Selected Sorting Algorithms

CS 165: Project in Algorithms and Data Structures

Michael T. Goodrich

University of California (I) Irvine

Why Sorting?

- Practical application
 - People by last name
 - Countries by population
 - Search engine results by relevance
- Fundamental to other algorithms
- Different algorithms have different asymptotic and constant-factor trade-offs
 - No single 'best' sort for all scenarios
 - Knowing one way to sort just isn't enough
- Many to approaches to sorting which can be used for other problems

Why Sorting?

 Donald Knuth, in his book "The Art of Computer Programming" (Volume 3), famously stated: "Indeed, I believe that virtually every important aspect of programming arises somewhere in the context of sorting or searching!".

Problem statement

There are *n* comparable elements in an array and we want to rearrange them to be in increasing order

Pre:

- An array A of data records
- A value in each data record
- A comparison function
 - <, =, >, compareTo

Post:

- For each distinct position i and j of A, if i < j then A[i] ≤ A[j]
- A has all the same data it started with

Insertion sort

- insertion sort: orders a list of values by repetitively inserting a particular value into a sorted subset of the list
- more specifically:
 - consider the first item to be a sorted sublist of length 1
 - insert the second item into the sorted sublist, shifting the first item if needed
 - insert the third item into the sorted sublist, shifting the other items as needed
 - repeat until all values have been inserted into their proper positions

Insertion sort

- Simple sorting algorithm.
 - n-1 passes over the array
 - At the end of pass i, the elements that occupied A[0]...A[i] originally are still in those spots and in sorted order.

	2	15	8	1	17	10	12	5
	0	1	2	3	4	5	6	7
after pass 2	2	8	15	1	17	10	12	5
	0	1	2	3	4	5	6	7
after	1	2	8	15	17	10	12	5
pass 3	0	1	2	3	4	5	6	7

Insertion sort example

3 is sorted. Shift nothing. Insert 9.

3 and 9 are sorted. Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted. Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted. Shift 9, 6, and 3 to the right. Insert 2.

Insertion sort code

```
public static void insertionSort(int[] a) {
    for (int i = 1; i < a.length; i++) {
        int temp = a[i];
        // slide elements down to make room for a[i]
        int j = i;
        while (j > 0 \&\& a[j - 1] > temp) {
            a[j] = a[j - 1];
            j − − ;
        a[j] = temp;
```

Insertion-sort Analysis

- An inversion in a permutation is the number of pairs that are out of order, that is, the number of pairs, (i,j), such that i<j but x_i>x_i.
- Each step of insertion-sort fixes an inversion or stops the while-loop.
- Thus, the running time of insertion-sort is O(n + k), where k is the number of inversions.

Insertion-sort Analysis

 The worst case for the number of inversions, k, is...

- This occurs for a list in reverse-sorted order.
- What about the following sequence consisting of two increasing consecutive subsequences (which are called "runs")? (1,3,5,7,...,[n/2]-1, 2,4,6,8,...[n/2])

Shell sort description

- shell sort: orders a list of values by comparing elements that are separated by a gap of >1 indexes
 - a generalization of insertion sort
 - invented by computer scientist Donald Shell in 1959
- based on some observations about insertion sort:
 - insertion sort runs fast if the input is almost sorted
 - insertion sort's weakness is that it swaps each element just one step at a time, taking many swaps to get the element into its correct position

Shell sort example

 Idea: Sort all elements that are 5 indexes apart, then sort all elements that are 3 indexes apart, ...

Original	32	95	16	82	24	66	35	19	75	54	40	43	93	68	
After 5-sort	32	35	16	68	24	40	43	19	75	54	66	95	93	82	6 swaps
After 3-sort	32	19	16	43	24	40	54	35	75	68	66	95	93	82	5 swaps
After 1-sort	16	19	24	32	35	40	43	54	66	68	72	82	93	95	15 swaps

Shell sort code

```
public static void shellSort(int[] a) {
    for (int gap = a.length / 2; gap > 0; gap /= 2) {
        for (int i = qap; i < a.length; i++) {
            // slide element i back by gap indexes
            // until it's "in order"
            int temp = a[i];
            int j = i;
            while (j \ge gap \&\& temp < a[j - gap]) {
                a[j] = a[j - qap];
                j -= qap;
            a[j] = temp;
```

Shell sort Analysis

- Harder than insertion sort
- But certainly no worse than insertion sort
- Worst-case: O(n²)
- Average-case: ????

Tim-sort

- Tim-sort is a recent sorting algorithm that was included in reference implementations for Java and Python.
- It uses a bunch of heuristics aimed at speeding up the running time for sorting
- As such, it took over 10 years before its running time was proved to be O(n log n) in the worst case.

Tim-sort

- First, Tim-sort divides the input into runs, i.e., increasing consecutive subsequences.
- Then, it pushes the first run onto a stack, and starts processing runs left to right, pushing each new run onto the stack
- When certain conditions occur, Tim-sort merges a pair of runs that are consecutive on the stack, replacing the pair on the stack with the merged result.

Merge Algorithm

The merge method in Tim-sort is the same merge method as used in the well-known Mergesort algorithm.

