
Tiered Vectors: Efficient Dynamic Arrays for

Rank-Based Lists

Michael T. Goodrich

Dept. of Computer Science, Univ. of California, Irvine, CA 92697-3425.

Email: goodrich(at)ieee.org.

and

John Kloss II

Inst. of Genetic Medicine, Johns Hopkins Univ., Baltimore, MD 21205.

Email: John.Kloss(at)jhmi.edu.

1. INTRODUCTION

An array is perhaps the most primitive data structure known; it is hard to imagine
any non-trivial program that does not use one. Almost all high-level languages
and assembly languages have some built-in concept for accessing elements by their
indices in an array. But an array is a static data type; it does not allow for
element insertions and deletions, just element replacements and accesses. There is
nevertheless a great need for dynamic arrays as high-level programming structures,
for they can free a programmer from having to artificially constrain his or her set of
elements to be of a certain fixed size. This is in fact the motivation for the inclusion
of a dynamic array data type in the Java language.

The Vector/Rank-Based-List Abstract Data Type. A Vector, or Rank-
Based List, is a dynamic sequential list of elements (e.g., see [8]). Each element e
in a vector is assigned a rank, which indicates the number of elements in front of e
in the vector. Rank can also be viewed as a current “address” or “index” for the
element e. If there are n elements currently stored in a rank-based list, S, then
a new element may be inserted at any rank r in {0, 1, 2, . . . , n}, which forces all
elements of rank r, . . . , n − 1 in S to have their respective ranks increased by one
(there are no such elements if r = n, of course). Likewise, an existing element may
be removed from any rank r in {0, 1, 2, . . . , n−1}, which forces all elements of rank
r + 1, . . . , n− 1 in S to have their respective ranks decreased by one. Formally, we
say that the data type Vector or Rank-Based List (we use the terms interchangably)
support the following operations:

insertElemAtRank(r,e):. Insert an element e into the vector at rank r.

removeElemAtRank(r):. Remove the element at rank r and return it.

elemAtRank(r):. Retrieve the element e at rank r.

Standard Implementations. There are two standard implementations of the
Vector abstract data type (ADT). In the most obvious implementation we use an
array S to realize the vector. To retrieve an element of rank r from this vector

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·
we simply return the element located at the memory address S[r]. Thus, accesses
clearly take constant time. Insertions and deletions, on the other hand, require
explicit shifting of elements of rank above r. Thus, a vector update at rank r takes
O(n − r + 1) time in this implementation, assuming that the array does not need
to grow or shrink in capacity to accommodate the update. Even without a growth
requirement, the time for a vector update is O(n) in the worst case, and is O(n)
even in the average case. If the array is already full at the time of an insertion,
then a new array is allocated, usually double the previous size, and all elements are
copied into the new array. A similar operation is used any time the array should
shrink, for efficiency reasons, because the number of elements falls far below the
array’s capacity. This is the implementation, for example, used by the Java Vector
class.

The other standard implementation uses a balanced search tree to maintain a
rank-based list, S. In this case ranks are maintained implicitly by having each
internal node v in the search structure maintain the number of elements that are
in the subtree rooted at v. This allows for both accesses and updates in S to
be performed in O(log n) time. If one is interested in balancing access time and
update time, this is about as good an implementation as one can get, for Fredman
and Saks [5] prove an amortized lower bound of Ω(log n/ log log n) in the cell probe
model for accesses and updates in a rank-based list.

In this paper we are interested in the design of data structures for realizing rank-
based lists so as to guarantee constant time performance for the elemAtRank(r)
operation. This interest is motivated by the intuitive relationship between the
classic array data structure and the Vector abstract data type. Constant time
access is expected by most programmers of a Vector object. We therefore desire
as fast an update time as can be achieved with this constraint. Our approach to
achieving this goal is to use a multi-level dynamic array structure, which we call
the “tiered vector.”

Relationships to Previous Work. There are several hashing implementa-
tions that use a similar underlying structure to that of the tiered vector, although
none in a manner as we do or in a way that can be easily adapted to achieve the
performance bounds we achieve. Larson [3] implements a linear hashing scheme
which uses as a base structure a directory that references a series of fixed size sege-
ments. Both the directory and segements are of size l = 2k allowing the use of a
bit shift and mask operation to access any element within the hash table. However,
Larson’s method is a hashed scheme and provides no means of rank-order retrieval
or update.

