Network Algorithms

Michael Goodrich

Some slides adapted from:
Networked Life (NETS) 112, Univ. of Penn., 2018, Prof. Michael Kearns
Determining the Diameter of Small World Networks, Frank W. Takes & Walter A. Kosters, Leiden University, The Netherlands
Structure and models of real-world graphs and networks, Jure Leskovec, Carnegie Mellon University
Complex (Biological) Networks, by Elhanan Borenstein, Roded Sharan, and Tomer Shlomi

Traditional Computational
Representations of Networks

List or hash table of edges:
(ordered) pairs of nodes

{(A,C), (CB),
(D,B), (D,C) }

= Which is the most useful representation?

/]

) 4

Adjacency Matrix

OO0 w >
© ©o o o

- A o o

1
0
0
1

o O o o

-

Adjacency List

Name:D
nqr:

b1 b2

Name:C
ngr:

Name:B
ngr:

(-

= Should you use them in combination?

Name:A
ngr:

A Unified Computational
Representation of Networks
vl

) 4

Adjacency Set

A: Adjacencies: {C}, Edges: {(A,C)}

B: Adjacencies: {}, Edges: {}

C: Adjacencies: {B}, Edges: {(C,B)}

D: Adjacencies: {B,C}, Edges: {(D,B), (D,C)}

= Time for listAdjacent(v) is O(degree(v))

" Time for areAdjacent(v,w) is O(1) if sets have
hash tables, like in Python

Network Structures

 Network structures characterize how

networks “look™:

— Large or small diameter?

— Number of edges: sparse or dense?

— Degree distributions: heavy/long tail with a power law?
— Clustering coefficient: high or low?

* These are empirical phenomena
 How do you compute them?

Image from https:/matrix. berkeley.edu/research/social-networks-history

https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history

Degree Distribution

* X axis: number of neighbors (degree)
« y axis: number of vertices with that degree

Number of results

m——

< ore 5ener.‘c mote sPcc.‘Ficq-

A long tail
'm known as a “heavy tail")

number of mathematicians

20 30 40 50 60
number of coauthors

Degree Distribution Algorithm

1. Compute the degree, deg(v), of each vertex, v.

— If G 1s represented as an adjacency list, count the number
of elements 1n v’s list.

2. Create a histogram count array, H, of size n, and
initialize each H[i] = 0.
3. For each vertex, v, increment H[deg(v)].

4. Plot the values of H from 0 to n-1 on a regular and
log-log scale

5. Ifthe values on the log-log plot form a straight line,
determine its slope to find the exponent of the power
law degree distribution

Example 1

Degree distribution without a long/heavy tail .
Does not exhibit a power law.

data sampled from a Normal distribution with mean 100.00 and std 1.00

me data on a log-log scale
35 4 . . s .
35 o_©
~ 04 °
)(A 3 9% ‘o %)OOG%
& o
\ ~ |- 0%30? o
>< a = 25 oo & By
\/ = [s]
>N < § 2 OGDOO %o
QO Q) g o0
< I =15} o °
Q o E o o
3J Q 1 o o
o <
Q N 0s |
k \J
* U m D a5 =N 1 1 1 1 o N 1
96 97 98 99 100 101 102 103 104 o 4.57 4.58 4.59 4.6 4.61 4.62 4.63 4.64 4.65

> log) >
log(x)

numker of authors with degree

Example 2

« Degree distribution with a long/heavy tail .
* Does exhibit a power law, with exponent -2.5.

Erdos Number Project

0 10

" i il
20 30 40
number of coauthors (degree)

L
S0

60

logthurmkber of authors with degree)

Erdos Number Project, loglog scale

Slope = -2.5

1
0.5

1 1 1 1 1 1
1 1.5 2 25 3 35 4
log(degree)

Distance

* The distance between two vertices is the length of

the shortest path connecting them.

— This assumes the network has only a single connected component
— If two vertices are in different components, their distance is infinite

Image from

https: //www.sci.unich.it/~francesc/teaching/network/geodesic. htm!

https://www.sci.unich.it/~francesc/teaching/network/geodesic.html
https://www.sci.unich.it/~francesc/teaching/network/geodesic.html

Diameter

The diameter of a network is the maximum

distance between a pair of vertices in the network
— It measures how near or far typical individuals are from each other

) /
Q i
o
I o o Sy
IS ° o\r
> O @y
o e 1P
O—oge /
o O

The dolphin network with the diameter (the longest shortest path) highlighted in red. The diameter is 8 edges long.