Tim-sort Core Algorithm

```
Algorithm 3: TimSort: translation of Algorithm 1 and Algorithm 2
   Input: A sequence to S to sort
   Result: The sequence S is sorted into a single run, which remains on the stack.
   Note: At any time, we denote the height of the stack \mathcal{R} by h and its i^{\text{th}} top-most run (for 1 \leq i \leq h) by
           R_i. The size of this run is denoted by r_i.
 1 runs \leftarrow the run decomposition of S
 2 \mathcal{R} \leftarrow an empty stack
 3 while runs \neq \emptyset do
                                                                                         // main loop of TIMSORT
       remove a run r from runs and push r onto \mathcal{R}
                                                                                                                // #1
 4
       while true do
 5
           if h \geqslant 3 and r_1 > r_3 then merge the runs R_2 and R_3
                                                                                                                // #2
 6
           else if h \ge 2 and r_1 \ge r_2 then merge the runs R_1 and R_2
                                                                                                                // #3
 7
           else if h \ge 3 and r_1 + r_2 \ge r_3 then merge the runs R_1 and R_2
                                                                                                                // #4
 8
           else if h \ge 4 and r_2 + r_3 \ge r_4 then merge the runs R_1 and R_2
                                                                                                                // #5
 9
           else break
10
11 while h \neq 1 do merge the runs R_1 and R_2
```

Tim-sort Analysis

- The sizes of the runs on the stack grow at least as fast as the Fibonacci sequence, which is used to show that Tim-sort runs in O(n(1 + log r)) time, where r is the number of runs.
- In fact, it runs in time that is proportional to n times the binary Shannon entropy of the input sequence.

Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists
 - S_0, S_1, \ldots, S_h such that
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in non-decreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq ... \supseteq S_h$
 - List S_h contains only the two special keys
- Skip lists are one way to implement the dictionary ADT
- Java applet

Possible Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
 - item
 - link to the node before
 - link to the node after
 - link to the node below
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them

Top-Down Search

- We search for a key x in a a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y \leftarrow key(after(p))$

```
x = y: we return element(after(p))
```

x > y: we "scan forward"

x < y: we "drop down"

- If we try to drop down past the bottom list, we return NO_SUCH_KEY
- Example: search for 78

Insertion

- To insert an item (x, o) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i
 the number of times the coin came up heads
 - If $i \ge h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1} , each containing only the two special keys
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each list $S_0, S_1, ..., S_i$
 - For $j \leftarrow 0, ..., i$, we insert item (x, o) into list S_j after position p_j

Deletion

- To remove an item with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_j is in list S_j
 - We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$
 - We remove all but one list containing only the two special keys
- Example: remove key 34

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting i consecutive heads when flipping a coin is $1/2^i$
 - Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np

- Consider a skip list with n items
 - By Fact 1, we insert an item in list S_i with probability $1/2^i$
 - By Fact 2, the expected size of list S_i is $n/2^i$
- The expected number of nodes_n used by, the skip list is $\sum_{i=0}^{n} \frac{n}{2^{i}} = n \sum_{i=0}^{n} \frac{1}{2^{i}} < 2n$
- Thus, the expected space usage of a skip list with n items is O(n)

Height

- The running time of the search an insertion algorithms is affected by the height h of the skip list
- We show that with high probability, a skip list with n items has height $O(\log n)$
- We use the following additional probabilistic fact:

Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np

- Consider a skip list with n items
 - By Fact 1, we insert an item in list S_i with probability $1/2^i$
 - By Fact 3, the probability that list S_i has at least one item is at most $n/2^i$
- By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one item is at most

$$n/2^{3\log n} = n/n^3 = 1/n^2$$

• Thus a skip list with n items has height at most $3\log n$ with probability at least $1 - 1/n^2$

Search and Update Times

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are O(log n) with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
 - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scanforward steps is 2
- Thus, the expected number of scan-forward steps is $O(\log n)$
- We conclude that a search in a skip list takes O(log n) expected time
- The analysis of insertion and deletion gives similar results

Up-Down Search

- We search for a key x in a a skip list as follows:
 - We start at the last bottom position of the top list
 - We move left and up until we reach a level with previous key less than the search key
 - Then we move down and left until we find the correct position
- Example: search for 26

Skip-List Sort

- Insert the elements x₁, x₂, ..., into a skip-list, doing up-down search from the bottom-left part of the skip-list for each element x_i.
- The expected time to insert x_i is O(log d_i(X)), where d_i(X) is the distance in the bottom level to the place where x_i belongs.
- d_i(X) is bounded by I_i(X), where I_i(X) is the number of inversions with x_i as the right element.

Analysis of Skip-List Sort

 The analysis of the expected running time uses the fact that the geometric mean is always at most the arithmetic mean:

$$\begin{split} c \sum_{i=1}^{|X|} (1 + \log[d_i(X) + 1]) \\ &= c|X| + c \log \left[\prod_{i=1}^{n} (d_i(X) + 1) \right] \\ &= c|X| + 2c|X| \log \left(\prod_{i=1}^{|X|} [I_i(X) + 1] \right)^{1/|X|} \\ &\leq c|X| \left(1 + 2\log \left[\frac{Inv(X)}{|X|} + 1 \right] \right). \end{split}$$