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You’re older than you’ve ever been and now you’re even older
And now you’re even older

And now you’re even older

You’re older than you’ve ever been and now you’re even older
And now you’re older still

— They Might be Giants, "Older”, Mink Car (1999)

2 Static-to-Dynamic Transformations

A search problem is abstractly specified by a function of the form Q: 2 x 27 — .of, where 9 is a
(typically infinite) set of data objects, & is a (typically infinite) set of query objects, and .« is a
set of valid answers. A data structure for a search problem is a method for storing an arbitrary
finite data set D C 9, so that given an arbitrary query object x € &, we can compute Q(x, D)
quickly. A static data structure only answers queries; a dynamic data structure also allows us to
modify the data set by inserting or deleting individual items.

A search problem is decomposable if, for any pair of disjoint data sets D and D’, the answer
to a query over D U D’ can be computed in constant time from the answers to queries over the
individual sets; that is,

Q(x,DUD")=Q(x,D)>Q(x,D")

for some commutative and associative binary function ¢: ./ x .o/ — . that can be computed
in O(1) time. I'll use L to denote the answer to any query Q(x, &) over the empty set, so that
a¢ol =1¢a=aforall a e.«. Simple examples of decomposable search problems include the
following.

* Dictionary: Data objects and query objects have the same arbitrary type; a query asks
whether a query object x is a member of the data set D. Here, .«f is the set of booleans,
o=V, and 1 = FALSE.

* Range minimum queries: Data objects are elements of some totally ordered universe %,
stored in an array A[1..n], and query objects are pairs (i, j) of indices where i < j; a
query asks for the minimum element of the subarray A[i .. j]. Here, .o/ = %, ¢ = min, and
1l =o0.

* Rectangle counting: Data objects are points in the plane; query objects are rectangles; a
query asks for the number of points in a given rectangle. Here, .&/ =N, ¢ =+, and L = 0.

* Nearest neighbor: Data objects are points in some metric space; query objects are points
in the same metric space; a query asks for the distance from a given query point to the
nearest point. Here, ./ is the set of non-negative real numbers, ¢ = min, and 1 = co.

* Triangle emptiness: Data objects are points in the plane; query objects are triangles; a
query asks whether any data point lies in a given query triangle. Here, ./ is the set of
booleans, ¢ =V, and L = FALSE.

* Interval stabbing: Data objects are intervals on the real line; query objects are points on
the real line; a query asks for the subset of data intervals that contain a given query point.
Here, .«f is the set of all finite sets of real intervals, ¢ = U, and L = @.



Advanced Data Structures Static-to-Dynamic Transformations Spring 2025

2.1 Insertions Only (Bentley and Saxe* [3])

First, I'll describe a general transformation that adds the ability to insert new data objects into
a static data structure, originally due to Jon Bentley and his PhD student James Saxe* [3].
Suppose we have a static data structure that can store any set of n items in space S(n), after
P(n) preprocessing time, and answer an arbitrary query in time Q(n). We will construct a
new data structure with size S’(n) = 0(S(n)), preprocessing time P’(n) = O(P(n)), query time
Q’(n) = O(logn) - Q(n), and amortized insertion time I'(n) = O(logn) - P(n)/n. In the next
section, we will see how to achieve this insertion time even in the worst case.

Our data structure consists of ¢ = |lgn] levels Ly, L1, ...,Ly;_;. Each level L; is either empty
or a static data structure storing exactly 2 items. Observe that for any value of n, there is a
unique set of levels that must be non-empty, specified by the 1s in the binary representation of n.
To answer a query, we perform queries in every non-empty level and combine the results. (This
is where we require the queries to be decomposable.) For simplicity, the following pseudocode
assumes that QUERY(x, L;) returns L if L; is empty; recall that ans ¢ | = ans.

