Problem Set 1 Solutions

2.6

s11 $t0, $t3, 9 #f shift $t3 left by 9, store in $tO
sr1 $t0, $t0, 15 ## shift $t0 right by 15

Problem 2. Bubble Sort

addi $t2,

startiloop:

startjloop: lw $t3,
lw $t4,
slt S$t5,
beqg $t5,
sw $t3,

sw $t4,

endjloop:

slt S$t5,
beqg $t5,

addi s$t2,

slt S$t5,
beqg $t5,

addi $t7,
addi $toO,
addi $t1,

addi $toO,
addi s$t1,
addi s$t7,

$s1, -1[] # $t2

1] # $t7
$t0
$tl

Szero,
$s0, 0[]
$s0, 4[]

0($t0)

0(stl)

$tl, $toO

Szero, endjloop
0(Stl)

0(st0)

4
4

$to,
s$t1,
$t7, 1
$t2, $t7
Szero, startjloop

$t2, -1
$t2, Szero
Szero, startiloop

J
pointer to the j-1th array elt
pointer to the jth array elt

2.29

add $to0,
loop: beq $al,
add $to,
sub %al,
h| loap
finish: addi $to,
add $v0,

jzero, fzero
tzero, finish
$to, $a0

$al, 1

$t0, 100
$t0, $zero

The program computes a * b + 100.

2.37

initialize running sum $t0 = 0
finizshed when $al is 0

compute running sum of $a0
compute this $al times

add 100 to a * b
return a * b + 100

Provtomsincion | wna acconpines —sontion

mowe Htl, ¥t btl=4%t2 add tl. ¥tZ, Yzero
clear 3t0 PO =1n add 1t0, ¥zero, Fzero
beq $tl, =mall, ifi{dt]l ==malligota L 14 Yat, small
beq Jtl. ¥at. L
beq #t2, big. L if (}tZ =bigigoto L 14 Jat, big
beq Yat, tzero, L
1i 3tl, =small ttl==mall addi $tl, ¥zero, =mall
1i 3t2. big Ft2=hig Tui $t2. upperibigl
ari t2, M2, loweribigl
ble Bt3, $t5, L if($t2 == $t5) goto L 1t Jat, $tE, L3
beq Yat, tzero, L
bat ftd, BtG, L if (3td = $tE) goto L 51t $at, $t5. $td
bne Yat, tzero, L
bas Bt&, B3, L if (315 »=3t3jgoto L 51t Jat, $tE. $L3
beq Yat, $zero, L
addi $t0, $t2., big |$t0=%t2 + big 11 Jat, big
add 1t0, ¥tZ, tat
Tw 3t5. biglbt2) L5 = Mamond3t2 + big) 14 Jat, big
add Jat, fat. $LZ
Tw Ft5, $tZ, fat

Mote: In the solutions, we make use of the 11 instruction, which should be imple-
mented as shown in rows 5 and é.

3.9 The problem is that A_lower will be sign-extended and then added to $t0.
The solution is to adjust A_upper by adding 1 to it if the most significant bit of
A_lower isa 1. As an example, consider 6-bit two's complement and the address
23 = 010111. If we split it up, we notice that A_lower is 111 and will be sign-
extended to 111111 = -1 during the arithmetic calculation. A_upper_adjusted
= 011000 = 24 (we added 1 to 010 and the lower bits are all 0s). The calculation 1s
then 24 + -1 = 23,

3.10 Either the instruction sequence

addu $t2, $t3, $t4
sltu $t2, $t2, $t4

or

addu $tZ, $t3, $t4
sltu $t2, $t2, $t3

worlks.

3.12 To detect whether $s0 < $51, it’'s tempting to subtract them and look at the
sign of the result. This idea is problematic, because if the subtraction results in an
overtlow, an exception would occur! To overcome this, there are two possible
methods: You can subtract them as unsigned numbers (which never produces an
exception) and then check to see whether overflow would have occurred. This
method 1s acceptable, but it is lengthy and does more work than necessary. An

alternative would be to check signs. Overflow can occur if $50 and (-$51) share
the same sign; that is, if $50 and $s1 differ in sign. But in that case, we don’t need

to subtract them since the negative one is obviously the smaller! The solution in

pseudocode would be

if ($s0<0) and ($s1>0) then
$t0:=1
else if ($s0>0) and ($s1<0) then
$10:=0
else
$t1:=$s0-%s1
if ($t1<0) then
$t0:=1
glse
$t0:=0

