Selected Sorting Algorithms

CS 165: Project in Algorithms

and Data Structures
Michael T. Goodrich

UNIVERSITY of CALIFORNIA £) IRVINE

: .

Some slides are from J. Miller, CSE 373, U. Washington

Why Sorting?
Practical application
— People by last name
— Countries by population
— Search engine results by relevance

Fundamental to other algorithms

Different algorithms have different asymptotic and
constant-factor trade-offs

— No single ‘best’ sort for all scenarios
— Knowing one way to sort just isn’t enough

Many to approaches to sorting which can be used for
other problems

Why Sorting?

 Donald Knuth, in his book "The Art of
Computer Programming" (Volume 3),
famously stated: "Indeed, | believe
that virtually every important aspect
of programming arises somewhere in
the context of sorting or searching!".

Problem statement

There are n comparable elements in an array
and we want to rearrange them to be In
Increasing order

Pre:
— An array A of data records
— A value In each data record

— A comparison function
¢ <, =, >, compareTo

Post:

— For each distinct position i and j of A, if 1 < 3
thenA[i] < A[J]

— A has all the same data it started with

Insertion sort

Insertion sort: orders a list of values by
repetitively inserting a particular value into a
sorted subset of the list

more specifically:
— consider the first item to be a sorted sublist of length 1

— Insert the second item into the sorted sublist, shifting
the first item If needed

— Insert the third item into the sorted sublist, shifting the
other items as needed

— repeat until all values have been inserted into their
proper positions

Insertion sort
* Simple sorting algorithm.
— n-1 passes over the array

— At the end of pass I, the elements that
occupied A[O]...AJi] originally are still in those
spots and in sorted order.

2 | 15 | 8 1 |17 | 10| 12 | 5

0 1 2 3 4 5 6 7
after 2 8 15| 1 | 17|10 | 12 | 5
pass 2

0 1 2 3 4 5 6 7
after 1 2 8 15 I 17 | 10 | 12 5
pass 3 O 1 2 3 4 5 6 7

Insertion sort example

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 2.

3 9 6 1 2

3 o —> 6 1 2
4 |

3—»6—> 9 —> 1 2

4 |

1 3—» 6—» 99— 2
A

Insertion sort code

public static void insertionSort(int[] a) {
i < a.length; i++) {

for (int 1 = 1;
int temp = ali];

// slide elements down to make room for al[i]

int 7 = 1i;

while (3 > 0 && a[j - 1] > temp) {
aljl = aly - 117
J—=

Insertion-sort Analysis

« Aninversion in a permutation Is the
number of pairs that are out of order, that
IS, the number of pairs, (i,j), such that I<]
but x;>X;.

« Each step of insertion-sort fixes an
Inversion or stops the while-loop.

* Thus, the running time of insertion-sort Is
O(n + k), where Kk Is the number of
Inversions.

Insertion-sort Analysis

« The worst case for the number of
Inversions, k, IS...

 This occurs for a list In reverse-sorted
order.

« What about the following sequence
consisting of two increasing consecutive
subsequences (which are called “runs™)?

(1,3,5,7,...,[n/2]-1, 2,4,6,8,...[n/2])

Shell sort description

* shell sort: orders a list of values by comparing

elements that are separated by a gap of >1
Indexes

— a generalization of insertion sort
— Invented by computer scientist Donald Shell in 1959

 based on some observations about insertion sort:
— Insertion sort runs fast if the input is almost sorted

— Insertion sort's weakness is that it swaps each

element just one step at a time, taking many swaps to
get the element into its correct position

Shell sort example

» |dea: Sort all elements that are 5 indexes
apart, then sort all elements that are 3
Indexes apairt, ...

Original 32 95 16 82 24 66 35 19 75 54 40 43 93 68

After 5-sort 32 35 16 68 24 40 43 19 75 54 66 95 93 82 | 6 swaps

After 3-sort 32 19 16 43 24 40 54 35 75 68 66 95 93 82 | 5swaps

After 1-sort 16 19 24 32 35 40 43 54 66 68 72 82 893 95 |15 swaps

12

Shell sort code

public static void shellSort (int[] a) {
for (int gap = a.length / 2; gap > 0; gap /= 2) {
for (int 1 = gap; 1 < a.length; 1i++) {
// slide element i1 back by gap indexes
// until it's "in ordexr"
int temp = afli];
int j i;
while (] >= gap && temp < a[] - gapl]l) {
aljl = alj - gapl;
J —-= gap;

alj] = temp;

Shell sort Analysis

Harder than insertion sort

But certainly no worse than insertion sort
Worst-case: O(n?)

