

# CS 263 – Analysis of Algorithms

## Homework 3, 50 Points

**Due: Sunday, February 1, 11:00pm**

This homework must be turned in electronically using the course GradeScope website.

Solutions **must** be submitted as a PDF file.

1. Suppose that Bob wants a constant-time method for implementing the  $\text{random}(k)$  method, which returns a random integer in the range  $[0, k - 1]$ . Bob has a source of unbiased bits, so to implement  $\text{random}(k)$ , he samples  $\lceil \log k \rceil$  of these bits, interprets them as an unsigned integer,  $K$ , and returns the value  $K \bmod k$ . Show that Bob's algorithm does not return every integer in the range  $[0, k - 1]$  with equal probability.
2. Suppose you have a collection,  $S$ , of  $n$  distinct items and you wish to select a random sample of these items of size exactly  $\lceil n^{1/2} \rceil$ . Describe an efficient method for selecting such a sample so that each element in  $S$  has an equal probability of being included in the sample.
3. Suppose you have a collection,  $S$ , of  $n$  distinct items and you create a random sample,  $R$ , of  $S$ , as follows: For each  $x$  in  $S$ , select it to belong to  $R$  independently with probability  $1/n^{1/2}$ . Derive bounds on the probability that the number of items in  $R$  is more than  $2n^{1/2}$  or less than  $n^{1/2}/2$ .
4. Show that the randomized quick-sort algorithm runs in  $O(n \log n)$  time with probability at least  $1-1/n$ .
5. Suppose that we have  $n$  jobs to distribute among  $m$  processors. For simplicity, we assume that  $m$  divides  $n$ . A job takes 1 step with probability  $p$  and  $k > 1$  steps with probability  $1 - p$ . Use Chernoff bounds to determine upper and lower bounds (that hold with high probability) on when all jobs will be completed if we randomly assign exactly  $n/m$  jobs to each processor.