
3.2(b,c)    
b) 1/100,000,000 = 10 ns 
c) 1/1,500,000,000 = 0.66 ns = 667 ps 
 
 
3.4(a,d)  
 
a) 1/500ms = 2 Hz 
d) 1/20ps = 50,000,000,000 Hz = 50 GHz 
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3.32  
 
a) 2 bits 
b) 3 bits 
c) 4 bits 
d) 5 bits 
e) 10 bits 
 
 
3.39    
 
Step 1 - Capture the FSM 
The appropriate FSM is given above. 
 
 
Step 2 - Create the architecture 
 

 
Step 3 - Encode the states 
A straightforward encoding is A=00, B=01, C=10, D=11. 
Step 4 - Create the state table 
Inputs Outputs 
s1 s0 a b n1 n0 y 
0 0 0 0 1 0 0 
0 0 0 1 0 1 0 
0 0 1 0 0 0 0 
0 0 1 1 0 0 0 
0 1 0 0 0 1 1 
0 1 0 1 0 1 1 
0 1 1 0 1 0 1 
0 1 1 1 1 0 1 
1 0 0 0 1 0 1 
1 0 0 1 1 1 1 
1 0 1 0 1 0 1 
1 0 1 1 1 1 1 
1 1 0 0 0 0 0 
1 1 0 1 0 0 0 
1 1 1 0 0 0 0 



1 1 1 1 0 0 0 
 
Step 5 - Implement the combinational logic 
n1 = s1’s0’a’b’ + s1’s0a + s1s0’ 
n0 = s1’s0’a’b + s1’s0a’ + s1s0’b 
y = s1’s0 + s1s0’ 
Note: The above equations can be minimized further. 
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3.45    
 
If we AND each pair of transitions with each other in state A, we notice one pair 
does not evaluate to 0: a*a’b. This shoes that more than one condition can be true 
simultaneously. 
Furthermore, if we OR all the conditions from state C, we notice that the expression 
does not evaluate to 1: b. This shoes that there may be a combination of inputs in 
which one condition from state C is not true. 
We can address both of these problems with the following changes: 
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