Average-case: 7?77?77

Tim-sort

* Tim-sort Is a recent sorting algorithm that
was Iincluded in reference implementations
for Java and Python.

* |t uses a bunch of heuristics aimed at
speeding up the running time for sorting

* As such, it took over 10 years before its
running time was proved to be O(n log n)
In the worst case.

Tim-sort

* First, Tim-sort divides the input into runs, I.e.,
Increasing consecutive subsequences.

* Then, it pushes the first run onto a stack, and
starts processing runs left to right, pushing
each new run onto the stack

* When certain conditions occur, Tim-sort
merges a pair of runs that are consecutive on
the stack, replacing the pair on the stack with
the merged result.

(:'mTD‘ -
Z |

—_— 1

Merge Algorithm

oliﬁtll 316
e 1 2

1 is smaller than 5:

The merge method

i1 result|]
in Tim-sort is the v [5[71819)]
same merge method e
as used inthe well- ~ @uuppe
known Mergesort R FIE
algorithm. RS

i1 result 1 3 5

Tim-sort Core Algorithm

Algorithm 3: TimSort: translation of Algorithm [1j and Algorithm

Input: A sequence to S to sort

Result: The sequence S is sorted into a single run, which remains on the stack.

Note: At any time, we denote the height of the stack R by h and its i"" top-most run (for 1 < i< h) by
R;. The size of this run is denoted by ;.

1 runs < the run decomposition of S

2 R ¢ an empty stack

3 while runs # () do // main loop of TIMSORT

4 remove a run r from runs and push r onto R // #1

5 while true do

6 if h > 3 and r; > r3 then merge the runs Rz and Rs // #2

7 else if h > 2 and r; > ro then merge the runs R; and R» // #3

8 else if h > 3 and r; + r2 > r3 then merge the runs R; and R // #4

9 else if h > 4 and r2 +r3 > r4 then merge the runs R; and R // #5
10 else break

11 while h # 1 do merge the runs R; and R»

From https://arxiv.org/abs/1805.08612

Tim-sort Analysis

* The sizes of the runs on the stack grow at
least as fast as the Fibonaccl sequence,
which Is used to show that Tim-sort runs in

O(n(1 + log r)) time, where r is the number
of runs.

* In fact, it runs in time that is proportional to
n times the binary Shannon entropy of the
Input sequence.

Skip List

A skip list for a set S of distinct (key, element) items is a series of
lists
So: Sy, ..., S, such that

— Each list S; contains the special keys +oo and —w©

— List S, contains the keys of S in non-decreasing order

— Each listis a subsequence of the previous one, i.e.,
S$o25;2 ...25,

— List S;,contains only the two special keys
Skip lists are one way to implement the dictionary ADT

Java applet

=
=

http://www.cs.umd.edu/class/spring2002/cmsc420-0401/demo/SkipList2/

Possible Implementation

* We can implement a skip
list with quad-nodes

« A quad-node stores:
— item
— link to the node before

quad-node

—t

— link to the node after
— link to the node below

« Also, we define special keys
PLUS INF and
MINUS _INF, and we modify
the key comparator to
handle them

«——e

Top-Down Search

We search for a key x in a a skip list as follows:
— We start at the first position of the top list

— At the current position p, we compare x with y <— key(after(p))
X =Y. we return element(after(p))
X >Yy: we “scan forward”
X <y: we “drop down”
— If we try to drop down past the bottom list, we return NO_SUCH_KEY
Example: search for 78

S; (B =
s o _ h =

S | [FE] ﬁ—\l'E/ (=] =
S0 @]—M—@J—MJ—MM——M

Insertion

« To insert an item (X, 0) into a skip list, we use a randomized
algorithm:

— We repeatedly toss a coin until we get tails, and we denote with i
the number of times the coin came up heads

— Ifi>h, we add to the skip list new lists S;,,4, ..., S;,4, €each
containing only the two special keys
— We search for x in the skip list and find the positions py, p;, ..., p; Of
the items with largest key less than x in each list Sy, Sy, ..., S;
— Forj«0,...,1, we insert item (X, 0) into list S; after position p;
« Example: insert key 15, with 1 =2
S, [} =
s, (B2 = s, [} [} =

. [— Y)
s, e

Deletion

« To remove an item with key x from a skip list, we proceed as
follows:

— We search for x in the skip list and find the positions pg, p;, ..., p; Of
the items with key x, where position p; is in list S;

