
3.2(b,c)
b) 1/100,000,000 = 10 ns
c) 1/1,500,000,000 = 0.66 ns = 667 ps

3.4(a,d)

a) 1/500ms = 2 Hz
d) 1/20ps = 50,000,000,000 Hz = 50 GHz

3.9

3.11

3.13

3.15

3.21

3.23

3.27

3.28

3.29

3.30

3.32

a) 2 bits
b) 3 bits
c) 4 bits
d) 5 bits
e) 10 bits

3.39

Step 1 - Capture the FSM
The appropriate FSM is given above.

Step 2 - Create the architecture

Step 3 - Encode the states
A straightforward encoding is A=00, B=01, C=10, D=11.
Step 4 - Create the state table
Inputs Outputs
s1 s0 a b n1 n0 y
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 1 1
0 1 0 1 0 1 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 1 0 1
1 0 0 1 1 1 1
1 0 1 0 1 0 1
1 0 1 1 1 1 1
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 1 0 0 0 0

1 1 1 1 0 0 0

Step 5 - Implement the combinational logic
n1 = s1’s0’a’b’ + s1’s0a + s1s0’
n0 = s1’s0’a’b + s1’s0a’ + s1s0’b
y = s1’s0 + s1s0’
Note: The above equations can be minimized further.

3.41

3.42

3.45

If we AND each pair of transitions with each other in state A, we notice one pair
does not evaluate to 0: a*a’b. This shoes that more than one condition can be true
simultaneously.
Furthermore, if we OR all the conditions from state C, we notice that the expression
does not evaluate to 1: b. This shoes that there may be a combination of inputs in
which one condition from state C is not true.
We can address both of these problems with the following changes:

3.48