Sitarski [10] also uses a sk fixed size directory-segement scheme for dynamic hash
tables, which he terms “Hashed Array Trees.” His method provides an efficient
implementation for appending elements to an array, but does not provide an efficient
method for arbitrary rank-based insertion or deletion into the array.

Independent with a preliminary announcement of this paper [7], Brodnik et al. [4]
present a resizable array data structure that achieves constant access and update
times for traditional array operations (but not rank-based insert and delete), using
O(
√

n) additional storage. They do not provide an experimental analysis, however.

Our Results. We present an implementation of Vector ADT using a data

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

structure we call the “tiered vector.” This data structure provides, for any fixed
constant ε > 0, worst-case time performance of O(1/ε) for the elemAtRank(r)
method, while requiring only O(nε) amortized time for the insertElemAtRank(r,e)
and removeElemAtRank(r) methods (which sometimes run much faster than this,
depending on r). Intuitively, keeping access times constant means we are essentially
maintaining ranks explicitly in the representation of the vector. The main challenge,
then, is in achieving fast update times under this constraint.

Besides providing the theoretical framework for the tiered vector data structure,
we also provide the results of extensive experiments we performed in JDSL [6;
2], the Data Structures Library in Java, on the tiered vector for ε = 1/2. These
results show, for example, that such a structure is competitive with the standard
Java implementation for element accesses while being significantly faster than the
standard Java Vector implementation for rank-based updates.

2. A RECURSIVE DEFINITION OF THE TIERED VECTOR

We define the tiered vector recursively. We begin with the base case, V 1, a 1-level
tiered vector.

A 1-Level Tiered Vector. The base component, V 1, of the tiered vector
is a simple extension of an array implementation of the well-known deque ADT.
(The deque (or double-ended queue) is described, for example, by Knuth [9] as a
linear list which provides constant time insert and delete operations at either rank
the head or tail of this list.) This implementation provides for constant-time rank-
based accesses and allows any insertion or deletion at rank r to be performed in
O(min{r, n− r} + 1) time.

We use an array A of fixed size l to store the elements of the rank-based list S. We
view A as a circular array and store indices h and t which respectively reference the
head and tail elements in the list. Thus, to access the element at rank r we simply
return A[h + r mod l], which clearly takes O(1) time. To perform an insertion at
rank r we first determine whether r < n− r. If indeed r < n− r, then we shift each
element of rank less than r down by 1; i.e., for i = h, . . . , h + r− 1 mod l, we move
A[i] to A[i+ l−1 mod l]. Altnernatively, if r ≥ n− r, then we shift each element of
rank greater than or equal to r up by 1. Whichever of these operations we perform,
we will have opened up the slot at rank r, A[h + r mod l], where we can place the
newly inserted element. (See Figure 1.) Of course, this implementation assumes
that there is any empty “slot” in A. If there is no such slot, i.e., n = l, then we
preface our computation by allocating a new array A of size 2l, and copying all the
elements of the old array to the first l slots of the new array.

Element removals are performed in a similar fashion, with elements being shifted
up or down depending on whether r < n − r or not. We can optionally also try
to be memory efficient by checking if n < l/4 after the removal, and if so, we can
reallocate the elements of A into a new array of half the size. This implementation
gives us the following performance result:

Lemma 1. A 1-level tiered vector, V 1 can be maintained as a rank-based list S
such that any access is performed in O(1) worst-case time and any update at rank
r is performed in O(min{r, n− r} + 1) amortized time.