NEWQUERY(X):

ans «— 1
fori—0tol—1

ans « ans ¢ QUERY(x, L;)
return ans

The total query time is clearly at most Zf;é Q(2Y) < £ -Q(n) = 0(logn) - Q(n), as claimed.
Moreover, if Q(n) > n® for any ¢ > 0, the sum is a geometric series dominated by its largest term,
so the total query time is actually O(Q(n)).

The insertion algorithm follows the standard algorithm for incrementing a binary counter,
where the presence or absence of each L; plays the role of the ith least significant bit. We find
the smallest empty level k; build a new data structure L, containing the new item and all the
items stored in Ly, Ly, ... Li_;; and finally discard all the levels smaller than L;. See Figure 1 for
an example.

INSERT(X):

Find minimum k such that L, =&
Ly — {x}ulJ; Li ((takes P(2¥) time))
fori —0tok—1

destroy L;

During the lifetime of the data structure, each item will take part in the construction of Ign
different data structures. Thus, if we charge

lgn

I'(n) = Z P(2) = O(logn)%n).

i
i=0 2

for each insertion, the total charge will pay for the cost of building all the static data structures.
If P(n) > n'*¢ for any £ > 0, the amortized insertion time is actually O(P(n)/n).
2.2 Lazy Rebuilding (Overmars* and van Leeuwen [5, 4])

We can modify this general transformation to achieve the same space, preprocessing, and query
time bounds, but now with worst-case insertion time I’(n) = O(logn) - P(n)/n, using a technique
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J
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U
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U
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U

|ABCDEFGHIJKLMNOPQRSTUVWXYZO12345||Z|

Figure 1. The 27th through 33rd insertions into a Bentley/Saxe data structure

called lazy rebuilding. Obviously we cannot get fast updates in the worst case if we are ever
required to build a large data structure all at once. The key idea is to stretch the construction
time out over several insertions.

As in Bentley and Saxe’s amortized structure, we maintain £ = [Ign] levels. But now each
level i consists of four static data structures: Oldest;, Older;, Old;, and New;. Each of the “old”
data structures is either empty or contains exactly 2! items; moreover, if Oldest; is empty then so
is Older;, and if Older; is empty then so is Old;. The fourth data structure New; is either empty
or a partially built structure that will eventually contain 2! items. Every item is stored in exactly
one “old” data structure (at exactly one level) and at most one “new” data structure.

The query algorithm is almost unchanged; we separately query every old data structure and
combine the results. (The new structures are used only to suppose insertions.)

NEWQUERY(X):

ans «— L

fori«—0tol—1
ans « ans ¢ QUERY(x, Oldest;)
ans « ans ¢ QUERY(x, Older;)
ans « ans ¢ QUERY(x, Old;)

return ans

(Again, this pseudocode assumes that QUERY(x,@) = L.) As before, the new query time is
O(logn) - Q(n), or O(Q(n)) if Q(n) > n®.

The insertion algorithm passes through the levels from largest to smallest. At each level i, if
both Oldest;_; and Older;_; happen to be non-empty, we execute P(2!)/2! steps of the algorithm
to construct New; from Oldest;_; U Older;_;. Once New; is completely built, we move it to the
oldest available slot on level i, delete Oldest;_; and Older;_;, and rename Old;_; to Oldest;_;.
Finally, we create a singleton structure at level o that contains the new item.
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LAZYINSERTION(X):
. fori «<—{—1downto1l
AGE(i): if Oldest;_; # @ and Older;_; # @

if Oldest; = @
Oldest; < New;
else if Older; = @

spend P(21)/2! time executing New; « Oldest;_, U Older;_,
if New; is complete
destroy Oldest;_, and Older;_;

Olderi — NeWi Old(?Sti_l «— Oldi—l
else Oldi , « @
Old; < New; AGE(1)
NeWi — @
Newg < {x}
AGE(0)

Each insertion clearly takes Zf;é O(P(21)/21) = O(logn) - P(n)/n time, or O(P(n)/n) time
if P(n) > n'*¢ for any & > 0. The only thing left to check is that the algorithm actually works!
Specifically, how do we know that Old; is empty whenever we call AGE(i)?

