A proposition is a statement that is either true or false.

Examples:
2 + 3 = 7 F
5 - 2 = 3 T

7 is a prime number T
Today is Friday F

It will rain tomorrow ?
Vanilla is the best flavor of ice cream.

Not propositions:

How are you?

Eat your vegetables.

Logical variables: \((p, q, r, \ldots) \)

denote an arbitrary proposition
truth value can be true or false

true: \(p = T \)
false: \(p = F \)

like variables from algebra
except value is \(T \) or \(F \),
instead of a number.
Logical operations can be used to combine propositions to get compound propositions.

Conjunction "AND" Symbol ∧

If \(p \) and \(q \) are propositional variables,

\[p \land q \] is a proposition.

Truth value of \(p \land q \) depends on

truth values of \(p \) and \(q \).

\[
\begin{array}{ccc}
\text{p} & \text{q} & p \land q \\
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F \\
\end{array}
\]

Truth table shows

truth value of \(p \land q \) for every

possible truth value

for \(p \) and \(q \).

\(p \) : Sam is poor

\(q \) : Sam is happy

Different ways to express \(p \land q \) in English:

Sam is poor, but he is happy.
Sam is poor and happy.
Although Sam is poor, he is happy.
Disjunction: \(p \lor t \lor t \lor t \)

<table>
<thead>
<tr>
<th>p</th>
<th>t</th>
<th>(p \lor t \lor t \lor t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

“inclusive” or.

Ambiguity in English:

Tonight I will go to the party or I will go to a movie.

The patient has high blood pressure or has a history of migraines.

\[\neg p \lor q \lor p \lor \neg q \]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \lor q \lor \neg p \lor \neg q)</th>
<th>exclusive or</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Negation: \(\neg p \).

\(p \): it is raining today
\(\neg p \): it is not raining today
\(\neg \neg p \): it is not true that it is raining today

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

Renew:
\[
\begin{align*}
\neg p &= T \quad \text{?} \\
q &= F \quad \text{?} \\
r &= T \quad \text{!}
\end{align*}
\]

\(\rightarrow p \land q \) \(F \)
\(r \land p \) \(T \)
\(q \lor r \) \(T \)
\(p \lor r = F \). \(p \lor r \)
\(T \)
\(\neg q \) \(T \)
Section 1.2

Compound propositions can be built using one or more logical operations:

\[
\begin{align*}
 p \lor \neg r & \quad p = F \\
 F & \quad r = T \\
 F & \quad F \\
\end{align*}
\]

Need to specify the order in which operations are performed:

\[
\begin{align*}
 p \land q \lor r & \\
 (p \land q) \lor r & = T \quad p = F, \quad q = T, \quad r = T \\
 p \land (q \lor r) & = F \\
\end{align*}
\]

Order in which logical operations are applied:

1. \(\neg \)
2. \(\land \)
3. \(\lor \)

\[
\begin{align*}
 \neg q \lor r & \quad \neg (q \lor r) \\
 (p \land q) \lor \neg t & \\
\end{align*}
\]
Can override the default order with parens:

\[\neg (q \lor r) \]

<table>
<thead>
<tr>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>\hspace{1cm} \neg T</td>
</tr>
</tbody>
</table>

\[\neg T \Rightarrow F \]

Good to include parens as a reminder:

\[(p \land q) \lor r \]

\[\neg p \lor (t \land r) \]

<table>
<thead>
<tr>
<th>F</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>\hspace{1cm} \neg T</td>
<td>F</td>
</tr>
</tbody>
</table>

\[(F \lor F) \Rightarrow F \]

\[\neg (p \land t \land r) \]

<table>
<thead>
<tr>
<th>F</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>\hspace{1cm} \neg T</td>
<td>\hspace{1cm} T</td>
</tr>
</tbody>
</table>

\[\neg F \Rightarrow T. \]
A truth table for a compound proposition shows the truth value for every possible combination of truth values for the propositional variables:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

If a compound proposition has \(n \) variables, the truth table has \(2^n \) rows.

2 variables \(\Rightarrow 2^2 = 4 \)
3 variables \(\Rightarrow 2^3 = 8 \)
\[p: \pi > 3 \]
\[q: 3 \text{ is a root of the equation } x^2 - 2 = 0. \]
\[r: \text{The integer } 5 \text{ is even.} \]

\[\neg r \quad \text{The integer } 5 \text{ is odd.} \]

\[\neg p \lor q \]
\[\neg p: \pi \leq 3 \]

\[\pi \leq 3 \text{ or } 3 \text{ is a root of the eqn. } x^2 - 2 = 0. \]

\[q \land r \]

\[\neg (q \land r) \quad \text{It's not the case that } \pi > 3 \text{ and the integer } 5 \text{ is even.} \]
Section 1.3

Conditional operation

p, q propositions $p \rightarrow q$ false only when p is true and q is false.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$p \rightarrow q$

p is the hypothesis
q is the conclusion

$p \rightarrow q$

p: you study hard
q: you will get an A

If you study hard, then you will get an A.

Ways to express in English: $p \rightarrow q$.

if p then q.
if p, q.
p implies q.
q, if p.
p only if q.
p is sufficient for q.
q is necessary for p.

p: You have a driver's license.
q: You are at least 16 years old.