From hitps://users.dimi.uniud.it/~massimo.franceschet/bottlenose/bottlenose.html

https://users.dimi.uniud.it/~massimo.franceschet/bottlenose/bottlenose.html

Definitions

Consider a connected undirected graph G = (V/, E) with
n = |V| nodes and m = |E| edges

Distance d(v,w): length of shortest path between nodes
v,w eV

Diameter D(G): maximal distance (longest shortest path
length) over all node pairs: max, wev d(v,w)

Eccentricity e(v): length of a longest shortest path from v:
e(v) = maxycy d(v, w)

Diameter D(G) (alternative definition): maximal eccentricity
over all nodes: max,cy e(Vv)

Eccentricity distribution: (relative) frequency f(x) of each
eccentricity value x

_ hweVie(u) =xj|

n

f(x)

Example

* A graph with diameter 6
 Numbers next to nodes denote eccentricity values

(A)s (B * (¢} @5
®6 F) G)s (H)s
s (1) ®)4 (L)s

Naive Algorithm

Diameter is equal to the largest value returned
by an All Pairs Shortest Path (APSP) algorithm

Brute-force: for each vertex v, execute a Breadth
First Search (BFS) from v in O(m) time to find v's
eccentricity. Return the largest value found.

Time complexity O(nm)
Problematic if n = 8 million and m = 1 billion.

— |f one BFS takes 6 seconds on a 3.4GHz machine,
this brute-force algorithm takes 1.5 years to compute
the diameter . ..

Heuristic |ldea 1

 |f we can find one of the nodes in a diameter pair,
we can compute the diameter with one more BFS.

1. Perform a BFS from a random sample of nodes,
recording nodes with maximum found distance, d.

2. Perform a BFS from all the far nodes (if small) or a
random sample of this set (if large).

Heuristic Idea 2

1. Letr be arandom vertex and set D, = 0.

2. Perform a BFS fromr.
3. Select the farthest node, w, in this BFS.

* If the distance from r to w is larger than D, ,,, set
D...x to this distance, let r = w, and repeat the above

two steps.

Plot Results as a Function of n

* |f the networks exhibit the small world
phenomenon, then diameters are small.

« So plot diameters as a function of n on a lin-log

scale: A B o) = 107
f f(x) = x ——
| : | f(x) = 1090(x) |
B = R -

"""""""" """"""""" ************** The log n function
‘ : 1 5 ~ looks like a straight line

10 100 1000

LinLogScale.png: davidfg derivative work: Autopilot [CC BY-SA 3.0 (http//creativecommons.org/licenses/by-sa/3.0/)]

Clustering Coefficient

e “friend of a friend is a friend”

* |f a connects to b, and b to c,
then with high probability
a connects to c.

« Clustering coefficient C:

C = 3*number of triangles / number of 2-edge paths

C =3*(1)/(1+1+6+0+0) = 3/8 = 0.375

Clustering Coefficient (2)

10°

* Clustering coefficient might
have a power law:

Clhk)~k™!

|t is speculated that in real
networks:

C=0(1) as n—w

3
o
10" |
1 10) 100
Synonyms network
10° : .
(c)
107"]
_' 3)
32 -2
10 X
107 ®
~4 . i ik Na 2 L
10 10’ 10° 10° 10*

D{bo%ﬁ%
A

\X (b)
A
Y
%
by
Y
LY
AN
AR
Ay
N\,
\\ 4
N ety
% i
0

World Wide Web

Clustering Coefficient Algorithm

e Clustering coefficient C:

C = 3*number of triangles / number of 2-edge paths
« Computing the denominator 1s easy:

— For each vertex v, let deg(v) denote its degree.

— The number of paths of length 2 with v in the middle
1s deg(v) choose 2 = deg(v)(deg(v)-1)/2.

— So, to get the denominator for C, sum up
deg(v)(deg(v)-1)/2 for all vertices, v, in G.

X Number of 2-edge paths with
v in the middle 1s 4(3)/2 = 6.
v

Counting Triangles

« To get the numerator for C, we need to count the
number of triangles in the graph, G.
* Nalve algorithm:
— For every triple, u, v, win G, see if they form a
triangle. If so, add 1 to a running count.
— Running time is O(n%) if G is represented with
an adjacency list.

This is bad.

\\
~
~
\\
~

Counting Triangles:
Slight Improvement

« Put every edge, (v,w), into a hash table, T, so
we can do a lookup to see if an edge exists Iin
O(1) expected time, i.e., with a get((v,w)).
« Slightly better naive algorithm:
— For every triple, u, v, win G, see if they form a
triangle. If so, add 1 to a running count.
— Running time is O(n3) expected if edges in G
are stored in a hash table. , ,
e
&Y

This is still bad. || | 7

2]

il

Graph Degeneracy

 The degeneracy of a graph is the smallest value
of d for which every subgraph has a vertex of
degree at most d.