Proof. We have already described why accesses run in constant time and why

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·

(a)

6

h

3 2

0 1 2 3

(b)

6� �

h

0 1 2 3

2 3 0

(c)

0 1 2 3

1 2 3 0

6
�

2

6
�

3

6

h

Fig. 1. A 1-level tiered vector V implemented with an array A of capacity 4. (a) An initial state:
V = (2, 3); (b) Element 0 is added at rank 0, so V = (0, 2, 3), which causes the head pointer to
move in A, but no shifting is needed; (c) Element 1 is added at rank 1, so V = (0, 1, 2, 3), which
causes 2 and 3 to shift up in A.

an update at rank r runs in time O(min{r, n− r}+ 1) if no resizing is needed. The
amortized bound follows from two simple observations, by using the accounting
method for amortized analysis (e.g., see [8]). First, note that any time we perform
a size increase from l to 2l we must have done l insertions since the last resizing.
Hence, we can charge growth resizing (which takes O(l) time) to those previous
insertions, at a constant cost per insertion. Second, note that any time we perform
a size decrease from l to l/2 we must have done l/4 removals since the last resizing.
Thus, we can charge growth resizing to those previous removals, at a constant cost
per removal. This gives us the claimed amortized bounds.

Note in particular that insertions and removals at the head or tail of a list S run
in constant amortized time when using a 1-level tiered vector V 1 to maintain S.

The General k-Level Tiered Vector. The k-level tiered vector is a set of m
indexable (k − 1)-level tiered vectors, {V k−1

0 , V k−1
1 , . . . , V k−1

m−1}. Each V k−1
i vector

is of exact size l where l = 2k for some integer parameter k, except possibly the first
and last non-empty vectors, which may hold fewer than l elements. The vectors
themselves are stored in a 1-level tiered vector, V , which indexes the first non-
empty vector to the last non-empty vector. The total number of elements a tiered
vector may hold before it must be expanded is lm, and the number of non-empty
V k−1

i vectors is always at most bn/lc+ 2.
Element Retrieval. Element retrieval in a tiered vector is similar to methods

proposed by Larson [3] and Sitarski [10], complicated somewhat by double-ended
nature of the top level of the vector V . To access any element of rank r in the
k-level tiered vector V k we first determine which V k−1

i vector contains the element

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

in question by calculating i ← d(r − l0)/le, where l0 is the number of elements in
the first non-empty vector in V (recall that we always begin vector indexing at 0).
We then return the element in V k−1

i by recursively requesting the element in that
vector of rank r if i = 0 and rank r − (i− 1)l − l0 otherwise.

Element Insertion. Insertion into a tiered vector is composed of two phases:
a cascade phase and a recursive phase. In the cascade phase we make room for the
new element by alternately popping and pushing elements of lower-level queues to
the closest end of the top-level vector, and in the recursive phase we recursively
insert the new element into the appropriate (k − 1)-level vector on the next level
down.

Let us describe the cascade phase in more detail. Without loss of generality, let
us assume that r ≥ n− r, so we describe the cascade phase as a series of pops and
pushes from the (k−1)-level vector currently containing the rank-r element in V to
the last non-empty (k−1)-level vector in V . (The method for popping and pushing
to the front of V when r < n − r is similar, albeit in the opposite direction.) We
begin by first determining the (k − 1)-level vectors in which the elements at rank
r and rank n − 1 are located, where the element of rank n − 1 indicates the last
element in the tiered vector. Term these vectors as V k−1

sub and V k−1
end , respectively.

These vectors are used as the bounds for a series of pair-wise pop-push operations.
For each vector V k−1

i , sub ≤ i < end, we will pop its last item and push it onto
the beginning of the vector V k−1

i+1 . Each such operation involves an insertion and
removal at the beginning or end of a (k − 1)-level tiered vector, which is a very
fast operation, as we shall show each such operation takes only O(k) time. Since
there are a total of m vectors this cascading phase requires a maximum of O(mk)
operations.

V k−1
sub

V k−1
sub+1

V k−1
sub+2

V k−1
sub+3

0 2 3 4 5 6 7 8 9 10 11 12

6
h0

6
h1

6
h2

V k−1
sub

V k−1
sub+1

V k−1
sub+2

V k−1
sub+3

0 2 3 4 5 6 7 8 9 10 11 12

6� �
2

6� �
3

6� �
4

6� �
8

6� �
12

V k−1
sub

V k−1
sub+1

V k−1
sub+2

V k−1
sub+3

0 1 2 3 5 6 7 4 9 10 11 8 12

6
h0

6
h1

6
h2

6
h3

Fig. 2. Insertion of element 1 at rank r in a 2-level tiered vector.

