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Why Sorting?
• Practical application

– People by last name

– Countries by population

– Search engine results by relevance

• Fundamental to other algorithms

• Different algorithms have different asymptotic and 
constant-factor trade-offs
– No single ‘best’ sort for all scenarios

– Knowing one way to sort just isn’t enough

• Many to approaches to sorting which can be used for 
other problems
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Why Sorting?

• Donald Knuth, in his book "The Art of 
Computer Programming" (Volume 3), 
famously stated: "Indeed, I believe 
that virtually every important aspect 
of programming arises somewhere in 
the context of sorting or searching!".



Problem statement
There are n comparable elements in an array 

and we want to rearrange them to be in 
increasing order

Pre:
– An array A of data records

– A value in each data record

– A comparison function
• <, =, >, compareTo

Post:
– For each distinct position i and j of A, if i < j 

then A[i]  A[j]

– A has all the same data it started with
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Insertion sort

• insertion sort: orders a list of values by 
repetitively inserting a particular value into a 
sorted subset of the list

• more specifically:
– consider the first item to be a sorted sublist of length 1

– insert the second item into the sorted sublist, shifting 
the first item if needed

– insert the third item into the sorted sublist, shifting the 
other items as needed

– repeat until all values have been inserted into their 
proper positions

5



Insertion sort
• Simple sorting algorithm.

– n-1 passes over the array

– At the end of pass i, the elements that 

occupied A[0]…A[i] originally are still in those 

spots and in sorted order.
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2 15 8 1 17 10 12 5

0 1 2 3 4 5 6 7



Insertion sort example
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Insertion sort code

public static void insertionSort(int[] a) {

    for (int i = 1; i < a.length; i++) {

        int temp = a[i];

        // slide elements down to make room for a[i]

        int j = i;

        while (j > 0 && a[j - 1] > temp) {

            a[j] = a[j - 1];

            j--;

        }

        a[j] = temp;

    }

}
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Insertion-sort Analysis

• An inversion in a permutation is the 
number of pairs that are out of order, that 
is, the number of pairs, (i,j), such that i<j 
but xi>xj.

• Each step of insertion-sort fixes an 
inversion or stops the while-loop.

• Thus, the running time of insertion-sort is 
O(n + k), where k is the number of 
inversions.



Insertion-sort Analysis 

• The worst case for the number of 

inversions, k, is…

• This occurs for a list in reverse-sorted 

order.

• What about the following sequence 

consisting of two increasing consecutive 

subsequences (which are called “runs”)?

  (1,3,5,7,…,[n/2]-1, 2,4,6,8,…[n/2])



Shell sort description

• shell sort: orders a list of values by comparing 
elements that are separated by a gap of >1 
indexes

– a generalization of insertion sort

– invented by computer scientist Donald Shell in 1959

• based on some observations about insertion sort:

– insertion sort runs fast if the input is almost sorted

– insertion sort's weakness is that it swaps each 
element just one step at a time, taking many swaps to 
get the element into its correct position
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Shell sort example

• Idea: Sort all elements that are 5 indexes 

apart, then sort all elements that are 3 

indexes apart, ...
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Shell sort code

public static void shellSort(int[] a) {

    for (int gap = a.length / 2; gap > 0; gap /= 2) {

        for (int i = gap; i < a.length; i++) {

            // slide element i back by gap indexes

            // until it's "in order"

            int temp = a[i];

            int j = i;

            while (j >= gap && temp < a[j - gap]) {

                a[j] = a[j – gap];

                j -= gap;

            }

            a[j] = temp;

        }

    }

}
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Shell sort Analysis

• Harder than insertion sort

• But certainly no worse than insertion sort

• Worst-case: O(n2)

• Average-case: ????



Tim-sort

• Tim-sort is a recent sorting algorithm that 

was included in reference implementations 

for Java and Python.

• It uses a bunch of heuristics aimed at 

speeding up the running time for sorting

• As such, it took over 10 years before its 

running time was proved to be O(n log n) 

in the worst case.



Tim-sort
• First, Tim-sort divides the input into runs, i.e., 

increasing consecutive subsequences.

• Then, it pushes the first run onto a stack, and 
starts processing runs left to right, pushing 
each new run onto the stack

• When certain conditions occur, Tim-sort 
merges a pair of runs that are consecutive on 
the stack, replacing the pair on the stack with 
the merged result.



Merge Algorithm

The merge method 

in Tim-sort is the 

same merge method 

as used in the well-

known Mergesort 

algorithm.



Tim-sort Core Algorithm

From https://arxiv.org/abs/1805.08612



Tim-sort Analysis

• The sizes of the runs on the stack grow at 

least as fast as the Fibonacci sequence, 

which is used to show that Tim-sort runs in 

O(n(1 + log r)) time, where r is the number 

of runs.

• In fact, it runs in time that is proportional to 

n times the binary Shannon entropy of the 

input sequence.



