Digital Design

Chapter 1: Introduction

Why Study Digital Design?

- Look "under the hood" of computers
 - Solid understanding --> confidence, insight, even better programmer when aware of hardware resource issues
- Electronic devices becoming digital
 - Enabled by shrinking and more capable chips
 - **Enables:**
 - Better devices: Better sound recorders, cameras, cars, cell phones, medical devices,...
 - New devices: Video games, PDAs, ...
 - Known as "embedded systems"
 - Thousands of new devices every year
 - Designers needed: Potential career direction

1995

1997

1999

2001

2003

2005

2007

Years shown above indicate when digital version began to dominate (Not the first year that a digital version appeared)

What Does "Digital" Mean?

- Analog signal
 - Inifinite possible values

 Ex: voltage on a wire created by microphone

Copyright © 2006 Frank Vahid

- Digital signal
 - Finite possible values
 - Ex: button pressed on a keypad

Digital Signals with Only Two Values: Binary

- Binary digital signal -- only two possible values
 - Typically represented as 0 and 1
 - One binary digit is a bit
 - We'll only consider binary digital signals
 - Binary is popular because
 - Transistors, the basic digital electric component, operate using two voltages (more in Chpt. 2)
 - Storing/transmitting one of two values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)

Example of Digitization Benefit

- Analog signal (e.g., audio) may lose quality
 - Voltage levels not saved/copied/transmitted perfectly
- Digitized version enables near-perfect save/cpy/trn.
 - "Sample" voltage at particular rate, save sample using bit encoding
 - Voltage levels still not kept perfectly
 - But we can distinguish 0s from 1s

Frank Vahid

1 V: "01" Digitized signal not 2 V: "10" perfect re-creation, 3 V: "11" but higher sampling

rate and more bits per encoding brings closer. Digital Design Copyright © 2006

How Do We Encode Data as Binary for Our Digital

System?

- Some inputs inherently binary
 - Button: not pressed (0), pressed (1)
- Some inputs inherently digital
 - Just need encoding in binary
 - e.g., multi-button input: encode red=001, blue=010,
- Some inputs analog
 - Need analog-to-digital conversion
 - As done in earlier slide -sample and encode with bits

button

How to Encode Text: ASCII, Unicode

- ASCII: 7- (or 8-) bit encoding of each letter, number, or symbol
- Unicode: Increasingly popular 16-bit bit encoding
 - Encodes characters from various world languages

Symbol	Ercoding
R	1010010
S	1010011
Т	1010100
L	1001100
N	1001110
E	1000101
0	0110000
	0101110
<tab></tab>	0001001

Symbol	Ercoding
r	1110010
S	1110011
t	1110100
1	1101100
n	1101110
е	1100101
9	0111001
!	0100001
<spæe></spæe>	0100000

Question:

What does this ASCII bit sequence represent? 1010010 1000101 1010011 1010100

Note: small red "a" (a) in a slide indicates animation <

How to Encode Numbers: Binary Numbers

- Each position represents a quantity; symbol in position means how many of that quantity
 - Base ten (decimal)
 - Ten symbols: 0, 1, 2, ..., 8, and 9
 - More than 9 -- next position
 - So each position power of 10
 - Nothing special about base 10 -used because we have 10 fingers
 - Base two (binary)
 - Two symbols: 0 and 1
 - More than 1 -- next position
 - So each position power of 2

Implementing Digital Systems: Programming Microprocessors Vs. Designing Digital Circuits

Digital Design: When Microprocessors Aren't Good Enough

- With microprocessors so easy, cheap, and available, why design a digital circuit?
 - Microprocessor may be too slow
 - Or too big, power hungry, or costly

Sample digital camera task execution times (in seconds) on a microprocessor versus a digital circuit:

Task	Microprocessor	Custom Digital Circuit
Read	5	0.1
Compress	8	0.5
Store	1	0.8

Q: How long for each implementation option?

5+8+11 = 24 sec

.1+.5+.8

=1.4 sec

.1+.5+1 = 1.6 sec

Good compromise

Chapter Summary

- Digital systems surround us
 - Inside computers
 - Inside huge variety of other electronic devices (embedded systems)
- Digital systems use 0s and 1s
 - Encoding analog signals to digital can provide many benefits
 - e.g., audio -- higher-quality storage/transmission, compression, etc.
 - Encoding integers as 0s and 1s: Binary numbers
- Microprocessors (themselves digital) can implement many digital systems easily and inexpensively
 - But often not good enough -- need custom digital circuits