In the recursive phase we simply recursively insert the element into V k−1
sub at

the appropriate rank r′ (which is determined as described in the element retrieval
description above). (See Figure 2.) Thus, if we let Ik(r, n) denote the running time

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·
of inserting an element of rank r in a tiered vector of size n, then, assuming no
resizing is needed, the total running time for this insertion is:

Ik(r, n) ≤ br/lcIk−1(1, l) + Ik−1(r
′, l).

This implies that Ik(1, n) is O(k). More generally, we can show the following:

Lemma 2. Insertion into a k-level tiered vector where expansion is not required
can be implemented in O(min{dr/n1/ke, k2n1/k, d(n− r)/n1/ke}+ k) time.

Proof. If we choose l to be O(n
k−1

k), and maintain m to be O(dn/le), then

Ik(r, n) is O(min{dr/n1/ke, k2n1/k, d(n− r)/n1/ke}+ k),

by an induction argument that we leave to the reader.

Note that if r = 1, then the above time bound for insertion is O(k). Also note
that if k ≥ 1 is any fixed constant, then this bound is O(n1/k) for any r. Throughout
the remainder of our algorithmic description we are going to maintain that the size
m of the top-level vector is O(n1/k).

Resizing During an Insertion. A special case occurs when the number of
elements in the tiered vector, n equals the maximum space provided, ml. In this
case the data structure must be expanded in order to accomodate new elements.
However, we also wish to preserve the structure of the tiered vector in order to
insure that the size, l, of the sublists is kept at O(nk−1/k). We achieve this by
first reseting the fixed length l to l′ ← 2l and then creating a new set of l′-sized
(k − 1)-level tiered vectors under the top-level vector V . We do this by recursively
merging pairs of subvectors, so that the size of each subvector doubles in size. This
implies, of course that number of non-empty (k− 1)-level subvectors of V becomes
m′ = 1

4
l′. The total time for performing such a resizing is O(n), assuming that m

is O(n1−δ) for some constant δ > 0, which is the case in our implementation. As in
our description of expansions needed for a 1-level tiered vector, this linear amount
of work can be amortized to the previous n/2 insertions, at a constant cost each.
Thus, we have the following:

Theorem 3. Insertion into a k-level tiered vector can be implemented in amor-
tized time O(min{dr/n1/ke, k2n1/k, d(n− r)/n1/ke}+ k).

V k−1
0 V k−1

1 V k−1
2 V k−1

3

2 3 0 1 5 6 7 4 11 8 9 10 12

6
h0

6
h1

6
h2

6
h3

V k−1
0

V k−1
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

6
h0

6
h1

Fig. 3. Expansion and reordering of a 2-level tiered vector..

Expansion is demonstrated in Figure 3, where a 2-level tiered vector of fixed
subarray size 4 is expanded into a 2-level tiered vector of subarray size 8.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

Element Deletion. Deletion is simply the reverse of insertion and uses a
similar cascade and recursive process. Without loss of generality, let us again assume
that r ≥ n − r, so that any casing we need to perform is for ranks greater than
r. As with the insertion operation, we begin by determining in which subvectors
the elements at rank r and rank n− 1 are located and term these subarrays V k−1

sub

and V k−1
end . Then for each pair of subarrays, V k−1

i and V k−1
i+1 , sub ≤ i ≤ end, we

will pop the head of V k−1
i+1 and push it onto the tail of V k−1

i . Since this process
is simply the reverse of insert’s cascade phase, we are guaranteed a maximum of
O(m) operations.

During the second phase we perform a recursive removal in V k−1
sub to close up the

space vacated by the removed element. This implies a running time for deletion,
without resizing, that is essentially the same as that for insertion.

