
© 2015 Goodrich and Tamassia Weak AVL Trees 1

Weak AVL Trees
6

3 8

4

v

z

Presentation for use with the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015



© 2015 Goodrich and Tamassia Weak AVL Trees 2

WAVL Tree Definition
For a tree with ranks on its nodes, for each node v in T other than 
the root, we define the rank difference of v as the difference 
between the rank of v and the rank of v’s parent.
n An internal node is a 1,1-node if its children each have rank difference 1. 
n An internal node is a 2,2-node if its children each have rank difference 2. 
n An internal node is a 1,2-node if it has one child with rank difference 1 

and one child with rank difference 2.
A tree is a weak AVL (wavl) tree if the ranks assigned to its nodes 
satisfy the following properties:
n Rank-difference Property: the rank difference of any non-root node is 1 

or 2.
n External-node Property: every external node (leaf) has rank 0.
n Internal-node Property: An internal node with two external-node children 

cannot be a 2,2-node.



© 2015 Goodrich and Tamassia Weak AVL Trees 3

Example WAVL Tree
A tree is a weak AVL (wavl) tree if the ranks satisfy the following:
n Rank-difference Property: the rank difference of any non-root node is 1 or 2.
n External-node Property: every external node (leaf) has rank 0.
n Internal-node Property: An internal node with two external-node children cannot 

be a 2,2-node.

rank 0 nodes:

rank 6 node:

rank 5 nodes:

rank 4 nodes:

rank 3 nodes:

rank 2 nodes:

rank 1 nodes: 24



© 2015 Goodrich and Tamassia Weak AVL Trees 4

Height of a WAVL Tree
Theorem: The height of a wavl tree storing n keys is O(log n).

Thus wavl trees are balanced binary search trees.



© 2015 Goodrich and Tamassia

Relationship to AVL Trees
Theorem: Every AVL Tree is a weak AVL Tree.
Proof: Suppose we are given an AVL tree, T, with a rank 
assignment, r(v), for the nodes of T, so that r(v) is equal to 
the height of v in T. Then:
• Every external node in T has rank 0. 
• By the height-balance property for AVL trees, every internal node is 

either a 1,1-node or 1,2-node. 
Hence, the rank assignment, r(v), for an AVL tree implies T 
is a weak AVL tree.

• Thus, an AVL tree is a weak AVL tree with no 2,2-nodes, 
which motivates the name “weak AVL tree.”

Weak AVL Trees 5



© 2015 Goodrich and Tamassia

WAVL Trees are Red-Black Trees
Theorem: Every wavl tree can be colored as a red-
black tree.

Nevertheless, the relationship does not go the other way, as there 
are some red-black trees that cannot be given rank assignments to 
make them be wavl trees.

Weak AVL Trees 6



© 2015 Goodrich and Tamassia Weak AVL Trees 7

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Example:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion

after insertion



© 2015 Goodrich and Tamassia Weak AVL Trees 8

Trinode Restructuring
Let (a,b,c) be the inorder listing of x, y, z
Perform the rotations needed to make b the topmost node of the three

b=y

a=z

c=x
T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3 b=x

c=ya=z

T0 T1 T2 T3

Double rotation around 
c and a

Single rotation 
around b



© 2015 Goodrich and Tamassia Weak AVL Trees 9

Insertion Example, continued

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0 T2

T3

x

y

z

2

3

4

5

6
7

1

The 
picture 
can't 
be 
display
ed.

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54
1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced
1

2
3

4

5

6

7

T1



© 2015 Goodrich and Tamassia Weak AVL Trees 10

Restructuring (as Single Rotations)
Single Rotations:

T0
T1

T2
T3

c = x
b = y

a = z

T0 T1 T2
T3

c = x
b = y

a = z
single rotation

T3
T2

T1
T0

a = x
b = y

c = z

T0T1T2
T3

a = x
b = y

c = z
single rotation



© 2015 Goodrich and Tamassia Weak AVL Trees 11

Restructuring (as Double Rotations)
double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1
T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1
T3 T0

T2
T3 T1

c = z
b = x

a = y



© 2015 Goodrich and Tamassia

Rebalancing after Insertion
Let q be the node where we just performed an 
insertion, and note that q previously was an 
external node. Now q has two external-node 
children; hence, we increase the rank of q by 1, 
which in an action called a promotion at q.

If q has rank difference 1 after promotion, or if q 
is the root, then we are done.
Otherwise, if q now has rank-difference 0, with 
its parent, p, then we have two cases.