— We remove positions py, p;, ..., p; from the lists S,, Sy, ..., S
— We remove all but one list containing only the two special keys

« Example: remove key 34

s, (Bl =

s, [(& = s, (B l.+od
s, Bf—EHE—B —> s [[EE] lod
S, [P (e {1 s, (IS EE e

Space Usage

. The space used by a skip list « Consider a skip list with n

depends on the random bits items
used by each invocation of the — By Fact 1, we insert an item
Insertion algorithm in list S; with probability 1/2!
« We use the following two basic — By Fact 2, the expected size
probabilistic facts: of list S; is n/2i
Fact 1: The probability of getting i~ + The expected number of
consecutive heads when nodes,used by, the skip list is
flipping a coin is 1/2! n
Fact 2: If each of n items is 2! !

i=0 i=0

present in a set with probability
p, the expected size of the set

) # Thus, the expected space usage
IS np

of a skip list with n items is O(n)

Height

The running time of the
search an insertion
algorithms is affected by the
height h of the skip list

We show that with high
probability, a skip list with n
items has height O(log n)

We use the following
additional probabillistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event
occurs is at most np

Consider a skip list with n
items
— By Fact 1, we insert an item in
list S; with probability 1/2!
— By Fact 3, the probability that

list S; has at least one item is
at most n/2!

By picking i = 3log n, we have
that the probability that S, ,
has at least one item is
at most

n/23109n = n/n3 = 1/n?

Thus a skip list with n items
has height at most 3log n with
probability at least 1 — 1/n?

Search and Update Times

* The search time in a skip list When we scan forward in a list,
is proportional to the destination key does not

— the number of drop-down belong to a higher list

— A scan-forward step is

steps, plus associated with a former coin
— the number of scan-forward toss that gave tails
steps « By Fact 4, in each list the
* The drop-down steps are expected number of scan-

bounded by the height of the forward steps is 2

skip list and thus are O(log n) Thus, the expected number of
with high probability scan-forward steps is O(log n)

« To analyze the scan-forward We conclude that a search in a
steps, we use yet another skip list takes O(log n) expected

probabilistic fact: time

Fact 4: The expected number of -(Ij-glee ﬁ‘gﬁlyls\'/'gsogl'%?grng‘s SI?&?
coin tosses required in order g

to get tails is 2

Up-Down Search

We search for a key x in a a skip list as follows:
— We start at the last bottom position of the top list

— We move left and up until we reach a level with previous key less than
the search key

— Then we move down and left until we find the correct position

Example: search for 26

S, =
> [HE] (] =
S, [@—{=] =] ;. —
S (BT — R

Skip-List Sort

* Insert the elements x4, X,, ..., into a skip-list,
doing up-down search from the bottom-left
part of the skip-list for each element x.

* The expected time to insert x; Is O(log d;(X)),
where d,(X) Is the distance in the bottom level
to the place where x; belongs.

» di(X) Is bounded by I,(X), where |.(X) Is the
number of inversions with x; as the right
element.

Analysis of Skip-List Sort

The analysis of the expected running time
uses the fact that the geometric mean is
always at most the arithmetic mean:

| X |

¢) (1 +logld,(X)+ 1D
=1

= ¢l X| +clog[n(dl(X) + 1)
1

i

| X

1/1X|
= ¢| X| + 2C[Xllog(TTIL(X) + 1])
1=1

< ¢| X

Inv(X)
1L + 2log + 1

	Slide 1: Selected Sorting Algorithms
	Slide 2: Why Sorting?
	Slide 3: Why Sorting?
	Slide 4: Problem statement
	Slide 5: Insertion sort
	Slide 6: Insertion sort
	Slide 7: Insertion sort example
	Slide 8: Insertion sort code
	Slide 9: Insertion-sort Analysis
	Slide 10: Insertion-sort Analysis
	Slide 11: Shell sort description
	Slide 12: Shell sort example
	Slide 13: Shell sort code
	Slide 14: Shell sort Analysis
	Slide 15: Tim-sort
	Slide 16: Tim-sort
	Slide 17: Merge Algorithm
	Slide 18: Tim-sort Core Algorithm
	Slide 19: Tim-sort Analysis
	Slide 20: Skip List
	Slide 21: Possible Implementation
	Slide 22: Top-Down Search
	Slide 23: Insertion
	Slide 24: Deletion
	Slide 25: Space Usage
	Slide 26: Height
	Slide 27: Search and Update Times
	Slide 28: Up-Down Search
	Slide 29: Skip-List Sort
	Slide 30: Analysis of Skip-List Sort