A special case of delete occurs when the number of elements remaining in the
tiered vector equals 1

8
ml. At this point we must reduce the size of the tiered vector

inorder to preserve the desired asymptotic time bounds for both insertions and
deletions. We first reset the fixed length l to l′ ← 1

2
l and then create a new set

of size-l′ subvectors, by a recursive splitting of the (k − 1)-level subvectors. Note
that by waiting until the size of a tiered vector goes below 1

8
ml to resize, we avoid

having resizing operations coming “on the heals” of each other. In particular, if we
do perform such a shrinking resizing as described above, then we know we must
have performed n/4 deletions since the last resizing; hence, may amortize the cost
of this resizing by charging each of those previous deletions a constant amount.
This give us the following:

Theorem 4. Insertion and deletion updates in a k-level tiered vector can be
implemented in amortized time O(min{dr/n1/ke, k2n1/k, d(n− r)/n1/ke}+ k) while
allowing for rank-based element access in O(k) worst-case time.

3. IMPLEMENTATION DECISIONS AND EXPERIMENTS

We implemented the scheme described above for k = 2 and performed several
experiments with this implementation to test various design decisions. Our imple-
mentation used JDSL [6; 2], the Data Structures Library in Java developed as a
prototype at Brown and Johns Hopkins University. This implementation was tested
against the two best-known Java vector implementations: the Java vector imple-
mentation that is a part of the standard Java JDK language distribution and the
dynamic array implementation included in JGL [1], the Generic Library in Java.
All of our experiments were run on a Sun Sparc 5 computer in single-user mode.

Since our experimental setup used k = 2 we made a simplifying modfication in
the definition of the tiered vector so that the top-level vector is a standard vector
list S and each vector below it is also a standard vector list Si. Moreover, we
maintain each subvector Si to have size exactly l except possibly the very last non-
empty vector. This allows us to simplify the access code so that searching for an
element of rank r simply involves computing the index i ← dr/le of the vector
containing the search element and then computing r− il as the rank in that vector
to search for. Moreover, we maintain the number of possible bottom-level vectors
in S to be a power of two, so that we may use a bit shifting and masking instead
of division to determine which subvector Si holds the rank r element. By storing

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·
the shift and bit mask values we can reduce the number of operations required to
retrieve an element from a tiered vector to only two, thus holding access time to
only twice that of normal array-based vector retrieval. These modifications have
negligable effects on asymptotic running times, but they nevertheless proved useful
in practice.

Subvector Size Test. The choice of size for subvectors in a 2-level tiered
vector has significant impact on its performance. The following test demonstrates
the optimal subvector size for the tiered vector. Initially we start with a subvector
size of ten and for each successive test we increase the subvector size by ten up
to ten thousand. For each test we preinsert ten thousand elements into the tiered
vector and then time how long it takes to insert one hundred elements at the head
of this vector. Thus for the first tests the majority of the time for insertion is spent
in cascade operations whereas for the final tests the majority of the time is spent in
recursive shift operations in subvectors. Each test is run ten times and the resulting
time represents the average of these tests.

Theoretically, the optimal subvector size should be near 100; however, the per-
fomance graph of Figure 4 shows the actual optimal size is near 750. The likely
reason for these results is that the cascade operations are computationally more
expensive than the recursive shifting operations.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
i
m
e

i
n

M
i
l
l
i
s
e
c
o
n
d
s

Size of tiered vector’s subarrays

Fig. 4. Results of the subvector size experiment. Note that small sizes are very inefficient, but
this inefficiency falls fast as the subarray size grows, it reaches an optimal value at 750 and then
slowly rises after that.

Access Test. The cost of performing an access in a tiered vector should clearly
be higher than that of a simple vector, but a natural question to ask is how much
worse is the 2-level tiered vector than a standard vector. The following test demon-
strates the time taken to retrieve the first one hundred elements from a tiered

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

vector, a Java Vector, and a JGL Array. In each successive test a set number of
elements is preinserted into each vector, starting at one hundred elements and in-
creasing in number each successive test by one hundred element increments up to
ten thousand. We then test to see how much time it takes to retrieve the first one
hundred elements from each vector. Each test is run one hundred times and the
resulting times represent the averages of these tests. The choice of the first one
hundred elements for retrieval was arbitrary. The results are shown in Figure 5.

