
Selected Sorting Algorithms

CS 165: Project in Algorithms

and Data Structures

Michael T. Goodrich

Some slides are from J. Miller, CSE 373, U. Washington

Why Sorting?
• Practical application

– People by last name

– Countries by population

– Search engine results by relevance

• Fundamental to other algorithms

• Different algorithms have different asymptotic and
constant-factor trade-offs
– No single ‘best’ sort for all scenarios

– Knowing one way to sort just isn’t enough

• Many to approaches to sorting which can be used for
other problems

2

Why Sorting?

• Donald Knuth, in his book "The Art of
Computer Programming" (Volume 3),
famously stated: "Indeed, I believe
that virtually every important aspect
of programming arises somewhere in
the context of sorting or searching!".

Problem statement
There are n comparable elements in an array

and we want to rearrange them to be in
increasing order

Pre:
– An array A of data records

– A value in each data record

– A comparison function
• <, =, >, compareTo

Post:
– For each distinct position i and j of A, if i < j

then A[i]  A[j]

– A has all the same data it started with

4

Insertion sort

• insertion sort: orders a list of values by
repetitively inserting a particular value into a
sorted subset of the list

• more specifically:
– consider the first item to be a sorted sublist of length 1

– insert the second item into the sorted sublist, shifting
the first item if needed

– insert the third item into the sorted sublist, shifting the
other items as needed

– repeat until all values have been inserted into their
proper positions

5

Insertion sort
• Simple sorting algorithm.

– n-1 passes over the array

– At the end of pass i, the elements that

occupied A[0]…A[i] originally are still in those

spots and in sorted order.

6

2 8 15 1 17 10 12 5

0 1 2 3 4 5 6 7

1 2 8 15 17 10 12 5

0 1 2 3 4 5 6 7

after

pass 2

after

pass 3

2 15 8 1 17 10 12 5

0 1 2 3 4 5 6 7

Insertion sort example

7

Insertion sort code

public static void insertionSort(int[] a) {

 for (int i = 1; i < a.length; i++) {

 int temp = a[i];

 // slide elements down to make room for a[i]

 int j = i;

 while (j > 0 && a[j - 1] > temp) {

 a[j] = a[j - 1];

 j--;

 }

 a[j] = temp;

 }

}

8

Insertion-sort Analysis

• An inversion in a permutation is the
number of pairs that are out of order, that
is, the number of pairs, (i,j), such that i<j
but xi>xj.

• Each step of insertion-sort fixes an
inversion or stops the while-loop.

• Thus, the running time of insertion-sort is
O(n + k), where k is the number of
inversions.

Insertion-sort Analysis

• The worst case for the number of

inversions, k, is…

• This occurs for a list in reverse-sorted

order.

• What about the following sequence

consisting of two increasing consecutive

subsequences (which are called “runs”)?

 (1,3,5,7,…,[n/2]-1, 2,4,6,8,…[n/2])

Shell sort description

• shell sort: orders a list of values by comparing
elements that are separated by a gap of >1
indexes

– a generalization of insertion sort

– invented by computer scientist Donald Shell in 1959

• based on some observations about insertion sort:

– insertion sort runs fast if the input is almost sorted

– insertion sort's weakness is that it swaps each
element just one step at a time, taking many swaps to
get the element into its correct position

11

Shell sort example

• Idea: Sort all elements that are 5 indexes

apart, then sort all elements that are 3

indexes apart, ...

12

Shell sort code

public static void shellSort(int[] a) {

 for (int gap = a.length / 2; gap > 0; gap /= 2) {

 for (int i = gap; i < a.length; i++) {

 // slide element i back by gap indexes

 // until it's "in order"

 int temp = a[i];

 int j = i;

 while (j >= gap && temp < a[j - gap]) {

 a[j] = a[j – gap];

 j -= gap;

 }

 a[j] = temp;

 }

 }

}

13

Shell sort Analysis

• Harder than insertion sort

• But certainly no worse than insertion sort

• Worst-case: O(n2)

• Average-case: ????

