� k x j

� � simplify �

k x

The other two laws are proved similarly�
From monads to continuations� It is also easy to de
ne continuations in terms

of monads� so in this sense the models are equivalent� For details and further
discussion� see 	����

��� Interaction by linear logic

Here is a naive model of interaction� based on state� an interactive program is
represented by a function from the initial state to the world to the 
nal state of
the world� Each interaction is represented by a function that takes a current state
and a request� and returns the next state and a response�
The di�culty here is that the same current state may be passed to two di�erent

invocations of the interaction function� yielding two di�erent next states� In this
case� which of the two interactions has actually occurred�
One possible solution is to wait until the 
nal state is returned� as it may encode

the series of interactions that produced it� This solution was considered for an
early version of Haskell� but rejected� in part because it excludes the useful class of
interactive programs that run forever� never yielding a 
nal state�
A di�erent solution is to guarantee that the current state is never duplicated�

Hence� each state is passed to at most one function representing an interaction�
Since there is no confusion as to which interaction occurs� each interaction may be
performed as the program executes� Even a program that runs forever will produce
a well�de
ned sequence of interactions�
Linear logic� as proposed by Girard 	���� is a logic in which some propositions

may not be duplicated in a proof� Via the Curry�Howard isomorphism� a logic
corresponds to a programming language� with proofs corresponding to programs
and propositions corresponding to types 	���� Hence� linear logic gives rise to a
programming language with types that prohibit duplication� Tutorial explanations
of this correspondence have been written by Abramsky 	�� and Wadler 	���� Var�
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ious systems� more or less practical� and based on linear logic to a greater or less
degree� have been proposed by Holmstrom 	���� Lafont 	���� Wadler 	���� Guzman
and Hudak 	���� and Barendsen and Smetsers 	��� The theoretical application to
interaction was stressed by Girard and further elaborated by Lafont� but the 
rst
suggestion of practical application to interaction appears to be in my own work�
The 
rst practical application of this idea is in the lazy functional language Clean

	��� based on the work of Barendsen and Smetsers 	��� The Clean system has been
used to program a number of impressive applications� with an interface that o�ers
�at a high level� the same power as the Macintosh graphics toolkit�
Review of interaction by linear logic� In the linear logic model� there is a distin�

guished type World� representing the entire state of the external world� Values of
this distinguished type must be treated linearly� that is� they may not be duplicated�
Each interactive operation accepts an argument this type� representing the state at
the beginning of the operation� and returns a result of this type� representing the
state at the end of the operation�
There are two primitives� one to write a character to the output and one to read

a character from the input�

putcL �� Char �� �World �� �World

getcL �� �World �� ��Char��World�

Following the notation used in Clean� we preface linear types with a star� Values
of type �World may not be duplicated� nor may the pair of type ��Char��World��
since duplicating the pair would duplicate its second component� But it is permitted
to extract and duplicate the 
rst component of this pair�
This is a greatly simpli
ed version of the actual type system used in Clean� Fur�

ther complications arise because Clean requires that interactive functions should
be strict in the argument representing the world� and because it is sometimes nec�
essary to parameterise over whether a given type is linear or not� so that the same
function can operate� for instance� on both linear and non�linear pairs�
The behaviour of the entire program is speci
ed by the distinguished variable

mainL�

mainL �� �World �� �World

This variable should be bound to a function from the state of the world at the
beginning of the programs to the state of the world at the end�
Here is the program which echoes a line of its input to its output� implemented

with linear state�

echoL �� �World �� �World

echoL w � let �c�w�� � getcL w in

if �c �� ��n�� then

w�

else

let w�� � putcL c w� in

echo w��

This program is similar in structure to the monad program� though decorated
throughout with variables denoting the current state of the world� w� w�� and w���
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Accidentally switching� say� an occurence of w� with one of w��� might drastically
change the meaning of the program� Fortunately� many such errors will be caught
by the linear type system�
It remains relatively easy to compose programs� One may simply write