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

T
i
m
e

i
n

M
i
l
l
i
s
e
c
o
n
d
s

Number of Elements in Vector

Tiered Vector
Java Vector
JGL Array

Fig. 5. Access times in tiered vectors and standard vectors. Note that the access times for tiered
vectors are comparable with those for JGL arrays and only slightly worse than those for Java
Vectors.

Insertion Test. The claimed performance gain for tiered vectors is in the
running times for element insertions and deletions. The following test demonstrates
the time taken to insert one hundred elements at the head of a tiered vector, a Java
Vector, and a JGL Array. The testing procedures are the same as the access test
above. The choice of inserting at the head of each vector was to demonstrate worst
case behavior in each.

Regarding the odd, step like behavior of the tiered vector, we note that sudden
drops in insertion time occur when the vector initially contains near 64, 256, 1024,
and 4098 elements. At these points the tiered vector is full and forced to expand,
increasing it’s subvector size by a factor of four. This expansion therefore reduces
the initial number of cascade operations required for new insertions by a like factor
of four. However, as the number of elements in the tiered vector increases the
number of cascade operations increase linearly until the next forced expansion.
The full results are shown in Figure 6.

Deletion Test. The following test demonstrates the time taken to remove one
hundred elements from the head of a tiered vector, a Java Vector, and a JGL Array.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
i
m
e

i
n

M
i
l
l
i
s
e
c
o
n
d
s

Number of Elements in Vector

Tiered Vector
Java Vector
JGL Array

Fig. 6. The results for element insertions. The running times for standard vectors grow linearly,
as expected, while those for tiered vectors are significantly faster.

The testing procedures are the same as the access test. The choice of deleting at
the head of each vector is to demonstrate worst case behavior in each. The step
like behavior of the tiered vector represents points of contraction, similar to the
behavior in the insert tests. After a contraction the number of cascade operations
required for deletion increases by a factor of four and gradually decreases as more
elements are removed. The full results are shown in Figure 7.

Random Test. The following test demonstrates the time taken to insert one
hundred elements randomly into a tiered vector, Java Vector, and JGL Array. The
testing procedures are similar to the access test. During testing the vectors received
the same set of random numbers to insert, though a different set of random numbers
was generated for each test. Random numbers ranged from zero to the number of
elements contained in the vector prior to testing. The results are given in Figure 8.

Acknowledgements

We would like to thank Rao Kosaraju and Roberto Tamassia for several helpful
comments regarding the topics of this paper. A preliminary version of this paper
appeared as [7]. The work of this paper was partially supported by the National
Science Foundation under grant CCR-0098068.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

0

10

20

30

40

50

60

70

80

90

100

110

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
i
m
e

i
n

M
i
l
l
i
s
e
c
o
n
d
s

Number of Elements in Vector

Tiered Vector
Java Vector
JGL Array

Fig. 7. The running times for deletion. The performance of tiered vectors is slightly inferior
to standard vectors for small-sized lists, but is consistently superior for lists of more than 4096
elements.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
i
m
e

i
n

M
i
l
l
i
s
e
c
o
n
d
s

Number of Elements in Vector

Tiered Vector �

���������������������
�������������

������������������������������
������������������������

������������

Java Vector +

+++++
++++

+++++++++
++++

++++
++++

++++
++++

++++++++
+++++

+
+
+

++
+
+
++++++

+++++++++
+
+
+
+
+

++++
+

++
++

+
+
+
++

+

++
++

+++

JGL Array ∗

∗∗
∗∗
∗
∗∗
∗
∗∗
∗
∗∗
∗
∗
∗∗∗

∗∗∗
∗∗∗

∗∗

∗
∗
∗
∗
∗
∗

∗

∗
∗
∗∗
∗

∗
∗∗

∗∗

∗
∗∗
∗

∗

∗

∗∗
∗

∗

∗

∗
∗

∗

∗

∗∗
∗
∗
∗

∗

∗
∗∗∗

∗∗

∗
∗∗

∗

∗

∗

∗

∗

∗
∗∗
∗

∗

∗

∗

∗
∗

∗

∗

∗

∗
∗

∗

∗
∗

∗
∗

∗∗
∗

Fig. 8. Performance for random insertions. In this case the Java vector is superior to JGL’s arrays,
but the tiered vector is significantly faster than both.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·
REFERENCES

Generic programming with JGL. http://www.recursionsw.com/jgl.htm.

