Network Algorithms

Michael Goodrich

Some slides adapted from:

Networked Life (NETS) 112, Univ. of Penn., 2018, Prof. Michael Kearns

Determining the Diameter of Small World Networks, Frank W. Takes & Walter A. Kosters, Leiden University, The Netherlands Structure and models of real-world graphs and networks, Jure Leskovec, Carnegie Mellon University Complex (Biological) Networks, by Elhanan Borenstein, Roded Sharan, and Tomer Shlomi

Traditional Computational Representations of Networks

- Which is the most useful representation?
- Should you use them in combination?

A Unified Computational Representation of Networks

A: Adjacencies: {C}, Edges: {(A,C)}

B: Adjacencies: {}, Edges: {}

C: Adjacencies: {B}, Edges: {(C,B)}

D: Adjacencies: {B,C}, Edges: {(D,B), (D,C)}

- Time for listAdjacent(v) is O(degree(v))
- Time for areAdjacent(v,w) is O(1) if sets have hash tables, like in Python

Network Structures

- Network structures characterize how networks "look":
 - Large or small diameter?
 - Number of edges: sparse or dense?
 - Degree distributions: heavy/long tail with a power law?
 - Clustering coefficient: high or low?
- These are empirical phenomena
- How do you compute them?

Degree Distribution

- x axis: number of neighbors (degree)
- y axis: number of vertices with that degree

Degree Distribution Algorithm

- 1. Compute the degree, deg(v), of each vertex, v.
 - If G is represented as an adjacency list, count the number of elements in v's list.
- 2. Create a histogram count array, H, of size n, and initialize each H[i] = 0.
- 3. For each vertex, v, increment $H[\deg(v)]$.
- 4. Plot the values of *H* from 0 to *n*-1 on a regular and log-log scale
- 5. If the values on the log-log plot form a straight line, determine its slope to find the exponent of the power law degree distribution

Example 1

- Degree distribution without a long/heavy tail .
- Does not exhibit a power law.

Example 2

- Degree distribution with a long/heavy tail.
- Does exhibit a power law, with exponent -2.5.

Distance

- The distance between two vertices is the length of the shortest path connecting them.
 - This assumes the network has only a single connected component
 - If two vertices are in different components, their distance is infinite

Diameter

- The diameter of a network is the maximum distance between a pair of vertices in the network
 - It measures how near or far typical individuals are from each other

Definitions

- Consider a connected undirected graph G = (V, E) with n = |V| nodes and m = |E| edges
- **Distance** d(v, w): length of shortest path between nodes $v, w \in V$
- **Diameter** D(G): maximal distance (longest shortest path length) over all node pairs: $\max_{v,w \in V} d(v,w)$
- Eccentricity e(v): length of a longest shortest path from v: $e(v) = \max_{w \in V} d(v, w)$
- **Diameter** D(G) (alternative definition): maximal eccentricity over all nodes: $\max_{v \in V} e(v)$
- Eccentricity distribution: (relative) frequency f(x) of each eccentricity value x

$$f(x) = \frac{|\{u \in V \mid e(u) = x\}|}{n}$$

Example

- A graph with diameter 6
- Numbers next to nodes denote eccentricity values

Naïve Algorithm

- Diameter is equal to the largest value returned by an All Pairs Shortest Path (APSP) algorithm
- Brute-force: for each vertex v, execute a Breadth First Search (BFS) from v in O(m) time to find v's eccentricity. Return the largest value found.
- Time complexity O(nm)
- Problematic if n = 8 million and m = 1 billion.
 - If one BFS takes 6 seconds on a 3.4GHz machine, this brute-force algorithm takes 1.5 years to compute the diameter . . .

Heuristic Idea 1

- If we can find one of the nodes in a diameter pair, we can compute the diameter with one more BFS.
- Perform a BFS from a random sample of nodes, recording nodes with maximum found distance, d.
- 2. Perform a BFS from all the far nodes (if small) or a random sample of this set (if large).

Heuristic Idea 2

- 1. Let r be a random vertex and set $D_{max} = 0$.
- 2. Perform a BFS from r.
- 3. Select the farthest node, w, in this BFS.
- If the distance from r to w is larger than D_{max}, set D_{max} to this distance, let r = w, and repeat the above two steps.

Plot Results as a Function of n

- If the networks exhibit the **small world** phenomenon, then diameters are small.
- So plot diameters as a function of n on a lin-log

scale:

The log n function looks like a straight line

Clustering Coefficient

- "friend of a friend is a friend"
- If a connects to b, and b to c, then with high probability a connects to c.
- Clustering coefficient *C*:

C = 3*number of triangles / number of 2-edge paths

Clustering Coefficient (2)

 Clustering coefficient might have a power law:

$$C(k) \sim k^{-1}$$

 It is speculated that in real networks:

$$C=O(1)$$
 as $n\to\infty$

Clustering Coefficient Algorithm

- Clustering coefficient *C*:
 - C = 3*number of triangles / number of 2-edge paths
- Computing the **denominator** is **easy**:
 - For each vertex v, let deg(v) denote its degree.
 - The number of paths of length 2 with v in the middle is deg(v) choose 2 = deg(v)(deg(v)-1)/2.
 - So, to get the denominator for C, sum up deg(v)(deg(v)-1)/2 for all vertices, v, in G.