mainL �� �World �� �World

mainL w � echoL �echoL w�

to echo two lines�
What is the trade o� between monads and linear logic� Linear logic requires a

sophisticated type system� and forces the code to be cluttered by passing around
the current state� We show below how to de
ne monads in terms of linear state�
Some users of Clean have found it convenient to make just such de
nitions and
thereafter work in terms of monads� as this eliminates the clutter 	����
But while mentioning the state explicitly is something of a pain when there is

just one state� it may become a boon if one fragments the state into separate
components representing portions of the world that do not interact  for instance�
one to represent the state of the screen� and a di�erent one to represent the state
of the 
le store� Further practical experience is needed to determine where the
balance lies�
From linear state to monads� We now consider how to de
ne monads in terms

of linear state� The type IO a stands for a function that accepts the current state
of the world� and returns a value of type a and a new state�

type IO a � �World �� ��a� �World�

Given this formulation� it is straightforward to de
ne monads in terms of linear
state�

����� �� IO a �� �a �� IO b� �� IO b

m ��� f � �w�� let

�x�w�� � m w

�y�w��� � k x w�

in

�y�w���

return �� a �� IO a

return x � �w�� �x�w�

putc �� Char �� IO ��

putc c � �w�� ���� putcL c�

getc �� IO Char

getc � �w�� getcL w

It is equally straightforward to relate the distinguished variables for continuations
and monads�

mainL �� Answer

mainL � �w�� let ����w�� � main w in w�
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Here main �� IO �� takes the initial world w and returns a pair consisting of the
trivial value �� and the 
nal world w��
Laws� Again� it is a straightforward exercise to show that the three monad laws

are satis
ed� For instance� we show

return x ��� f � f x

by the following calculation�

�return x ��� f�

� � definition ��� �

�w�� let

�x��w�� � return x w

�y�w��� � f x� w�

in

�y�w���

� � definition return �

�w�� let

�x��w�� � �x�w�

�y�w��� � f x� w�

in

�y�w���

� � simplify �

�w�� let

�y�w��� � f x w

in

�y�w���

� � simplify �

�w�� f x w

� � simplify �

f x

The other two laws are proved similarly�
From monads to linear state� There is no obvious way to make the converse

de
nition� of linear state in terms of monads�

��� Interaction by side e�ect

Traditionally� in strict languages interaction occurs via side e�ects� This idea has
roots at least as far back as Lisp and Iswim� and is carried on in Scheme and SML�
For this section� we switch our presentation language from Haskell to SML� There

are some minor syntactic di�erences between Haskell and SML� some of which are
indicated in the following�

Haskell SML

�� �� �� �� � unit

��n� �� Char ���n� � char

��x��x� �� a��a �fn x��x� � �a �� �a

Type variables in Haskell are distinguished by beginning with a small letter and
type constructors precede their arguments� as in IO a� while type variables in SML
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are distinguished by begining with a backquote and type constructors follow their
arguments� so the same type might be written �a io in SML� Types are indicated
with two colons in Haskell and with one in SML� In SML� type signatures are
preceded by the keyword val� and de
nitions are preceded by the keyword val or
fun� We maul SML slightly by placing type signatures next to the corresponding
de
nitions� in SML proper� de
nitions are grouped into modules and the signature
appears separately�
Review of side e�ects� Again we assume two primitives� one to write a character

to the output and one to read a character from the input� Their types are pleasingly
symmetric�

val putcML � char �� unit

val getcML � unit �� char

Each primitive must be a function� and the desired interaction occurs when the

function is applied� The type unit appears when a function is required to mediate
the time at which a side e�ect occurs� but no actual argument or result is necessary�
The phrase �when the function is applied� matches our previous phrase �when

the action is performed�� For instance� evaluating the lambda abstraction

�fn c �� putcML c� putcML c�

has no side e�ects� and returns a function� let�s call it f� of type char �� unit� It is
only when this function is applied that the side e�ects occur� so evaluating f ����

prints two exclamation marks� Thus� our previous distinction between thinking and
doing is here matched by a distinction between abstraction and application� The
main di�erence is main� with side e�ects� unlike any of the other models we have
studied� there is no need for a distinguished top�level variable�
Here is the program which echoes a line of its input to its output� implemented

with side e�ects�

val echoML � unit �� unit

fun echoML �� � let val c � getcML �� in

if c � ���n� then

��

else

�putcML c� echoML ���

end

Neither the argument nor result of this function contain any information� it is
executed solely for its side e�ects�
Two lines may be echoed by executing the following code�

echoML ��� echoML ��

There is a world of di�erence between the value echoML which has no side e�ects
when evaluated� and the computation echoML ��� which does�
For completists� here is how to de
ne putcML and getcML in terms of the primi�

tives provided in the Standard ML library�

fun putcML c �

TextIO�output��TextIO�stdOut�c��
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fun getcML �� �

valOf�TextIO�input��TextIO�stdIn���

From side e�ects to monads� Even in a strict language with side e�ects� it is still
possible to encapsulate interaction within a monad� Thus� it is entirely possible to
intermix the side e�ect and monad approaches to interaction�
The type �a io is represented by a function expecting a dummy argument of

type unit and returning a value of type �a�

type �a io � unit �� �a

Here we exploit the fact that wrapping an expression inside a function allows us to
control the point at which any side e�ects of that expression will occur�
Given this formulation� it is straightforward to de
ne monads in terms of side

e�ects�

infix ���

val ��� � �a io � ��a �� �b io� �� �b io

fun m ��� k � fn �� �� let

val x � m ��

val y � k x ��

in

y

end

val return � �a �� �a io

fun return x � fn �� �� x

val putc � char �� unit io

fun putc c � fn �� �� putcML c

val getc � char io

val getc � fn �� �� getcML ��

The in
x symbol ��� is curried in Haskell but takes a pair in SML� hence the 
rst
�� in its Haskell type becomes � in its SML type�
As in the Haskell formulation� �� and done may be de
ned as special case of ���

and return�

infix ��

val �� � unit io � unit io �� unit io

fun m �� n � m ��� �fn �� �� n�

val done � unit io

val done � return ��

SML only allows recursive de
nition of functions� In order to treat �a io as an
abstract type� we de
ne a 
xpoint operator� fix�

val fix � ��a io �� �a io� �� �a io

fun fix h � let fun f �� � h f �� in f end
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The de
nition depends on the fact that �a io is the same as unit �� �a� but once
the function has been de
ned it may be used in a scope where �a io is taken as an
abstract type�
Finally� we need a function to take on the same role as the distinguished variable�

a pineal gland to convert thought into action� Its de
nition is simplicity itself�

val execute � unit io �� unit

fun execute m � m ��

As an example of the use of these functions� here is echo rewritten in SML�

val echo � unit io

val echo � fix �fn echo ��

getc ��� �fn c ��

if �c � ���n�� then

done

else

putc c ��

echo��

Apart from the explicit use of a 
xpoint operator and a few minor syntactic di�er�
ences� this is identical to the Haskell code�
Laws� Again� we ask whether the three monad laws follow from the de
nitions

of return and ��� given above�

return v ���fn x�� m � m	x��v


m ���fn x�� return x � m

�m ���fn x�� n� ���fn y�� o �

m ���fn x���n ���fn y�� o�

The second and third laws can indeed be shown valid� for any expressions m� n�
and o� But the 
rst law holds only if both v and m	x��v
 are values� The 
rst
restriction is not too surprising� since the law

�fn x �� m�v � m	x��v


also holds in SML only if v is a value� But the second restriction is surprising�
Strict langauges �like SML� do restrict reasoning in ways that lazy languages �like
Haskell� do not�
The usual call�by�value calculus �v of Plotkin 	��� is not strong enough to prove

these laws� One must use the stronger computational lambda calculus �c of Moggi
	���� which has been studied by Sabry and Wadler 	����

�� RELATED WORK

Monads have been used for a variety of purposes beyond those described here�
As noted� Eugenio Moggi introduced monads to computing science as a way

of structuring denotational semantics 	��� ���� Many di�erent language features�
including non�termination� state� exceptions� continuations� and interaction� can be
viewed as monads� Independently of Moggi� but at about the same time� Michael
Spivey noted that monads provided a useful way of structuring exception handling
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in functional programs 	���� Inspired by Moggi and Spivey� I proposed monads as
a general technique for functional programming 	�
� ��� ����
As we have seen� monads are used to structure interaction in Haskell� and they

also provide interaction with C and mutable state in Glasgow�s local extension
of Haskell 	���� Monads are also used to structure interaction in the declarative
language Escher 	����
Monads are also used to structure the Glasgow Haskell compiler� which is itself

written in Haskell 	��� ���� Each phase of the compiler uses a monad for bookkeeping
information� For instance� the type checker uses a monad that combines state �to
maintain a current substitution�� a name supply �for fresh type variable names��
and exceptions �to report type errors�� If additional bookkeeping information is
required� it is easy to change the monad without requiring extensive modi
cation
to the rest of the program� For instance� the type checker was easily altered to
maintain information about the current line number� which enabled better error
messages�
The use of monads for updateable state is described by Wadler 	�
�� and for

input�output is described by Peyton Jones and Wadler 	���� Monads for updateable
state have been further elaborated by Launchbury 	��� and Launchbury and Peyton
Jones 	���� and applied to to functional graph algorithms by King and Launchbury
	��� and Launchbury 	���� Monads for interaction have been extended to include
concurrency by Peyton Jones� Gordon� and Finne 	���� and applied to user interface
design by Peyton Jones and Finne 	����
The use of monads to structure interpreters and evaluators is described byWadler

	��� ���� Steele 	��� and Liang� Hudak� and Jones 	���� Additional structuring
techniques based on monads are described by Meijer and Jeuring 	�
��
There are standard call�by�value and call�by�name translations of lambda calcu�

lus into continuation passing style 	���� Monads provide a generalisation of these
translations� The relation of monads to continuation passing style have been de�
scribed by Moggi 	��� ���� Wadler 	�
� ��� ���� Hatcli� and Danvy 	�
�� Filinski
	���� and Sabry and Wadler 	���� Filinski also describes an ingenious way to embed
arbitrary monads in a call�by�value language with state and continuations� such as
SML!NJ 	����
Researchers have proposed various special type systems and syntaxes to support

monads� Jones devised an overloaded type system suitable for use with monads 	���
���� and has implemented this system in Gofer 	���� Wadler proposed a notation for
monads based on an analogy with list comprehensions 	�
�� and Jones proposed a
do notation that bears a remarkable resemblance to C 	���� both of these notations
are implemented in Gofer� and have been incorporated in Haskell ��� 	�
��
In addition to the three general�purpose monad laws� one requires speci
c laws

to reason about speci
c e�ects� Laws to reason about monads that manipulate
state are given by Wadler 	�
�� Odersky� Rabin and Hudak 	���� Launchbury 	����
and Sabry and Launchbury 	���� A formal link between monads and linear state
is drawn by Chen and Hudak 	��� Hughes 	��� uses monads to illustrate a clever
technique for deriving an e�cient representation of a data type from an algebraic
speci
cation�
Each monad incorporates a di�erent e�ect� such as input�output� state� or excep�

tions� So it is important to consider ways in which monads can be combined� This
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is discussed by Barr and Wells 	��� Moggi 	��� ���� King and Wadler 	�
�� Jones and
Duponcheel 	���� Liang� Hudak� and Jones 	���� and Jones 	����

�� CONCLUSIONS

Interaction is becoming increasingly important� and declarative languages must
develop suitable methods of incorporating interaction� Monads provide one such
approach� and are becoming widely adopted within parts of the declarative pro�
gramming community�

It is a sign of the increasing maturity of computing science that it is no longer
acceptable for a programming language to work in isolation� Programmers no
longer work from scratch� but assemble systems by combining existing components�
Reuse is essential� A language must provide connections to databases� networks�
and graphics� We are forced to 
nd ways to start standing on our colleagues�s
shoulders� and to stop standing on their toes�

Thus it is becoming increasingly important for di�erent languages� and di�erent
language paradigms� to communicate� The meagre facility to integrate Haskell with
C described here is a start in this direction� Research trends within the community
point to further integration� hot topics include how to pass more complex data
structures between C and Haskell� how to integrate storage management� how to
add concurrency� and better support for graphic user interfaces� Monads have a
useful role to play in these developments�

Having praised monads to the hilt� let me level one criticism� Monads tend to be
an all�or�nothing proposition� If you discover that you need interaction deep within
your program� you must rewrite that segment to use a monad� If you discover
that you need two sorts of interaction� you tend to make a single monad support
both sorts� It seems to me that instead we should be able to move smoothly from
no monads �no interactions� to one monad �a single form of interaction� to many
monads �several independent forms of interactions�� How to achieve this remains a
challenge for the future�

��� First�order versus higher�order

In my 
rst paper on monads I wrote� �the higher�order nature of the solution means
it cannot be applied in 
rst�order languages such as Prolog� 	�
�� Certainly� the
monad combinator ��� is higher�order� However� I have come to believe that my
assertion is misleading�

From the beginning� Moggi took pains to stress that monads could be applied
to a 
rst�order language� independent of the machinery required for a higher�order
language 	���� What was clear to Moggi from the start has become clear to me at
last� Just as the higher�order ��x�� n� m mimics the 
rst�order let x�m in n� so
the higher�order m ��� �x�� n mimics a monadic let construct that is essentially

rst�order� We�ve already suggested that it be written let x �� m in n�

Thus� there is no problem in adding monads to a 
rst�order typed language�
Just add a type constructor IO� and add language constructs for return v and
let x �� m in n �where v� m� n are terms� and x is a variable�� The type rules
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follow directly�

� v �� a

� return v �� IO a

� m �� IO a x �� a � n �� IO b

� let x �� m in n �� IO b

A �pineal gland� is required� as with main in Haskell� some value of IO type must
be designated to represent the e�ect of the program� All this works as well in an
untyped language� save that static checks at compile�time may need to be replaced
by dynamic checks at run�time�
Nonetheless� higher�order languages have an advantage over 
rst�order languages�

In a higher�order language� one can encode a new binding construct simply by
adding a new constant� This observation goes back to Church 	��� who modelled uni�
versal quanti
cation �x�A by adding a constant " and writing " ��x�A�� Similarly�
I modelled let x �� m in n by adding a constant ��� and writing m ��� �x�� n�
In a 
rst�order language� such encodings are not available� the only way to add a
new binding construct to the language is to add a new binding construct to the
language�
Eminent declarative programmers� such as Warren 	��� and Goguen 	���� have

claimed that higher�order languages o�er no essential advantages over 
rst�order
languages� The preceding paragraph shows why I reject this claim�
The higher�order nature of Haskell made it easy to experiment with monads� But

now that higher�order functional programmers have done the experiment� 
rst�order
logic programmers may wish to consider extending their languages with monads�
Working out the details makes a fascinating challenge�

��� Backtracking

If one considers adding monads for input�output to a logic programming language�
there is one 
nal hitch� How should interaction interact with backtracking� The
mind can easily reverse a thought� but the body has more di�culty undoing an
action�
In functional languages� backtracking is often modelled by considering a list �or

set� of possible solutions� and if the language is lazy� the operational behaviour is
much the same as with backtracking 	���� This use of lists �or sets� was one of
the motivating examples for monads 	��� ��� �
�� And just as parsing is of special
interest to logic programmers as an application of backtracking� so too is parsing
of special interest to functional programmers as an application of lists and monads
	��� ��� ��� �
� ����
Monads o�er insights into interaction� Do they also o�er insights into backtrack�

ing� Or into the relation between the two�
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