3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 1 of 9

Introduction to MS Visual C/C++

0. Introduction:

This tutorial gives a simple introduction to MS Visual C/C++ with an emphasis on OpenGL graphics
application. At the end of tutorial you should be able to write a simple console application using the
graphics libraries OpenGL, GLU, and GLUT. The tutorial gives an introduction to the C/C++ programming
language but does not attempt to explain the above mentioned graphics libraries (which is done in the 372
lecture). Please note that these notes only introduce a very limited subset of the C/C++ language and you
are expected to consult the 372 Resources web page for more information. Finally please remember that
‘learning by doing’ is the best recipe for mastering C/C++. I recommend that you do all examples on the
computer. Also it is a good idea to experiment with the code (e.g. change parameters) and to introduce
intentionally little syntax errors into the example programs in order to get familiar with the resulting error
messages (if any) from the compiler.

1. Getting started with Microsoft Visual C/C++:

1.1. Creating a Console Application

This section explains how to create a simple console application using Microsoft Visual C/C++. A console
application is run from a DOS window, which is used to perform standard output and standard input. The
behaviour of a console application is similar to a Java application executed from a DOS-window using
JDK. If you are running a different IDE at home please consult your documentation about how to use it.

In order to create a project for our application we start Visual C++ and choose ‘New’ in the ‘File’ menu. In

the resulting pop-up menu select the tab ‘Projects’ and the item ‘Win32 Console Application’. In this
example we name the project ‘Assla’ as shown in the figure below.

New 2| x|

Filez Projects | wiorkspaces I Other Documents I

L& ATL COM Appiwizard Projgct name:

¢ | Cluster Bezource Type YWizard IJ‘:"-SS'| a

g+ Custom Appiwfizard .
‘=10 atabase Project Logation:
[e bl A ki izand |G:'\41 5.372FC_2002%Ass1a J
B |54F1 Extension Wizard

I ak efile
":", MFC Activer Cantrabafizard () Create new waork space
MFL Appiafizard [dll] " Add to current workspace
BB WFC Appwizard [exe) I Dependsncy of
T Utility Project
i;i Win32 Application Ji=s I
-"' ih32 Consale Application
|%] Win32 Dynamic-Link Library
%] Win32 Static Library Blatforms:
|W|n32

ak I Cancel

Figure 1.1: Visual Studio pop-up window for the creation of new files.

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 2 of 9

Click ‘OK’ and you get a pop-up window asking what type of project you want. Select ‘An empty project’
and click ‘Finish’. You now have an empty project without any classes or files. Note that Visual Studio
creates automatically a workspace (‘Assla.dsw’) containing this project. If you want to open your project
you can either choose ‘Open Workspace’ in the ‘File” menu of Visual Studio or you can double click on the
workspace file on the disk.

Next we want to create a file containing the main program. In order to do this, select again ‘New’ in the
‘File” menu. In the resulting pop-up window choose the ‘Files’ tab and select ‘C++ Source File’. In the box
titled ‘File name:’ input the name of the file, in this example ‘assla.cpp’.

Add the file to the project by selecting the ‘Project’ menu and then ‘Add to Projects’ and ‘Files’ as shown
below:

N=E
File Edit Wiew Insert |Project Build Tools ‘Window Help
1%|D”nﬁ|é$ Set Active Project b b | o3y [main ﬂ|“nHJ@Iﬁl ' @‘
. - L Mew...
bt I e e 4 New Folder... L” @ readTriangles LI B2

Dependencies. ..

E—r— =1 alt+F7
- Workspace fiasla Expart Makefile. .

E|--- Assla files

a Source Files Insert Project inko Workspace. ..

- assla.cpp

4 Header Files

=

’% Data Connection, ..

@ Components and Contrals.,..,

As a result you get a pop-up window with a file browser. Select the file ‘assla.cpp’ and click ‘OK’.

We now have a project without classes and with one source file. If the source file is not shown in the main
window choose the tab ‘File View’ in the left hand frame (see figure below). Expand first the folder ‘Assla
files’ and then the folder ‘Source files’ by clicking on the box next to it. If the folder is expanded the plus-
sign inside the box changes to a minus-sign. Open the file ‘assla.cpp’ by double clicking on it. Your
workspace should now look as in the figure below.

