Digital Design

Chapter 2: Combinational Logic Design

Introduction

- Let's learn to design digital circuits
- We'll start with a simple form of circuit:
 - Combinational circuit
 - A digital circuit whose outputs depend solely on the <u>present combination</u> of the circuit inputs' values

Digital Design Copyright © 2006 Frank Vahid 2.1

Switches

- Electronic switches are the basis of binary digital circuits
 - Electrical terminology
 - **Voltage**: Difference in electric potential between two points
 - Analogous to water pressure
 - Current: Flow of charged particles
 - Analogous to water flow
 - Resistance: Tendency of wire to resist current flow
 - Analogous to water pipe diameter
 - V = I * R (Ohm's Law)

Switches

- A switch has three parts
 - Source input, and output
 - Current wants to flow from source input to output
 - Control input
 - Voltage that controls whether that current can flow
- The amazing shrinking switch
 - 1930s: Relays
 - 1940s: Vacuum tubes
 - 1950s: Discrete transistor
 - 1960s: Integrated circuits (ICs)
 - Initially just a few transistors on IC
 - Then tens, hundreds, thousands...

4

Moore's Law

- IC capacity doubling about every 18 months for several decades
 - Known as "Moore's Law" after Gordon Moore, co-founder of Intel
 - Predicted in 1965 predicted that components per IC would double roughly every year or so
 - Book cover depicts related phenomena
 - For a particular number of transistors, the IC shrinks by half every 18 months
 - Notice how much shrinking occurs in just about 10 years
 - Enables incredibly powerful computation in incredibly tiny devices
 - Today's ICs hold *billions* of transistors
 - The first Pentium processor (early 1990s) needed only 3 million

An Intel Pentium processor IC having millions of transistors

5

The CMOS Transistor

- CMOS transistor
 - Basic switch in modern ICs

Digital Design Copyright © 2006 Frank Vahid 2.3

а

Boolean Logic Gates Building Blocks for Digital Circuits

(Because Switches are Hard to Work With)

"Logic gates" are better digital circuit building blocks than switches (transistors)
 Why?...

2.4

Boolean Algebra and its Relation to Digital Circuits

- To understand the benefits of "logic gates" vs. ${\color{black}\bullet}$ switches, we should first understand Boolean algebra
- "Traditional" algebra
 - Variable represent real numbers
 - Operators operate on variables, return real numbers

Boolean Algebra

- Variables represent 0 or 1 only
- Operators return 0 or 1 only
- Basic operators
 - AND: a AND b returns 1 only when both a=1 and b=1
 - OR: a OR b returns 1 if either (or both) a=1 or b=1
 - NOT: *NOT a* returns the opposite of a (1 if a=0, 0 if a=1)

0

0

0

1

1

Boolean Algebra and its Relation to Digital Circuits

- Developed mid-1800's by George Boole to formalize human thought
 - Ex: "I'll go to lunch if Mary goes OR John goes, AND Sally does not go."
 - Let F represent my going to lunch (1 means I go, 0 I don't go)

Evaluating Boolean Equations

- Evaluate the Boolean equation F = (a AND b) OR (c
 AND d) for the given values of variables a, b, c, and d:
 - Q1: a=1, b=1, c=1, d=0.
 - Answer: F = (1 AND 1) OR (1 AND 0) = 1 OR 0 = 1.
 - Q2: a=0, b=1, c=0, d=1.
 - Answer: F = (0 AND 1) OR (0 AND 1) = 0 OR 0 = 0.
 - Q3: a=1, b=1, c=1, d=1.
 - Answer: F = (1 AND 1) OR (1 AND 1) = 1 OR 1 = 1.

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Converting to Boolean Equations

- Convert the following English statements to a Boolean equation
 - Q1. a is 1 and b is 1.
 - Answer: F = a AND b
 - Q2. either of a or b is 1.
 - Answer: F = a OR b
 - Q3. both a and b are not 0.
 - Answer:
 - (a) Option 1: F = NOT(a) AND NOT(b)
 - (b) Option 2: F = a OR b
 - Q4. a is 1 and b is 0.
 - Answer: F = a AND NOT(b)

Converting to Boolean Equations

- Q1. A fire sprinkler system should spray water if high heat is sensed and the system is set to enabled.
 - Answer: Let Boolean variable h represent "high heat is sensed," e represent "enabled," and F represent "spraying water." Then an equation is: F = h AND e.
 - Q2. A car alarm should sound if the alarm is enabled, and either the car is shaken or the door is opened.
 - Answer: Let a represent "alarm is enabled," s represent "car is shaken," d represent "door is opened," and F represent "alarm sounds." Then an equation is: F = a AND (s OR d).
 - (a) Alternatively, assuming that our door sensor d represents "door is closed" instead of open (meaning d=1 when the door is closed, 0 when open), we obtain the following equation: F = a AND (s OR NOT(d)).

