
ICS 152, Problem Set 4

• Please show your work.
• Bottom line answers without proper explanation are worth zero points.

 1

1. The sub and lw instructions have a hazard since the value stored in register $3 is

updated by the add instruction. Fortunately, all this hazards can be resolved using
forwarding. The last add instruction suffers from a load-use hazard and cannot be
resolved without incurring a stall.

2. Freebie

3. At cycle 5, right before the instructions are executed:

 1 2 3 4 5
lw $5, 40($2) IF ID EX MEM WB
add $6, $3, $2 IF ID EX NOP
or $7, $2, $1 IF ID EX
and $8, $4, $3 IF ID
sub $9, $2, $1 IF

Only lw and or require control (IF and ID controls are set every clock cycle).
WB: memtoReg = 1, RegWrite = 1
EX: RegDst = 1, ALUSrc = 0, ALUOp1 = 1, ALUOp2 = 0

No value has been stored at the beginning of the cycle, but at the end of it registers
$5 will hold the value 1009.

4. (a) add $1, $2, $3

 sw $4, 0($1)

This is an EX/MEM data hazard: the sw instruction needs the value of $1 in the EX
stage (while computing the effective address), and the previous instruction (add) is
in the MEM stage.

(b) add $1, $2, $3
 sw $1, 0($4)

This is also an EX/MEM data hazard. The sw instruction needs the value of $1 in
the MEM stage (when it will write it to memory), and the previous instruction (add)
is in the WB stage. One might think that this is a MEM/WB data hazard, but we can
resolve the hazard in the EX stage of the sw instruction because sw is an I-type
instruction (the ALUSrc signal is set to 1, and the correct value of register $1 from
EX/MEM.RegisterRd bypasses the ALU and feeds into the EX/MEM.RegisterRt
register at the end of the cycle).

(c) lw $1, 0($2)
 sw $1, 0($4)

ICS 152, Problem Set 4

• Please show your work.
• Bottom line answers without proper explanation are worth zero points.

 2

This is a MEM/WB load-use hazard. It can be resolved by reading the value of
register $1 from MEM/WB.RegisterRt and forwarding it to the “write-data” port.

(d) lw $1, 0($2)
 sw $4, 0($1)

(e) lw $1, 0($2)
 add $1, $1, $2

Both (d and e) are load-use hazards and cannot be resolved without incurring a stall.
If a stall is taken, the hazard can be avoided using the same technique used for
dealing with the MEM/WB data hazard

5. subnz is essentially a sub (the fact that the destination register is updated only when

the difference is non-zero plays no role in determining whether or not there is a
hazard and how to handle it). Hence, the solution is exactly what you would get for a
regular sub instruction.

(a) When forwarding is not implemented, any instruction that uses the result of the
subnz instruction before it completes its WB stage will cause a data hazard. e.g.
subnz $s0, $s1, $s2
addi $s3, $s0, 5

Pipeline Diagram without forwarding

Instruction 1 2 3 4 5 6 7 8
subnz IF ID EX NOP WB
addi IF ID ID ID EX NOP WB

 (b) Yes, forwarding can eliminate all data hazards. The hazard detection conditions
are exactly the same for sub. e.g.
if (EX/MEM.Regwrite == 1 and EX/MEM.RegisterRd == ID/EX.RegisterRs)
 { do_forwarding }

ICS 152, Problem Set 4

• Please show your work.
• Bottom line answers without proper explanation are worth zero points.

 3

6. a. Always taken

Branch Accuracy (%)
1 100
2 0
3 50
4 80
5 5/7 = 71

b. Always not taken

Branch Accuracy (%)
1 0
2 100
3 50
4 20
5 2/7 = 28

c. 1-bit predictor initialized to predict taken

Branch Accuracy (%)
1 100
2 75
3 1/6 = 16.666
4 60
5 3/7 = 42

d. 2-bit predictor weakly initialized to predict taken

Branch Accuracy (%)
1 100
2 75
3 50
4 80
5 71

7. lw $2, 100($6)

lw $3, 200($7)
add $4, $2, $3
add $6, $3, $5
sub $8, $4, $6
lw $7, 300($8)
beq $7, $8, loop