=loixi
File Edit Wiew Insert Project Build Tools Window Help

B BHE| 2R 2 B ER | e =Y EE

48 T ki D % sl ad | o0 J] [Blobals] =] (&) giobal members] =] @main Tl

a1
- A Assla files = /00—
= Source Files
-
: Header Files
‘{27 Resource Files

2l |]
B2 Classiiew | Filehiew

=

A

Pl b

Build 4 Debug % Find in Files1 % FindinFiles2 ®|4| |

Fieady Ln 1, Col 1 REC |COL |OVR |READ
4

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 3 of 9

You can now create your first program by typing into the file ‘assla.cpp’ the following code (or use cut and
paste):

// My first C-programm
#include <stdio.h>

int main(int argc, char* argv([])

{
printf ("Hello World!\n") ;
return O;

The code will be explained in the lecture. Save the file (using ‘Save’ in the ‘File’ menu or by using the
keyboard shortcut ‘CTRL+S’), build the project (choose ‘Build Assla.exe’ in the ‘Build’ menu or press
’F7°) and run it (choose ‘Execute Assla.exe’ in the ‘Build’ menu or press ’CTRLAFS”).

You should get something like this:

G:\415.37T2FC_2002" Ass1a'Debug' Assla.exe™

Hello World?
Press any key to continue_

Note that the output is written into a DOS-window. The line ‘Press any key to continue’ occurs because
you are currently executing the application in debug-mode.

We can also execute the application directly. In order to do this, change into the ‘Debug’ directory of the
directory containing your workspace and double click the file ‘assla.exe’. Note that the application exits
immediately after execution. If you want the DOS-window to stay open you have modify the code
accordingly, e.g.

// My second C-programm
#include <stdio.h>

int main(int argc, char* argvl[])
{
printf ("Hello World!\n") ;
printf ("Press 'Enter' to quit\t");
while (getchar () !='\n") ; // loop until ‘Enter’ is pressed
return 0;

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 4 of 9

1.2 Using OpenGL

For many programming tasks it is convenient to use a software interface to the hardware or the underlying
operating system that offers high-level functionality. Such a software interface is called an application
programming interface (API). The arguably most common graphics API in use today is OpenGL. OpenGL
was originally introduced by SGI (Silicon Graphics) and is now available for most platforms. Even though
the OpenGL commands are standardized different implementations of the OpenGL library may exist for the
same platform. The two main versions of the OpenGL library for the Windows operating system are from
Microsoft and from SGI. In this lecture we use the Microsoft version, which consists of the files g1 .h,
opengl32.1lib and opengl32.d11. The SGI version consists of the files g1 .h, opengl.lib and
opengl.dll and is not used in this lecture.

The file g1 . h contains function prototypes and constants whereas the file opengl32.1ib contains the
precompiled object code with the implementations of the function. Therefore, when writing an OpenGL
program, we have to include gl . h at the beginning of each file, which uses OpenGL commands. In
addition we have to link the project with the library opengl32.11ib. More explanation on this topic are
found in section 1.4.

Nowadays many windows applications (e.g. computer games) use OpenGL. Rather than including the
complete OpenGL object code with each application it is more convenient to have the OpenGL library code
only once on your machine and to use it for all OpenGL applications. This is achieved by using dynamic
link libraries. The Microsoft OpenGL dynamic link library is calEd opengl32.dll and comes by
default with all recent versions of the Windows operating system - Note that some application might
require the SGI version. In this case you have to download the file opengl .d11 from the web and put it
into the ‘system32’ folder.

On top of OpenGL we use two utility libraries called GLU and GLUT. The corresponding files are glu.h,
glu32.1ib,glu32.d1ll,and glut.h,glut32.1ib, glut32.d1l1, respectively. They are used
analogously to the corresponding OpenGL files. The files glu.1lib, glu.d1ll, glut.1lib, and
glut.dl1l are the SGI versions and are not used in this lecture.

1.3 Downloads:

The Microsoft versions of the above OpenGL and GLU files are available from the 372 Resources page or
from: http://www.opengl.org/users/downloads/index.html |

GLUT for windows (Microsoft version) is also on the 372 Resources page or at:
http://www.xmission.com/~nate/glut.html |

A useful site for installing OpenGL drivers (assuming you have an OpenGL video card) is:
http://www.glsetup.com/

After downloading OpenGL/GLU and GLUT put all .d11 files into the ‘system32’ directory (or ‘system’
for Windows95/98) and the .h and . 11ib files into a convenient directory from which you will add them
to your project (more on this in the next section).