Weak AVL Trees 12



© 2015 Goodrich and Tamassia

Rebalancing Operation, Case 1a
Case 1: q’s sibling has rank-difference 1. 
In this case, we promote q’s parent, p. This fixes the rank-difference 
property for q, and if there is no violation for p, then we are done.

Weak AVL Trees 13



© 2015 Goodrich and Tamassia

Rebalancing Operation, Case 2a
Case 2: q’s sibling has rank-difference 2. 
Let t denote a child of q that has rank-difference 1. We perform a 
trinode restructuring operation at t. Single-rotation rank updates:

Weak AVL Trees 14



© 2015 Goodrich and Tamassia

Rebalancing Operation, Case 2b
Case 2: q’s sibling has rank-difference 2. 
Let t denote a child of q that has rank-difference 1. We perform a 
trinode restructuring operation at t. Double-rotation rank updates:

Weak AVL Trees 15



© 2015 Goodrich and Tamassia Weak AVL Trees 16

Deletion
Deletion begins as in a binary search tree, which means the node 
removed will become an empty external node. Its parent, q, may 
cause an imbalance.
Example: 

44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion



© 2015 Goodrich and Tamassia Weak AVL Trees 17

Rebalancing after a Deletion
Let p be the former parent of the deleted node, so now 
q becomes a child of p. 
Note that p is either null or has rank 2, 3, or 4 (although 
we cannot have q with rank 0 and p with rank 4). 
Thus, q has rank-difference 2 or 3 unless it is now the 
root. 
If q now has rank-difference 3, then we have a violation 
of the rank-difference property. Let s be the sibling of q. 
We consider two cases.



© 2015 Goodrich and Tamassia

Case 1a (easy case)
If s has rank difference 2 with p, then we reduce the 
rank of p by 1, which is called a demotion. If p still 
satisfies the rank-difference property, then we are done. 

Weak AVL Trees 18



© 2015 Goodrich and Tamassia

Case 1b (repeating case)
If s has rank difference 2 with p, then we reduce the 
rank of p by 1, which is called a demotion. If p doesn’t 
satisfy the rank-difference property, then we are repeat 
at p (as q). 

Weak AVL Trees 19



© 2015 Goodrich and Tamassia

Case 2a (s has rank-diff 1 w/ p)
If both children of s have rank-difference 2, then we 
demote both p and s. Easy subcase (p doesn’t violate 
the rank-difference property and we’re done):

Weak AVL Trees 20



© 2015 Goodrich and Tamassia

Case 2a’ (s has rank-diff 1 w/ p)
If both children of s have rank-difference 2, then we 
demote both p and s. Repeating subcase (p violates the 
rank-difference property and we repeat at p, as q):

Weak AVL Trees 21



© 2015 Goodrich and Tamassia

Case 2b (s has rank-diff 1 w/ p)
If s has a child, t, with rank-difference 1 (when both children of s 
have rank-difference 1, we pick t to that if s is a left child, then t is 
the left child of s, else t is the right child of s). We then perform a 
trinode restructure at t, and reset the ranks as appropriate. Single 
rotation subcase:

Weak AVL Trees 22

if p becomes
a 2,2-node

with external
children, then

demote p



© 2015 Goodrich and Tamassia

Case 2b’ (s has rank-diff 1 w/ p)
If s has a child, t, with rank-difference 1 (when both children of s 
have rank-difference 1, we pick t to that if s is a left child, then t is 
the left child of s, else t is the right child of s). We then perform a 
trinode restructure at t, and reset the ranks as appropriate. Double 
rotation subcase:

Weak AVL Trees 23



© 2015 Goodrich and Tamassia Weak AVL Trees 24

Weak AVL Tree Performance
AVL tree storing n items
n The data structure uses O(n) space
n A single restructuring takes O(1) time

w using a linked-structure binary tree

n Searching takes O(log n) time
w height of tree is O(log n), no restructures needed

n Insertion takes O(log n) time
w initial find is O(log n)
w restructuring up the tree, maintaining ranks is O(log n); O(1) restructures

n Removal takes O(log n) time
w initial find is O(log n)
w restructuring up the tree, maintaining ranks is O(log n); O(1) restructures



© 2015 Goodrich and Tamassia

Comparison with Other Trees
• H(n) denotes worst-case height
• IH(n) denote worst-case height if built with insertions only
• IR(n) denote the worst-case number of restructures after an insertion
• DR(n) denote the worst-case number of restructures after a deletion. 

Weak AVL Trees 25