Relating Boolean Algebra to Digital Design

- Implement Boolean operators using transistors
 - Call those implementations *logic gates*.
 - <u>Let's us build circuits by doing math</u> -powerful concept

<u>Note</u>: These OR/AND implementations are inefficient; we'll show why, and show better ones later.

NOT/OR/AND Logic Gate Timing Diagrams

Building Circuits Using Gates

- Recall Chapter 1 motion-in-dark example
 - Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0)
 - F = a AND NOT(b)
 - Build using logic gates, AND and NOT, as shown
 - We just built our first digital circuit!

Example: Converting a Boolean Equation to a Circuit of Logic Gates

Q: Convert the following equation to logic gates:
 F = a AND NOT(b OR NOT(c))

Example: Seat Belt Warning Light System

- Design circuit for warning light
- Sensors
 - s=1: seat belt fastened
 - k=1: key inserted
 - p=1: person in seat
- Capture Boolean equation
 - person in seat, and seat belt not fastened, and key inserted
- Convert equation to circuit
- Notice
 - Boolean algebra enables easy capture as equation and conversion to circuit
 - How design with switches?
 - Of course, logic gates are built from switches, but we think at level of logic gates, not switches

Digital Design Copyright © 2006 Frank Vahid

w = p AND NOT(s) AND k

Some Circuit Drawing Conventions

Boolean Algebra

- By defining logic gates based on Boolean algebra, we can use algebraic methods to manipulate circuits
 - So let's learn some Boolean algebraic methods
- Start with notation: Writing a AND b, a OR b, and NOT(a) is cumbersome
 - Use symbols: a * b, a + b, and a' (in fact, a * b can be just ab).
 - Original: w = (p AND NOT(s) AND k) OR t
 - New: w = ps'k + t
 - Spoken as "w equals p and s prime and k, or t"
 - Or even just "w equals p s prime k, or t"
 - s' known as "complement of s"
 - While symbols come from regular algebra, *don't* say "times" or "plus"

Boolean algebra precedence, highest precedence first.

Symbol	Name	Description
()	Parentheses	Evaluate expressions nested in parentheses first
,	NOT	Evaluate from left to right
*	AND	Evaluate from left to right
+	OR	Evaluate from left to right

Boolean Algebra Operator Precendence

- Evaluate the following Boolean equations, assuming a=1, b=1, c=0, d=1.
 - Q1. F = a * b + c.
 - Answer: * has precedence over +, so we evaluate the equation as F = (1 *1) + 0 = (1) + 0 = 1 + 0 = 1.
 - Q2. F = ab + c.
 - Answer: the problem is identical to the previous problem, using the shorthand notation for *.
 - Q3. F = ab'.
 - Answer: we first evaluate b' because NOT has precedence over AND, resulting in F = 1 * (1') = 1 * (0) = 1 * 0 = 0.
 - Q4. F = (ac)'.
 - Answer: we first evaluate what is inside the parentheses, then we NOT the result, yielding (1*0)' = (0)' = 0' = 1.
 - Q5. F = (a + b') * c + d'.
 - Answer: Inside left parentheses: (1 + (1')) = (1 + (0)) = (1 + 0) = 1. Next, * has precedence over +, yielding (1 * 0) + 1' = (0) + 1'. The NOT has precedence over the OR, giving (0) + (1') = (0) + (0) = 0 + 0 = 0.

Boolean Algebra Terminology

- Example equation: **F(a,b,c) = a'bc + abc' + ab + c**
- Variable
 - Represents a value (0 or 1)
 - Three variables: a, b, and c
- Literal
 - Appearance of a variable, in true or complemented form
 - Nine literals: a', b, c, a, b, c', a, b, and c

Product term

- Product of literals
- Four product terms: a'bc, abc', ab, c

• Sum-of-products

- Equation written as OR of product terms only
- Above equation is in sum-of-products form. "F = (a+b)c + d" is not.