The key insight is that the modified insertion algorithm mirrors the standard algorithm to
increment a non-standard binary counter, where every bit is either 2 or 3, except the most
significant bit, which might be 1. It’s not hard to prove by induction that this representation
is unique; the correctness of the insertion algorithm follows immediately. Specifically, AGE(i)
is called on the nth insertion—or in other words, the ith “bit” is incremented—if and only if
n=k-2'—2 for some integer k > 3.

Figure 2 (on the next page) shows the modified insertion algorithm in action.

Exercise 1. Suppose we increase the time in the third line of LazyINsERTION from P(21)/2! to
P(21)/27L. Prove that the modified insertion algorithm is still correct, and that if we start with
an empty data structure, every component Old; is always empty.

2.3 Deletions via (Lazy) Global Rebuilding: The Invertible Case

Under certain conditions, we can modify the logarithmic method to support deletions as well as
insertions, by periodically rebuilding the entire data structure.

Perhaps the simplest case is when the binary operation ¢ used to combine queries has an
inverse o; for example, if ¢ = + then ¢ = —. In this case, we main two insertion-only data
structures, a main structure M and a ghost structure G, with the invariant that every item in G
also appears in M. To insert an item, we insert it into M. To delete an item, we insert it into G.
Finally, to answer a query, we compute Q(x, M) Q(x, G).

The only problem with this approach is that the two component structures M and G might
become significantly larger than the ideal structure storing M \ G, in which case our query and
insertion times become inflated. To avoid this problem, we rebuild our entire data structure from
scratch—building a new main structure containing M \ G and a new empty ghost structure—
whenever the size of G exceeds half the size of M. Rebuilding requires O(P(n)) time, where n
is the number of items in the new structure. After a global rebuild, there must be at least n/2
deletions before the next global rebuild. Thus, the total amortized time for each deletion is
O(P(n)/n) plus the cost of insertion, which is O(P(n)logn/n).

There is one minor technical point to consider here. Our earlier amortized analysis of
insertions relied on the fact that large local rebuilds are always far apart. Global rebuilding
destroys that assumption. In particular, suppose M has 2€ — 1 elements and G has 2k71 —1
elements, and we perform four operations: insert, delete, delete, insert.
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Figure 2. The 27th through 33rd insertions into a Overmars/van Leeuwen data structure
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* The first insertion causes us to rebuild M completely.

* The first deletion causes us to rebuild G completely.

* The second deletion triggers a global rebuild. The new M contains 2! — 1 items.
* Finally, the second insertion causes us to rebuild M completely.

Another way to state the problem is that a global rebuild can put us into a state where
we don’t have enough insertion credits to pay for a local rebuild. To solve this problem,
we scale the amortized cost of deletions by a constant factor. When a global rebuild is
triggered, a constant fraction of the accumulated charge pays for the global rebuild itself;
the remainder pays for the first local rebuild at each level of the new main structure, since

S p(2i) = 0(P(n)).

We can achieve the same deletion time in the worst case by performing the global rebuild lazily.
Now we maintain three structures: a static main structure M, an insertion structure I, and a
deletion structure D. Most of the time, we insert new items into I, delete items by inserting them
into D, and evaluate queries by computing Q(x, M) ¢ Q(x,I)sQ(x, D).

However, when |D| > (|M|+I|)/2, we freeze I and D and start building three new structures
M’, I’, and D’. Initially, all three new structures are empty. Newly inserted items go into the
new insertion structure I’; newly deleted items go into the new deletion structure D’. To answer
a query, we compute Q(x, M) < Q(x,I)oQ(x,I")sQ(x,D)sQ(x,D’). After every deletion (that
is, after every insertion into the new deletion structure D”), we spend 8 - P(n)/n time building
the new main structure M’ from the set (I UM)\ D. After n/8 deletions, the new static structure
is complete; we destroy the old structures I, M, D, and revert back to our normal state of affairs.
The exact constant 8 is unimportant, it only needs to be large enough that the new main structure
M’ is complete before the start of the next global rebuild.

