S1	(s3,s1) (s4,s2)					
S2		(s5,s3) (s6,s4)				
S3		(s0,s3) (s0,s4)	l '			
S4						
S5					(s0,s0) (s0,s0)	
S6	· .	(s0,s3) (s0,s4)	l '	l '		
	S0	S1	S2	S 3	S4	\$ 5

S1	(s3,s1) (s4,s2)					
S2	(s5,s1) (s6,s2)	(s5,s3) (s6,s4)				
S3		(s0,s3) (s0,s4)				
S4						
S5					(s0,s0) (s0,s0)	
S6	(s0,s1) (s0,s2)	(s0,s3) (s0,s4)				
	S0	S1	S2	S 3	S4	S5

Therefore, state S3 = S6 and state S4 = S5.

Problem 6.20 11/11/2005

Minimal bit width encoding:

State encodings: S0: 000, S1: 001, S2: 010, S3: 011, S4: 100

Inpu	ıts				Out	puts						
s2	s1	s0	В	S	n2	n1	n0	L	Dreg_clr	Dreg_ld	Dcnt_clr	Dcnt_cnt
0	0	0	x	x	0	0	1	0	1	0	0	0
0	0	1	0	x	0	0	1	0	0	0	1	0
0	0	1	1	x	0	1	0	0	0	0	1	0
0	1	0	x	x	0	1	1	1	0	0	0	0
0	1	1	x	0	0	1	1	0	0	0	0	1
0	1	1	x	1	1	0	0	0	0	0	0	1
1	0	0	x	x	0	0	1	0	0	1	0	0

n2 = s1s0S

n1 = s1's0B + s1s0' + s1s0S'

n0 = s1's0' + s1's0B' + s1s0' + s1s0S'

L = s1s0'

Dreg clr = s2's1's0'

 $Dreg_ld = s2$

Dcnt_clr = s1's0

Dcnt_cnt = s1s0

Logic size: 37 gate inputs

Delay: 2 gate delays

Output encoding:

State encodings: S0: 01000, S1: 00010, S2: 10000, S3: 00001, S4: 00100

I	Inputs	S						Outr	puts								
S	s4 s	s3	s2	s1	s 0	В	S	n4	n3	n2	n1	n0	L	Dreg_clr	Dreg_ld	Dcnt_clr	Dcnt_cnt
0) [1	0	0	0	x	x	0	0	0	1	0	0	1	0	0	0
0) (0	0	1	0	0	x	0	0	0	1	0	0	0	0	1	0
0) (0	0	1	0	1	x	1	0	0	0	0	0	0	0	1	0
1	_ (0	0	0	0	x	x	0	0	0	0	1	1	0	0	0	0
0) (0	0	0	1	x	0	0	0	0	0	1	0	0	0	0	1
0) (0	0	0	1	x	1	0	0	1	0	0	0	0	0	0	1
0) (0	1	0	0	x	x	0	0	0	1	0	0	0	1	0	0

n4 = s1'B

n3 = 0

n2 = s0S

n1 = s3 + s1x' + s2

n0 = s4 + s0S'

L = s4

 $Dreg_clr = s3$

Dreg_ld = s2 Dcnt clr = s1

Dcnt cnt = s0

Logic size: 13 gate inputs

Delay: 2 gate delays

6.26

Gi = aibi, Pi = ai xor bi

c1 = G0 + P0c0

c2 = G1 + P1G0 + P1P0c0

c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0

c4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

a = 11 = 1011, b = 7 = 0111

G0	1.1 = 1	P0	1 xor 1 = 0	c1	1 + 0.0 = 1
G1	1-1 = 1	P1	1 xor 1 = 0	c2	1 + 0.1 + 0.0.0 = 1
G2	0-1 = 0	P2	0 xor 1 = 1	сЗ	0 + 1.1 + 1.0.1 + 1.0.0.0 = 1
G3	1.0 = 0	P3	1 xor 0 = 1	c4	$0 + 1 \cdot 0 + 1 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 0 \cdot 1 + 1 \cdot 1 \cdot 0 \cdot 0 \cdot 0 = 1$

6.29

delay of 64-bit hierarchical carry-lookahead adder : 4*2=8, gate delay delay of 64-bit carry-ripple adder : 64*2=128, 128 gate delay

6.30

6.31

6.32

(a)

(b) assume that delay adder is 3ns.

6.33

in case of 6.94, the minimum clock period must be 9ns. in case of 6.32, the minimum clock period must be 3ns. Therefore, pipelined version is three times faster.

6.34

latency: 9ns

throughput: 1 sample every 3 ns

6.44

6.45