Boolean Algebra Properties

- Commutative
 - -a+b=b+a
 - a * b = b * a
- Distributive
 - a * (b + c) = a * b + a * c
 - a + (b * c) = (a + b) * (a + c)
 - (this one is tricky!)
- Associative
 - (a + b) + c = a + (b + c)
 (a * b) * c = a * (b * c)
- Identity
 - 0 + a = a + 0 = a
 - -1*a = a*1 = a
- Complement
 - a + a' = 1
 - a * a' = 0
- To prove, just evaluate all possibilities

Digital Design Copyright © 2006 Frank Vahid

Example uses of the properties

- Show abc' equivalent to c'ba.
 - Use commutative property:
 - a*b*c' = a*c'*b = c'*a*b = c'*b*a = c'ba.
- Show abc + abc' = ab.
 - Use first distributive property
 - abc + abc' = ab(c+c').
 - Complement property
 - Replace c+c' by 1: ab(c+c') = ab(1).
 - Identity property
 - ab(1) = ab*1 = ab.
- Show x + x'z equivalent to x + z.
 - Second distributive property
 - Replace x+x'z by (x+x')*(x+z).
 - Complement property
 - Replace (x+x') by 1,
 - Identity property
 - replace 1*(x+z) by x+z.

Example that Applies Boolean Algebra Properties

- Want automatic door opener circuit (e.g., for grocery store)
 - Output: f=1 opens door
 - Inputs:
 - p=1: person detected
 - h=1: switch forcing hold open
 - c=1: key forcing closed
 - Want open door when
 - h=1 and c=0, or
 - h=0 and p=1 and c=0
 - Equation: f = hc' + h'pc'

Digital Design Copyright © 2006 Frank Vahid

- Found inexpensive chip that computes:
 - f = c'hp + c'hp' + c'h'p
 - Can we use it?
 - Is it the same as f = c'(p+h)?
- Use Boolean algebra:

f = c'hp + c'hp' + c'h'p

- f = c'h(p + p') + c'h'p (by the distributive property)
- f = c'h(1) + c'h'p (by the complement property)
- f = c'h + c'h'p (by the identity property)
- f = hc' + h'pc' (by the commutative property)

Same!

Boolean Algebra: Additional Properties

- Aircraft lavatory sign example
- Null elements
 - a + 1 = 1
 - a * 0 = 0
- Idempotent Law
 - a + a = a
 - a*a=a
- Involution Law
 - (a')' = a
- DeMorgan's Law
 - (a + b)' = a'b'
 - (ab)' = a' + b'
 - Very useful!
- To prove, just evaluate all possibilities

Digital Design Copyright © 2006 Frank Vahid

- Behavior
 - Three lavatories, each with sensor (a, b, c), equals 1 if door locked
 - Light "Available" sign (S) if any lavatory available
- Equation and circuit
 - S = a' + b' + c'
- Transform

Circuit

a-

b-

- (abc)' = a'+b'+c' (by DeMorgan's Law)
- S = (abc)'
- New equation and circuit

а

C-

Circuit

- Alternative: Instead of lighting "Available," light "Occupied"
- Opposite of
 "Available" function S
 = a' + b' + c'
- So S' = (a' + b' + c')'
 - S' = (a')' * (b')' * (c')' (by DeMorgan's Law)
 - S' = a * b * c (by Involution Law)
- Makes intuitive sense

S

 Occupied if all doors are locked

Representations of Boolean Functions

- A function can be represented in different ways
 - Above shows seven representations of the same functions F(a,b), using four different methods: English, Equation, Circuit, and Truth Table

Digital Design Copyright © 2006 Frank Vahid 2.6

Truth Table Representation of Boolean Functions

- Define value of F for each possible combination of input values
 - 2-input function: 4 rows
 - 3-input function: 8 rows
 - 4-input function: 16 rows
- Q: Use truth table to define function F(a,b,c) that is 1 when abc is 5 or greater in binary

		а	b	F	а	b	С	F	а	b	С	d	F	
		0	0		0	0	0		0	0	0	0		
		0	1		0	0	1		0	0	0	1		
		1	0		0	1	0		0	0	1	0		
		1	1		0	1	1		0	0	1	1		
(a)				1	0	0		0	1	0	0			
			()		1	0	1		0	1	0	1		
					1	1	0		0	1	1	0		
					1	1	1		0	1	1	1		
							(b)		1	0	0	0		
							()		1	0	0	1		
	а	b	С	F					1	0	1	0		
	0	0	0	0					1	0	1	1		
	0	0	1	0					1	1	0	0		
а	0	1	0	0					1	1	0	1		
	0	1	1	0					1	1	1	0		
	1	0	0	0					1	1	1	1		
	1	0	1	1							(C))		
	1	1	0	1										
	1	1	1	1										