Figure 3. A high-level view of the deletion structure for invertible queries, during a lazy global rebuild.

With lazy global rebuilding, the worst-case time for a deletion is O(P(n)logn/n), exactly the
same as insertion. Again, if P(n) = Q(n'*®), the deletion time is actually O(P(n)/n).

2.4 Deletions for Non-Invertible Queries

To support both insertions and deletions when the function ¢ has no inverse, we have to
assume that the base structure already supports weak deletions in time D(n). A weak deletion is
functionally exactly the same as a regular deletion, but it doesn’t have the same effect on the
cost of future queries. Specifically, we require that the cost of a query after a weak deletion
is no higher than the cost of a query before the weak deletion. Weak deletions are a fairly
mild requirement; many data structures can be modified to support them with little effort. For
example, to weakly delete an item x from a binary search tree begin used for simple membership
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queries (Is x in the set?), we simply mark all occurrences of x in the data structure. Future
membership queries for x would find it, but would also find the mark(s) and thus return FALSE.

I should emphasize here that not all query problems support weak deletions. In particular, I
am unaware of any data structure for range minimum queries or nearest-neighbor queries that
supports weak deletions.

If we are satisfied with amortized time bounds, adding insertions to a weak-deletion data
structure is straightforward. As before, we maintain a sequence of levels, where each level is
either empty or a base structure. For purposes of insertion, each non-empty level L; has nominal
size 2/, but it may actually store fewer elements. To delete an item, we first determine which
level contains it, and then weakly delete it from that level. To make the first step possible, we
also maintain an auxiliary dictionary (for example, a hash table) that stores a list of pointers
to occurrences of each item in the main data structure. The insertion algorithm is essentially
unchanged, except for the (small) additional cost of updating this dictionary. When the total
number of undeleted items is less than half of the total nominal size of the non-empty levels, we
rebuild the entire from scratch. The amortized cost of an insertion is O(P(n)logn/n), and the
amortized cost of a deletion is O(P(n)/n + D(n)).

Once again, we can achieve the same time bounds in the worst case by spreading out both
local and global rebuilding, but the details are more complex. T’ll first describe the high-level
architecture of the data structure and discuss how weak deletions are transformed into regular
deletions, and then spell out the lower-level details for the insertion algorithm.

2.4.1 Transforming Weak Deletions into Real Deletions

For the moment, assume that we already have a data structure that supports insertions in
I(n) time and weak deletions in D(n) time. A good example of such a data structure is the
weight-balanced B-tree defined by Arge and Vitter [1].

Our global data structure has two major components; a main structure M and a shadow
copy S. Queries are answered by querying the main structure M. Under normal circumstances,
insertions and weak deletions are made directly in both structures. When more than half of the
elements of S have been weakly deleted, we trigger a global rebuild. At that point, we freeze S
and begin building two new clean structures M’ and S’. The reason for the shadow structure is
that we cannot copy from S while it is undergoing other updates.
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£

Figure 4. A high-level view of the deletion structure for non-invertible queries, during a lazy global rebuild

E

During a global rebuild, our data structure has four component structures M, S, M’, and S’
and an update queue U, illustrated above. Queries are evaluated by querying the main structure M
as usual. Insertions and (weak) deletions are processed directly in M. However, rather than
handling them directly in the shadow structure S (which is being copied) or the new structures
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M’ and S’ (which are not completely constructed), all updates are inserted into the update
queue U.

M’ and S’ are incrementally constructed in two phases. In the first phase, we build new data
structures containing the elements of S. In the second phase, we execute the stream of insertions
and deletions that have been stored in the update queue U, in both M’ and S’, in the order
they were inserted into U. In each phase, we spend O(I(n)) steps on the construction for each
insertion, and O(P(n)/n + D(n)) steps for each deletion, where the hidden constants are large
enough to guarantee that each global rebuild is complete well before the next global rebuild is
triggered. In particular, in the second rebuild phase, each time an update is inserted into U, we
must process and remove at least two updates from U. When the update queue is empty, the new
data structures M’ and S’ are complete, so we destroy the old structures M and S and revert to
“normal” operation.