Tim-sort

• Tim-sort is a recent sorting algorithm that

was included in reference implementations

for Java and Python.

• It uses a bunch of heuristics aimed at

speeding up the running time for sorting

• As such, it took over 10 years before its

running time was proved to be O(n log n)

in the worst case.

Tim-sort
• First, Tim-sort divides the input into runs, i.e.,

increasing consecutive subsequences.

• Then, it pushes the first run onto a stack, and
starts processing runs left to right, pushing
each new run onto the stack

• When certain conditions occur, Tim-sort
merges a pair of runs that are consecutive on
the stack, replacing the pair on the stack with
the merged result.

Merge Algorithm

The merge method

in Tim-sort is the

same merge method

as used in the well-

known Mergesort

algorithm.

Tim-sort Core Algorithm

From https://arxiv.org/abs/1805.08612

Tim-sort Analysis

• The sizes of the runs on the stack grow at

least as fast as the Fibonacci sequence,

which is used to show that Tim-sort runs in

O(n(1 + log r)) time, where r is the number

of runs.

• In fact, it runs in time that is proportional to

n times the binary Shannon entropy of the

input sequence.

Skip List

Java applet

• A skip list for a set S of distinct (key, element) items is a series of
lists
S0, S1 , … , Sh such that
– Each list Si contains the special keys + and −

– List S0 contains the keys of S in non-decreasing order

– Each list is a subsequence of the previous one, i.e.,
 S0  S1  …  Sh

– List Sh contains only the two special keys

• Skip lists are one way to implement the dictionary ADT

• Java applet

56 64 78 +31 34 44− 12 23 26

+−

+31−

64 +31 34− 23

S0

S1

S2

S3

http://www.cs.umd.edu/class/spring2002/cmsc420-0401/demo/SkipList2/

Possible Implementation

• We can implement a skip
list with quad-nodes

• A quad-node stores:
– item

– link to the node before

– link to the node after

– link to the node below

• Also, we define special keys
PLUS_INF and
MINUS_INF, and we modify
the key comparator to
handle them

x

quad-node

Top-Down Search

• We search for a key x in a a skip list as follows:

– We start at the first position of the top list

– At the current position p, we compare x with y  key(after(p))

 x = y: we return element(after(p))

 x  y: we “scan forward”

 x  y: we “drop down”

– If we try to drop down past the bottom list, we return NO_SUCH_KEY

• Example: search for 78

+−

S0

S1

S2

S3

+31−

64 +31 34− 23

56 64 78 +31 34 44− 12 23 26

• To insert an item (x, o) into a skip list, we use a randomized
algorithm:

– We repeatedly toss a coin until we get tails, and we denote with i
the number of times the coin came up heads

– If i  h, we add to the skip list new lists Sh+1, … , Si +1, each
containing only the two special keys

– We search for x in the skip list and find the positions p0, p1 , …, pi of
the items with largest key less than x in each list S0, S1, … , Si

– For j  0, …, i, we insert item (x, o) into list Sj after position pj

• Example: insert key 15, with i = 2

Insertion

+− 10 36

+−

23

23 +−

S0

S1

S2

+−

S0

S1

S2

S3

+− 10 362315

+− 15

+− 2315

Deletion

• To remove an item with key x from a skip list, we proceed as

follows:

– We search for x in the skip list and find the positions p0, p1 , …, pi of

the items with key x, where position pj is in list Sj

– We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

– We remove all but one list containing only the two special keys

• Example: remove key 34

− +4512

− +

23

23− +

S0

S1

S2

− +

S0

S1

S2

S3

− +4512 23 34

− +34

− +23 34

Space Usage

• The space used by a skip list
depends on the random bits
used by each invocation of the
insertion algorithm

• We use the following two basic
probabilistic facts:

Fact 1: The probability of getting i
consecutive heads when
flipping a coin is 12i

Fact 2: If each of n items is
present in a set with probability
p, the expected size of the set
is np

• Consider a skip list with n

items

– By Fact 1, we insert an item

in list Si with probability 12i

– By Fact 2, the expected size

of list Si is n2i

• The expected number of

nodes used by the skip list is

nn
n h

i
i

h

i
i

2
2

1

2 00

= 
==

Thus, the expected space usage
of a skip list with n items is O(n)

Height

• The running time of the
search an insertion
algorithms is affected by the
height h of the skip list

• We show that with high
probability, a skip list with n
items has height O(log n)

• We use the following
additional probabilistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event
occurs is at most np

• Consider a skip list with n
items

– By Fact 1, we insert an item in
list Si with probability 12i

– By Fact 3, the probability that
list Si has at least one item is
at most n2i

• By picking i = 3log n, we have
that the probability that S3log n
has at least one item is
at most
 n23log n = nn3 = 1n2

• Thus a skip list with n items
has height at most 3log n with
probability at least 1 − 1n2

Search and Update Times

• The search time in a skip list
is proportional to

– the number of drop-down
steps, plus

– the number of scan-forward
steps

• The drop-down steps are
bounded by the height of the
skip list and thus are O(log n)
with high probability

• To analyze the scan-forward
steps, we use yet another
probabilistic fact:

Fact 4: The expected number of
coin tosses required in order
to get tails is 2

• When we scan forward in a list,
the destination key does not
belong to a higher list
– A scan-forward step is

associated with a former coin
toss that gave tails

• By Fact 4, in each list the
expected number of scan-
forward steps is 2

• Thus, the expected number of
scan-forward steps is O(log n)

• We conclude that a search in a
skip list takes O(log n) expected
time

• The analysis of insertion and
deletion gives similar results

Up-Down Search

• We search for a key x in a a skip list as follows:

– We start at the last bottom position of the top list

– We move left and up until we reach a level with previous key less than
the search key

– Then we move down and left until we find the correct position

• Example: search for 26

+−

S0

S1

S2

S3

+31−

64 +31 34− 23

56 64 78 +31 34 44− 12 23 26

Skip-List Sort

• Insert the elements x1, x2, …, into a skip-list,

doing up-down search from the bottom-left

part of the skip-list for each element xi.

• The expected time to insert xi is O(log di(X)),

where di(X) is the distance in the bottom level

to the place where xi belongs.

• di(X) is bounded by Ii(X), where Ii(X) is the

number of inversions with xi as the right

element.

Analysis of Skip-List Sort

• The analysis of the expected running time

uses the fact that the geometric mean is

always at most the arithmetic mean:

	Slide 1: Selected Sorting Algorithms
	Slide 2: Why Sorting?
	Slide 3: Why Sorting?
	Slide 4: Problem statement
	Slide 5: Insertion sort
	Slide 6: Insertion sort
	Slide 7: Insertion sort example
	Slide 8: Insertion sort code
	Slide 9: Insertion-sort Analysis
	Slide 10: Insertion-sort Analysis
	Slide 11: Shell sort description
	Slide 12: Shell sort example
	Slide 13: Shell sort code
	Slide 14: Shell sort Analysis
	Slide 15: Tim-sort
	Slide 16: Tim-sort
	Slide 17: Merge Algorithm
	Slide 18: Tim-sort Core Algorithm
	Slide 19: Tim-sort Analysis
	Slide 20: Skip List
	Slide 21: Possible Implementation
	Slide 22: Top-Down Search
	Slide 23: Insertion
	Slide 24: Deletion
	Slide 25: Space Usage
	Slide 26: Height
	Slide 27: Search and Update Times
	Slide 28: Up-Down Search
	Slide 29: Skip-List Sort
	Slide 30: Analysis of Skip-List Sort