Converting among Representations

- Can convert from any representation to any other
- Common conversions
 - Equation to circuit (we did this earlier)
 - Truth table to equation (which we can convert to circuit)
 - Easy -- just OR each input term that should output 1
 - Equation to truth table
 - Easy -- just evaluate equation for each input combination (row)
 - Creating intermediate columns helps

Q: Convert to truth table: F = a'b' + a'b

Inp	outs			Output
а	b	a' b'	a' b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Inp	outs	Outputs	Term			
а	b	F	F = sum of			
0	0	1	a'b'			
0	1	1	a'b			
1	0	0				
1	1	0				

F = a'b' + a'b

Q: Convert to equation

а	b	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	ab'c
1	1	0	1	abc'
1	1	1	1	abc

F = ab'c + abc' + abc

Standard Representation: Truth Table

- How can we determine if two functions are the same?
 - Recall automatic door example
 - Same as f = hc' + h'pc'?
 - Used algebraic methods
 - But if we failed, does that prove *not* equal? No.
- Solution: Convert to truth tables
 - Only ONE truth table representation of a given function
 - **Standard** representation -- for given function, only one version in standard form exists

$$f = c'hp + c'hp' + c'h'$$

$$f = c'h(p + p') + c'h'p$$

$$f = c'h(1) + c'h'p$$

f = c'h + c'h'p

(what if we stopped here?)

f = hc' + h'pc'

Q: Determine if F=ab+a' is same function as F=a'b'+a'b+ab, by converting each to truth table first

a

Canonical Form -- Sum of Minterms

- Truth tables too big for numerous inputs
- Use standard form of equation instead
 - Known as canonical form
 - Regular algebra: group terms of polynomial by power
 - $ax^2 + bx + c$ $(3x^2 + 4x + 2x^2 + 3 + 1 --> 5x^2 + 4x + 4)$
 - Boolean algebra: create sum of minterms
 - *Minterm*: product term with every function literal appearing exactly once, in true or complemented form
 - Just multiply-out equation until sum of product terms
 - Then expand each term until all terms are minterms

Q: Determine if F(a,b)=ab+a' is same function as F(a,b)=a'b'+a'b+ab, by converting first equation to canonical form (second already in canonical form)

- F = ab+a' (already sum of products)
- ^{*a*} F = ab + a'(b+b') (expanding term)

Digital Design Copyright © 2006

Frank Vahid

F = ab + a'b + a'b' (SAME -- same three terms as other equation)

Multiple-Output Circuits

- Many circuits have more than one output
- Can give each a separate circuit, or can share gates
- Ex: $F = \underline{ab} + c'$, $G = \underline{ab} + bc$

Option 1: Separate circuits

Option 2: Shared gates

Multiple-Output Example: BCD to 7-Segment Converter

TABLE 2-4 4-bit binary number to seven-segment display truth table

w	х	у	z	а	b	с	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

67-86

a = w'x'y'z' + w'x'yz' + w'x'yz + w'xy'z + w'xyz' + w'xyz + wx'y'z' + wx'y'z

b = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'yz + w'xy'z' + w'xyz + wx'y'z' + wx'y'z

Combinational Logic Design Process

Step

Description

- Step 1 Capture the function
- Step 2 **Convert** to equations

Step 3 Implement as a gatebased circuit

- Create a truth table or equations, *whichever is most natural for the given problem*, to describe the desired behavior of the combinational logic.
- This step is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.
 - For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple outputs is OK optionally.)

2.7

Example: Three 1s Detector

- Problem: Detect three consecutive 1s in 8-bit input: abcdefgh
 - 00011101 → 1 10101011 → 0
 11110000 → 1
 - Step 1: Capture the function
 - Truth table or equation?
 - Truth table too big: 2^8=256 rows
 - Equation: create terms for each possible case of three consecutive 1s
 - y = abc + bcd + cde + def + efg + fgh
 - Step 2: Convert to equation -- already done
 - Step 3: Implement as a gate-based circuit