2.4.2 Adding Insertions to a Weak-Deletion-Only Structure

Now suppose our given data structure does not support insertions or deletions, but does support
weak deletions in D(n) time. A good example of such a data structure is the kd-tree, originally
developed by Bentley [2].

To add support for insertions, we modify the lazy logarithmic method. As before, our main
structure consists of Ign levels, but now each level consists of eight base structures New;, Old;,
Older;, Oldest;, SNew;, SOld;, SOlder;, SOldest;, as well as an deletion queue D;. We also maintain
an auxiliary dictionary recording the level(s) containing each item in the overall structure. As
the names suggest, each active structure SFoo; is a shadow copy of the corresponding active
structure Foo;. Queries are answered by examining the active old structures. New; and its shadow
copy SNew; are incrementally constructed from the shadows SOlder;_; and SOldest;_; and from
the deletion queue D;. Deletions are performed directly in the active old structures and in the
shadows that are not involved in rebuilds, and are inserted into deletion queues at levels that are
being rebuilt. At each insertion, if level i is being rebuilt, we spend O(P(2!)/2!) time on that
local rebuilding. Similarly, for each deletion, if the appropriate level i is being rebuilt, we spend
O(D(21)) time on that local rebuilding. The constants in these time bounds are chosen so that
each local rebuild finishes well before the next one begins.

Sold. old, sold, old, ,
SOlder. Older, SOlder, , || Older,
SOldest, || Oldest, SOldest, || Oldest, |
New. New.
D. ' D. i-1
! SNew. -1 SNew.

Figure 5. Two levels of our lazy dynamic data structure.

Here are the insertion and deletion algorithms in more detail:
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AGE(i):

if Oldest; = @

Oldest; < New;; SOldest; < SNew;
else if Older; = &

Older; < New;; SOlder; < SNew;,
else

Old; < New;; SOIld; < SNew;
New; « @&; SNew; «— &

LAZYINSERT(X):

fori < {—1downtol
if Oldest;_; # @ and Older;_; # @
spend O(P(21)/2") time building New; and SNew; from SOldest;_; U SOlder;_,
if New; and SNew; are complete
destroy Oldest;_,, SOldest;_;, Older;_,, and SOlder;_,
Oldest;_; < Old;_;; Old;_; «— @&
SOldest;_; < SOld;_;; SOld;,_; «— @
elseif D, # @
spend O(P(2')/2!) time processing deletions in D; from New; and SNew;
ifD;=0
AGE(i)
Newg < {x}; SNew, < {x}
AcGE(0)

DELETE(x):

find level i containing x
if x € Oldest;
WEAKDELETE(x, Oldest;)
if Older; # @
Add x to D; 4
Spend O(D(2/*1)) time building New,,; and SNew,,
else
WEAKDELETE(x, SOldest;)
else if x € Older;
WEAKDELETE(X, Older;)
Add x to D; 4
Spend O(D(21)) time building New,,; and SNew,
else if x € Old,;
WEAKDELETE(x, Old;); WEAKDELETE(x,SOId,)

2.4.3 The Punch Line

Putting both of these constructions together, we obtain the following worst-case bounds. We are
given a data structure that the original data structure requires space S(n), can be built in time
P(n), answers decomposable search queries in time Q(n), and supports weak deletions in time
D(n).

* The entire structure uses O(S(n)) space and can be built in O(P(n)) time.
* Queries can be answered in time O(Q(n)logn), or O(Q(n)) if Q(n) > n® for any & > 0.

* Each insertion takes time O(P(n)logn/n), or O(P(n)/n) if P(n) > n'*¢ for any ¢ > 0.
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* Each deletion takes time O(P(n)/n + D(n)logn), or O(P(n)/n + D(n)) if D(n) > n® for
any € > 0.
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