" In Windows NT the file is in the folder ‘system32’ which is inside the folder ‘WINNT’. In Windows 98 it
is probably in the ‘system’ folder (haven’t checked, though, since we don’t have any computers running
Windows 98).

http://www.opengl.org/users/downloads/index.html
http://www.xmission.com/~nate/glut.html
http://www.glsetup.com/

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 5 of 9

1.4 An OpenGL Example:

1.4.1 An Example Program

The program below draws a red teapot (as a wireframe) into a 250x250 pixels big window with white
background.

Figure 1.2: The file ‘drawObjects.cpp’.

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 6 of 9

1.4.1 Building a Project

In order to execute this OpenGL program we have to create a console application as shown in the previous
section. Create a project named ‘OpenGLExample’, copy the source file ‘drawObjects.cpp’ into the
’OpenGLExample’ folder and then add the file to the project.

Alternative you can download the complete workspace with project from the 372 Resources page: unzip the
file ‘OpenGLExample.zip’, double click the workspace ‘OpenGLExample.dsw’ and type ‘CTRLAF5’ to
build and run your application.

When building an application the following two steps are performed:

1. Compilation: In this step first all include statements are replaced with the corresponding header
files. As a result your program knows all constants and functions defined in the header files. Next
your source files are compiled and any syntax errors are reported. If the compilation was succesful
object files (suffix ‘.0’) are created for each of your source files.

2. Linking: This step combines (links) your object code with any external libraries (such as
opengl32.1ib).

1.4.2 Including the OpenGL/GLU/GLUT libraries

Since the program in figure 1.2 makes use of OpenGL and GLUT commands, we have to tell our
application about these functions. This is achieved by first including the corresponding header files (suffix
.h), which contain constant definitions and function prototypes. In a subsequent step we have to link our
program with the libraries containing the actual implementations of the function prototypes.

The file ‘drawObjects.cpp’ contains four include files (the include commands in the file on the server are
slightly different and are explained in the next paragraph):

#include <windows.h>

#include "gl.h"

#include "glu.h" // not used in this example program
#include "glut.h"

The header file windows . h contains constants and function prototypes of the Graphic Device Interface
(GDI), which is at the core of all Windows graphics. Since the include file g1 . h makes use of some of the
GDI types and functions we have to include windows . h before g1 . h. The angle brackets (< and >)
around the header’s name indicate the header file is to be looked for on the system disk. When using
Microsoft Visual C++ then all predefined header files are stored in the directory “.../Microsoft Visual
Studio/VC98/Include”.

If the header file is written in double quotes, e.g. “gl . h” then it is stored in the current working directory.
In our example this assumes that g1 .h, glu.h and glut . h are stored in the same directory as the file
drawObjects. cpp.

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 7 of 9

A better way to include libraries:

Since it is very annoying to copy for each project the header files into the current working directory it is
preferable to put all header files of common libraries (such as OpenGL, GLU and GLUT) into a default
system directory.

In order to do this create in the directory “.../Microsoft Visual Studio/VC98/Include” a subdirectory ‘GL’
and copy into this directory the files g1 .h, glu.h and glut . h as shown in the image belowjﬁ(note that
unlike file names in Windows are not case-sensitive).

-ioix
File Edit ‘iew Favorites Tools Help |
Address |/ &L j s 4/ Back = =) - @ | @Search @ Folders @ | I% 2| Links
- % Eemovable Dii:'EE:g) = - Mame # | e | Type
- wieD01 on kahu' (F: L
(x Mew 1= Local Disk (G:) ﬁ @ GLH S7KB CHead
D Pragram Files e @ ELallk.H 12KB CHead
@ 5 [Micrasaft visusl Studio GL % GlLU': 18KB C Hea:
D VCag qgluk, 28FKE CHea
Search 1 tndlude Select an item ta wiew its description. 28| MSCREATE.DIR. 0KBE DIRFile
Inpengl a See also:
. @ Campact Disc (02 My Documents
Conta (30 Control Panel My Metwork Places
ST
I I My Metwark Places My Computer
Look i Al Recycle Bin H -BMOLLEr
ook in
& Internet Explarer - 4 |]
5 ohjecksy |123 KE |E.EJI My Computer v

Figure 1.3: MS Visual Studio folder for OpenGL header files.

You also have to change the include statements in the file ‘drawObjects.cpp’ accordingly:

#include <windows.h>
#include <gl/gl.h>

#include <gl/glu.h>
#include <gl/glut.h>

Figure 1.4: Include statements for OpenGL libraries as used in this lecture.

It remains to specify the libraries the project is using. To do this, select the item ‘Settings’ in the ‘Project’
menu. In the resulting pop-up window add the names of the libraries to the text box titled ‘Object/library
modules’. Click OK when you are finished. The image below gives an example.