Number of 2-edge paths with v in the middle is 4(3)/2 = 6.

Counting Triangles

- To get the numerator for C, we need to count the number of triangles in the graph, G.
- Naïve algorithm:
 - For every triple, u, v, w in G, see if they form a triangle. If so, add 1 to a running count.

 Running time is O(n⁴) if G is represented with an adjacency list.

This is bad.

Counting Triangles: Slight Improvement

- Put every edge, (v,w), into a hash table, T, so we can do a lookup to see if an edge exists in O(1) expected time, i.e., with a get((v,w)).
- Slightly better naïve algorithm:
 - For every triple, u, v, w in G, see if they form a triangle. If so, add 1 to a running count.
 - Running time is O(n³) expected if edges in G
 are stored in a hash table.

This is still bad.

Graph Degeneracy

- The degeneracy of a graph is the smallest value of d for which every subgraph has a vertex of degree at most d.
- If a graph has degeneracy d, then there exists an ordering of the vertices of G in which each vertex has at most d neighbors that are earlier in the ordering.

Real-World Graphs

 Real-world graphs tend to have small degeneracy, d.

graph	n	m	d
zachary [48]	34	78	4
dolphins [35]	62	159	4
power [47]	4,941	6,594	5
polbooks [28]	105	441	6
adjnoun [29]	112	425	6
football [15]	115	613	8
lesmis [25]	77	254	9
celegensneural [47]	297	1,248	9
netscience [39]	1,589	2,742	19
internet [40]	22,963	48,421	25
condmat-2005 [38]	40,421	175,693	29
polblogs [4]	1,490	16,715	36
astro-ph [38]	16,706	121,251	56

graph	n	m	d
roadNet-CA [34]	1,965,206	2,766,607	3
roadNet-PA [34]	1,088,092	1,541,898	3
roadNet-TX [34]	1,379,917	1,921,660	3
amazon0601 [30]	403,394	2,443,408	10
email-EuAll [31]	265,214	364,481	37
email-Enron [24]	36,692	183,831	43
web-Google [2]	875,713	4,322,051	44
soc-wiki-Vote [33]	7,115	100,762	53
soc-slashdot0902 [34]	82,168	504,230	55
cit-Patents [18]	3,774,768	16,518,947	64
soc-Epinions1 [42]	75,888	405,740	67
soc-wiki-Talk [33]	2,394,385	4,659,565	131
web-berkstan [34]	685,231	6,649,470	201

Data from "Listing All Maximal Cliques in Large Sparse Real-World Graphs," by David Eppstein and Darren Strash

Degeneracy Ordering Algorithm

- Degeneracy can be computed by a simple greedy algorithm:
 - Repeatedly find and remove the vertex of smallest degree, adding it to the end of the list.
 - The degeneracy is then the highest degree, d, of any vertex at the moment it is removed.

The ordering is a d-degeneracy ordering.

Linear-time Implementation

- 1. Initialize an output list, *L*, to be empty.
- 2. Compute a number, d_v , for each vertex v in G, which is the number of neighbors of v that are not already in L. Initially, d_v is just the degrees of v.
- 3. Initialize an array D such that D[i] contains a list of the vertices v that are not already in L for which $d_v = i$.
- 4. Let N_v be a list of the neighbors of v that come before v in L. Initially, N_v is empty for every vertex v.
- 5. Initialize k to 0.
- 6. Repeat *n* times:
 - Let i be the smallest index such that D[i] is nonempty.
 - Set k to $\max(k, i)$.
 - Select a vertex v from D[i]. Add v to the beginning of L and remove it from D[i]. Mark v as being in L (e.g., using a hash table, H_L).
 - For each neighbor w of v not already in L (you can check this using H_L):
 - Subtract one from d_w
 - Move w to the cell of D corresponding to the new value of d_w , i.e., $D[d_w]$
 - Add w to N_v

Triangle Counting Algorithm

- Compute a *d*-degeneracy ordering of the vertices, e.g., using the algorithm of the previous slide.
- Process the vertices according to this ordering, L: For each vertex, v:

For each pair of vertices, u and w, adjacent to v and earlier in the ordering, i.e., u and v are in the list N_v from the degeneracy algorithm:

If (u,w) is an edge in the graph, then add one to the triangle count.

• Running time is $O(d^2n) = O(dm)$ expected, assuming edges are stored in a hash table.