0

Example: Number of 1s Count

- Problem: Output in binary on two outputs yz the number of 1s on three inputs
 - $010 \rightarrow 01$ $101 \rightarrow 10$ $000 \rightarrow 00$
 - Step 1: Capture the function
 - Truth table or equation?
 - Truth table is straightforward
 - Step 2: Convert to equation
 - y = a'bc + ab'c + abc' + abc
 - z = a'b'c + a'bc' + ab'c' + abc
 - Step 3: Implement as a gatebased circuit

	Inputs		(# of 1s)	Out	puts
a	b	С		у	Ζ
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

More Gates

- NAND: Opposite of AND ("NOT AND")
- NOR: Opposite of OR ("NOT OR")
- XOR: Exactly 1 input is 1, for 2-input XOR. (For more inputs -- odd number of 1s)
- XNOR: Opposite of XOR ("NOT XOR")

- NAND same as AND with power & ground switched
 - Why? nMOS conducts 0s well, but not 1s (reasons beyond our scope) -- so NAND more efficient
- Likewise, NOR same as OR with power/ground switched
- AND in CMOS: NAND with NOT
- OR in CMOS: NOR with NOT
- So NAND/NOR more common

More Gates: Example Uses

- Aircraft lavatory sign example
 - S = (abc)'
- Detecting all 0s
 Use NOR

- Detecting equality
 - Use XNOR
- Detecting odd # of 1s
 - Use XOR
 - Useful for generating "parity" bit common for detecting errors

Completeness of NAND

- Any Boolean function can be implemented using just NAND gates. Why?
 - Need AND, OR, and NOT
 - NOT: 1-input NAND (or 2-input NAND with inputs tied together)
 - AND: NAND followed by NOT
 - OR: NAND preceded by NOTs
- Likewise for NOR

Number of Possible Boolean Functions

- How many possible functions of 2 variables?
 - 2² rows in truth table, 2 choices for each
 - $2^{(2^2)} = 2^4 = 16$ possible functions
- N variables
 - -2^{N} rows
 - $2^{(2^N)}$ possible functions

а	b	F	
0	0	0 or 1	2 choices
0	1	0 or 1	2 choices
1	0	0 or 1	2 choices
1	1	0 or 1	2 choices

 $2^4 = 16$ possible functions

а	b	fO	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		0	a AND b		ອ		q	a XOR b	a OR b	a NOR b	a XNOR b	۵		σ		a NAND b	4

Decoders and Muxes

- Decoder: Popular combinational logic building block, in addition to logic gates
 - Converts input binary number to one high output
- 2-input decoder: four possible input binary numbers
 - So has four outputs, one for each possible input binary number
- Internal design
 - AND gate for each output to detect input combination
- Decoder with enable e
 - Outputs all 0 if e=0
 - Regular behavior if e=1
- n-input decoder: 2ⁿ outputs

Decoder Example

- New Year's Eve Countdown Display
 - Microprocessor counts from 59 down to 0 in binary on 6-bit output
 - Want illuminate one of 60 lights for each binary number
 - Use 6x64 decoder
 - 4 outputs unused

Multiplexor (Mux)

- Mux: Another popular combinational building block
 - Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux → needs 2 select inputs to indicate which input to route through
 - 8 input mux \rightarrow 3 select inputs
 - N inputs $\rightarrow \log_2(N)$ selects
 - Like a railyard switch

Mux Internal Design

i1

<u>s0</u> 10

2x1 mux

Mux Example

- City mayor can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0, 1, 2, or 3
 Mayor's switches
- Use 4x1 mux

Muxes Commonly Together -- N-bit Mux

- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) -- each is 8-bits wide
 - Choose which to display using two inputs x and y
 - Use 8-bit 4x1 mux

Additional Considerations Schematic Capture and Simulation

• Schematic capture

- Computer tool for user to capture logic circuit graphically
- Simulator
 - Computer tool to show what circuit outputs would be for given inputs
 - Outputs commonly displayed as waveform

Digital Design Copyright © 2006 Frank Vahid 2.10

- Real gates have some delay
 - Outputs don't change immediately after inputs change

- Combinational circuits
 - Circuit whose outputs are function of present inputs
 - No "state"
- Switches: Basic component in digital circuits
- Boolean logic gates: AND, OR, NOT -- Better building block than switches
 - Enables use of Boolean algebra to design circuits
- Boolean algebra: uses true/false variables/operators
- Representations of Boolean functions: Can translate among
- Combinational design process: Translate from equation (or table) to circuit through well-defined steps
- More gates: NAND, NOR, XOR, XNOR also useful
- Muxes and decoders: Additional useful combinational building blocks