* If you are using Microsoft Visual Studio in the lab then this has already been done. Most recent versions
of the Windows operating system include already g1 .h and glu.h and you only have to add glut . h.

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 8 of 9

2]

wWin32 Debug j General | Debug | C/C++ Link | Hesuurc(: EE

BiE| OpenGLE xample
Bl OpenGLExampl Resst |

Settingz For:

Cutput file name:

IDebug.-’El penlGLE Rample.exe

Objectlibram modules:
i-u_pengIEE.IiI:u glu32 ik glut32. ik kernel32 lib user3d2 lib gdi32

¥ Generate debuginfo [lonore all default libraries
¥ Link incrementally [Generate mapfile
[~ Enable profiling

Project Options:

opengl32.lib gludZ lib glut32.lib kernel32 b uzerd2lib - &
gdi32 ik winzpool b comdlg32.lib advapid2.lib
zhell22.lib ole32.lib oleaut32 lib uuid.lib odbe32 lib j

QFk. I Cancel |

Figure 1.5: Using the project settings to add library modules.

If you specify the libraries with their name only, as done above, the linker will search both in the working
directory of your project and in certain system directories. Rather than putting all libraries into your
working directory it is a good idea to copy them into the folder “.../Microsoft Visual Studio/VC98/Lib” as
shown below.

o
File Edt View Favorites Tools Help |
Address [Lib x| @6 | Bk - = - (24 || Qhsearch [yFolders £ | EE X | Links
cearch g I'_:cal DiS:l ([E)) (e =] =1 | pame ¢ I Size I Type I MD:I
- emovable Disk (E: L]
GDIE2.LIE S0KE LIE File 51
Mew| ' '{F: ﬁ
< g f;vcue:g:?slko(g-l)ﬁhu « . et 1,282 KB LIE File 511
fl s (1 Frogram Files Lib =] GLU3Z L6 13KE LIE File 51—
[Z1 Micrasoft Yisual Studio glut32.lib 29KB LIEFie 1
Search 1 weos Select an item to view its [#]GTRTST32,LIE 23KE LIE File 1P
p— am description, :
| &8 compact Disc (01 ee also: [OPENDSE0.LIE Z7KE LI File 511
Contai (5 Control Panel My Diocuments _I[m]oPENGL3Z.LIE 4KB LIBFie si1_
I :‘_ 2 My Network Places My Nahwark Places v| I;. AERTE | TE 14 e 1 TE Sl I :_’.I'_I
Al Recycle Bin
295 objec| @ Inkernet Explorer | 41,4 ME =ty Computer 4

Figure 1.6: MS Visual Studio folder for include-libraries.

Alternatively you can specify the path to the library. For example, if the library glut32.11b is in the
root directory of the disk G than you must type in the project settings ‘G:/glut32.1ib’. Note, however that
this is bad style and won’t be accepted by the markers. The machines in the lab are set up as shown in

figure 1.3 and figure 1.6. This means that the OpenGL header files are always included as shown in figure
1.4.

3/4/2002 Burkhard Wiinsche — Introduction to C/C++ Page 9 of 9

NOTE: Ifyouinclude <glut .h> and put the library files into the “VC98/LIB” director as shown above
then you don’t have to specify the library modules in the project settings as shown in figure 1.4.
The reason for this is that the file glut . h from the 372 Resources page contains the
preprocessor directives shown below, which include the libraries during compilation:

/* To enable automatic SGI OpenGL for Windows library usage for GLUT,
define GLUT_USE_SGI_OPENGL in your compile preprocessor options. */

ifdef GLUT USE SGI OPENGL

pragma comment (lib, "opengl.lib") /* link with SGI OpenGL for Windows lib */

pragma comment (lib, "glu.lib") /* link with SGI OpenGL Utility lib */

pragma comment (lib, "glut.lib") /* link with Win32 GLUT for SGI OpenGL lib */
else

pragma comment (lib, "opengl32.lib") /* link with Microsoft OpenGL lib */

pragma comment (lib, "glu32.1lib") /* link with Microsoft OpenGL Utility lib */
pragma comment (lib, "glut32.1lib") /* link with Win32 GLUT lib */

endif

endif

You can now built your project (i.e. compile and link it) by selecting the corresponding menu item or by
pressing F7 (see section 1). Execute your application (CTRL+FS5) and you will get as output a window
displaying a red teapot as shown below.

E2My first OpenGlL progra - |I:I|i|