 If a graph has degeneracy d, then there exists
an ordering of the vertices of G in which each
vertex has at most d neighbors that are earlier in
the ordering.

En ordering for a

graph with degeneracy 2:

'1'}'\/

Public domain image by David Eppstein

Real-World Graphs

* Real-world graphs tend to have small
degeneracy, d.

[)
graph n rnl d graph n m d
zachary [48] 34 78 4 roadNet-CA [34] 1,965,206 2,766,601 3
dolphins [35] 62 159 4 roadNet-PA [34] 1,088,092 1,541,899 3
power [47] 4,941 6,594 5 roadNet-TX [34] 1,379,917 1,921,66(00 3
polbooks [28] 105 4411 6 amazon0601 [30] 403,394 2,443,408 10
adjnoun [29] 112 425 6 email-EuAll [31] 265,214 364,481 37
football [15] 115 6131 8 email-Enron [24] 36,692 183,831 43
lesmis [25] 77 254 9 web-Google [2] 875,713 4,322,051] 44
celegensneural [47] 297 1,248 9 soc-wiki-Vote [33] 7,115 100,762 33
netscience [39] 1,589 2,742 19 soc-slashdot0902 [34] 82,168 504,23(0 55
internet [40] 22963 48421 25 cit-Patents [18] 3,774,768 16,518,947 64
condmat-2005 [38] 40,421 175,693 29 soc-Epinions] [42] 75,888 405,740 67
polblogs [4] 1,490 16,715 36 soc-wiki-Talk [33] 2,394,385 4,659,563 131
astro-ph [38] 16,706 121.251| 56 web-berkstan [34] 685,231 6,649,47(] 201

—/ —/

Data from “Listing All Maximal Cliques in Large Sparse Real-World Graphs,” by David Eppstein and Darren Strash

Degeneracy Ordering Algorithm

* Degeneracy can be computed by a simple greedy
algorithm:

— Repeatedly find and remove the vertex of
smallest degree, adding it to the end of the list.

— The degeneracy is then the highest degree, d,
of any vertex at the moment it is removed.

— The ordering is a d-degeneracy ordering.

2-degeneracy
e @

Public domain image by David Eppstein

Linear-time Implementation

Initialize an output list, L, to be empty.

Compute a number, d,, for each vertex v in G, which 1s the number of
neighbors of v that are not already in L. Initially, d, is just the degrees of v.

Initialize an array D such that D[i] contains a list of the vertices v that are not
already in L for which d,=i.

Let N, be a list of the neighbors of v that come before v in L. Initially, N, is
empty for every vertex v.

Initialize k£ to O.

Repeat n times:

— Let i be the smallest index such that D[i] is nonempty.

— Set k to max(k, i).

— Select a vertex v from D[i]. Add v to the beginning of L and remove it
from D[i]. Mark v as being in L (e.g., using a hash table, H,).

— For each neighbor w of v not already i L (you can check this using H;):

 Subtract one from d,,
* Move w to the cell of D corresponding to the new value of d,,, i.e., D[d,,]
« Addwto N,

Triangle Counting Algorithm

Compute a d-degeneracy ordering of the vertices,
€.g., using the algorithm of the previous shide.

Process the vertices according to this ordering, L:
For each vertex, v:

For each pair of vertices, u and w, adjacent to v
and earlier 1n the ordering, 1.¢., u and v are 1n the
list N, from the degeneracy algorithm:

If (u,w) 1s an edge 1n the graph, then add one
to the triangle count.
Running time is O(d?n) = O(dm) expected, assuming
edges are stored 1n a hash table.

	Slide 1: Network Algorithms
	Slide 2: Traditional Computational Representations of Networks
	Slide 3: A Unified Computational Representation of Networks
	Slide 4: Network Structures
	Slide 5: Degree Distribution
	Slide 6: Degree Distribution Algorithm
	Slide 7: Example 1
	Slide 8: Example 2
	Slide 9: Distance
	Slide 10: Diameter
	Slide 11: Definitions
	Slide 12: Example
	Slide 13: Naïve Algorithm
	Slide 14: Heuristic Idea 1
	Slide 15: Heuristic Idea 2
	Slide 16: Plot Results as a Function of n
	Slide 17: Clustering Coefficient
	Slide 18: Clustering Coefficient (2)
	Slide 19: Clustering Coefficient Algorithm
	Slide 20: Counting Triangles
	Slide 21: Counting Triangles: Slight Improvement
	Slide 22: Graph Degeneracy
	Slide 23: Real-World Graphs
	Slide 24: Degeneracy Ordering Algorithm
	Slide 25: Linear-time Implementation
	Slide 26: Triangle Counting Algorithm

