
CS 263 – Analysis of Algorithms  

Homework 2, 50 Points 
Due: Sunday, January 25, 11:00pm 

This homework must be turned in electronically using the course GradeScope website. 

Solutions must be submitted as a PDF file. 

 
Problem 1: The "Expensive-1" Binary Counter 
Consider a standard binary counter with k bits, initially all set to 0. We perform a 
sequence of n INCREMENT operations. However, the hardware is unique: 

• Flipping a bit from 1 to 0 costs 1 unit of energy. 
• Flipping a bit from 0 to 1 costs 5 units of energy. 

 
1. Using the Accounting Method, assign a specific amortized cost (in cyber-dollars) 

to the INCREMENT operation. 
2. Prove that your assigned amortized cost is sufficient to pay for any sequence of n 

operations. 
3. What is the upper bound on the total actual cost for n operations? 

 
 

Problem 2: Dynamic Arrays with 1.5x Expansion 
In class, we analyzed dynamic arrays that double in size (factor of 2) when full. 
Consider a dynamic array that expands by a factor of 1.5 instead. 

• The array starts with a capacity of 1. 
• The cost of inserting into a non-full array is 1. 
• When an insertion occurs and the array is full (size k), a new array of size 

1.5k is allocated, all k items are copied over (cost k), and the new item is 
inserted (cost 1). 

Using Accounting Method, show that the amortized cost of an insertion is still O(1).  

 
Problem 3: The Queue via Two Stacks 
A standard FIFO Queue can be implemented using two Stacks, S and T. 

• Enqueue(x): Push x onto S. (Actual cost: 1) 
• Dequeue(): If T is empty, pop all elements from S and push them onto T, then 

pop from T. If T is not empty, simply pop from T. (Actual cost: varies). 
Define a potential function based on the number of elements in S and T to prove that 
the amortized cost of both Enqueue and Dequeue is O(1). 



 
Problem 4: The "Clear-All" Stack 
Suppose you are designing a data structure that supports the following operations: 

1. Push(x): Adds item x to the stack. Actual Cost = 1. 
2. Pop(): Removes the top item. Actual Cost = 1. 
3. Clear(): Removes all items from the stack. Actual Cost = k, where k is the 

number of elements currently in the stack. 
Argue whether the amortized cost of Clear() is O(1) or not. 

• If it is O(1), perform an amortized analysis (using either the Accounting or 
Potential method) to prove that the amortized cost of all three operations is 
bounded by a constant. 

• If it is not, provide a counter-example sequence of operations where the 
average cost per operation grows unboundedly. 

 
Problem 5: The Oscillating Counter 
A standard binary counter supports the INCREMENT operation with an amortized cost 
of O(1). Suppose we modify the counter to support a DECREMENT operation as well 
(which subtracts 1 from the value). Provide a sequence of n operations (consisting of 
both INCREMENT and DECREMENT) where the total actual cost is Q(n log n). 
 