Skip List

Java applet

• A skip list for a set S of distinct (key, element) items is a series of 
lists 
S0, S1 , … , Sh such that
– Each list Si contains the special keys + and − 

– List S0 contains the keys of S in non-decreasing order 

– Each list is a subsequence of the previous one, i.e.,
   S0  S1  …  Sh

– List Sh contains only the two special keys

• Skip lists are one way to implement the dictionary ADT

• Java applet

56 64 78 +31 34 44− 12 23 26

+−

+31−

64 +31 34− 23

S0

S1

S2

S3

http://www.cs.umd.edu/class/spring2002/cmsc420-0401/demo/SkipList2/


Possible Implementation

• We can implement a skip 
list with  quad-nodes

• A quad-node stores:
– item

– link to the node before

– link to the node after

– link to the node below

• Also, we define special keys 
PLUS_INF and 
MINUS_INF, and we modify 
the key comparator to 
handle them  

x

quad-node



Top-Down Search

• We search for a key x in a a skip list as follows:

– We start at the first position of the top list 

– At the current position p, we compare x with y  key(after(p))

  x = y: we return element(after(p))

  x  y: we “scan forward” 

  x  y: we “drop down”

– If we try to drop down past the bottom list, we return NO_SUCH_KEY

• Example: search for 78

+−

S0

S1

S2

S3

+31−

64 +31 34− 23

56 64 78 +31 34 44− 12 23 26



• To insert an item (x, o) into a skip list, we use a randomized 
algorithm:

– We repeatedly toss a coin until we get tails, and we denote with i 
the number of times the coin came up heads

– If i  h, we add to the skip list new lists Sh+1, … , Si +1, each 
containing only the two special keys

– We search for x in the skip list and find the positions p0, p1 , …, pi of 
the items with largest key less than x in each list S0, S1, … , Si

– For j  0, …, i, we insert item (x, o) into list Sj after position pj

• Example: insert key 15, with i = 2

Insertion

+− 10 36

+−

23

23 +−

S0

S1

S2

+−

S0

S1

S2

S3

+− 10 362315

+− 15

+− 2315



Deletion

• To remove an item with key x from a skip list, we proceed as 

follows:

– We search for x in the skip list and find the positions p0, p1 , …, pi of 

the items with key x, where position pj is in list Sj

– We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

– We remove all but one list containing only the two special keys

• Example: remove key 34

− +4512

− +

23

23− +

S0

S1

S2

− +

S0

S1

S2

S3

− +4512 23 34

− +34

− +23 34



Space Usage

• The space used by a skip list 
depends on the random bits 
used by each invocation of the 
insertion algorithm

• We use the following two basic 
probabilistic facts:

Fact 1: The probability of getting i 
consecutive heads when 
flipping a coin is 12i

Fact 2: If each of n items is 
present in a set with probability 
p, the expected size of the set 
is np

• Consider a skip list with n 

items

– By Fact 1, we insert an item 

in list Si with probability 12i

– By Fact 2, the expected size 

of list Si is n2i 

• The expected number of 

nodes used by the skip list is
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Thus, the expected space usage 
of a skip list with n items is O(n)



Height

• The running time of the 
search an insertion 
algorithms is affected by the 
height h of the skip list

• We show that with high 
probability, a skip list with n 
items has height O(log n)

• We use the following 
additional probabilistic fact:

Fact 3: If each of n events has 
probability p, the probability 
that at least one event 
occurs is at most np

• Consider a skip list with n 
items

– By Fact 1, we insert an item in 
list Si with probability 12i

– By Fact 3, the probability that 
list Si has at least one item is 
at most n2i

• By picking i = 3log n, we have 
that the probability that S3log n 
has at least one item is
at most
  n23log n = nn3 = 1n2

• Thus a skip list with n items 
has height at most 3log n with 
probability at least 1 − 1n2



Search and Update Times

• The search time in a skip list 
is proportional to

– the number of drop-down 
steps, plus

– the number of scan-forward 
steps

• The drop-down steps are 
bounded by the height of the 
skip list and thus are O(log n) 
with high probability

• To analyze the scan-forward 
steps, we use yet another 
probabilistic fact:

Fact 4: The expected number of 
coin tosses required in order 
to get tails is 2

• When we scan forward in a list, 
the destination key does not 
belong to a higher list
– A scan-forward step is 

associated with a former coin 
toss that gave tails

• By Fact 4, in each list the 
expected number of scan-
forward steps is 2

• Thus, the expected number of 
scan-forward steps is  O(log n)

• We conclude that a search in a 
skip list takes O(log n) expected 
time

• The analysis of insertion and 
deletion gives similar results



Up-Down Search

• We search for a key x in a a skip list as follows:

– We start at the last bottom position of the top list 

– We move left and up until we reach a level with previous key less than 
the search key

– Then we move down and left until we find the correct position

• Example: search for 26

+−

S0

S1

S2

S3

+31−

64 +31 34− 23

56 64 78 +31 34 44− 12 23 26



Skip-List Sort

• Insert the elements x1, x2, …, into a skip-list, 

doing up-down search from the bottom-left 

part of the skip-list for each element xi.

• The expected time to insert xi is O(log di(X)), 

where di(X) is the distance in the bottom level 

to the place where xi belongs.

• di(X) is bounded by Ii(X), where Ii(X) is the 

number of inversions with xi as the right 

element.



Analysis of Skip-List Sort

• The analysis of the expected running time 

uses the fact that the geometric mean is 

always at most the arithmetic mean:
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