JDSL: the data structures library in Java. http://jdsl.org.

P. Ȧke Larson. Dynamic hash tables. Communications of the ACM, 31(4), April 1988.

A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick. Resizable arrays in
optimal time and space. In Workshop on Algorithms and Data Structures (WADS), pages
37–48, 1999.

M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data structures. In
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages
345–354, Seattle, Washington, 15–17May 1989.

M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia. Accessing the internal organization
of data structures in the JDSL library. In Proc. Workshop on Algorithm Engineering and
Experimentation, volume 1619 of Lecture Notes Comput. Sci. Springer-Verlag, 1999.

M. T. Goodrich and J. Kloss II. Tiered vectors: Efficient dynamic arrays for rank-based se-
quences. In Workshop on Algorithms and Data Structures (WADS), Lecture Notes Comput.
Sci., pages 205–216. Springer-Verlag, 1999.

M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet
Examples. John Wiley & Sons, New York, NY, 2002.

D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.
Addison–Wesley, 3 edition, 1997.

E. Sitarski. Algorithm alley: HATs: Hashed array trees. Dr. Dobb’s Journal, 21(11), September
1996.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

A. PSEUDO CODE FOR ELEMENT INSERTION AND REMOVAL

We give below detailed pseudo-code for insertion and removal of elements in a two-
level tiered vector. In this simple case the vectors in each level are array-based
lists.

procedure InsertElemAtRank(r,e)
if r > number of elements or r < 0 then

error “Index Out of Bounds”
if number of elements > max space

Expand()
sub← br/l c
end← bn/l c
if sub < end then

head← removeLast(Ssub)
tail← null
i← sub + 1
foreach Si, i < end

tail← removeLast(Si)
insertFirst(Si,head)
head← tail
i← i + 1

insertFirst(Send,head)
r′ ← (hsub + r) mod l
if hsub = 0 or r′ < hsub then

Shift all elements in Ssub of rank
greater than or equal to r′ and less
than (|Ssub| − r′) mod l to the right
by one

else
Shift all elements in Ssub of rank less
than r′ and greater than or equal to
hsub to the left by one

Ssub[r
′]← e

The insertElemAtRank method.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·
procedure RemoveElemAtRank(r)

if r ≥ number of elements or r < 0 then
error “Index Out of Bounds”

if number of elements < 1
8
max space

Compress()
sub← dr/le
end← dn/ le
r′ ← (hsub + r) mod l
ret← Ssub[r

′]
head← null
tail← null
if sub < end then

i← end
foreach Si, i > sub

head← removeFirst(Si)
insertLast(Si,tail)
tail← head
i← i− 1

if hsub = 0 or r′ < hsub then
Shift all elements in Ssub of rank r′+1
to hsub + |Ssub| to the left by one

else
Shift all elements in Ssub of rank
greater than or equal to hsub and less
than r′ to the right by one
hsub ← hsub + 1

return ret

The removeElemAtRank method.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

We also give below pseudo-code descriptions of the expand and contract opera-
tions for a 2-level tiered vector.

procedure Expand()
l′ ← 2l
S′ ← new set of arrays of size l′ where each

array S′

i in S′ is of size l′

foreach S′

i in S′
realign rank order in S2i to match indices
realign rank order in S2i+1 to match in-
dices
S′

i ← S2i ∪ S2i+1

h′

i ← 0
S ← S′
l ← l′

The Expand method.

procedure Compress()
l′ ← 1

2
l

S′ ← new set of arrays of size l′ where each
array S′

i in S′ is of size l′

foreach Si in S
realign rank order in Si to match indices
S′

2i ← ranks 0, 1, . . . , 1
2
(l − 1) in Si

S′

2i+1 ← ranks 1
2
l, 1

2
(l + 1), . . . , l in Si

h′

2i ← 0
h′

2i+1 ← 0
S ← S′
l ← l′

The Compress method.

ACM Journal Name, Vol. V, No. N, Month 20YY.

