
Network Algorithms

Michael Goodrich

Some slides adapted from:

Networked Life (NETS) 112, Univ. of Penn., 2018, Prof. Michael Kearns

Determining the Diameter of Small World Networks, Frank W. Takes & Walter A. Kosters, Leiden University, The Netherlands

Structure and models of real-world graphs and networks, Jure Leskovec, Carnegie Mellon University

Complex (Biological) Networks, by Elhanan Borenstein, Roded Sharan, and Tomer Shlomi

▪ Which is the most useful representation?

▪ Should you use them in combination?

Traditional Computational

Representations of Networks
B

C

A

D

A B C D

A 0 0 1 0

B 0 0 0 0

C 0 1 0 0

D 0 1 1 0

Adjacency MatrixList or hash table of edges:
(ordered) pairs of nodes

{ (A,C) , (C,B) ,
(D,B) , (D,C) }

Adjacency List

Name:A

ngr:

p1
Name:B

ngr:

Name:C

ngr:

p1

Name:D

ngr:

p1 p2

▪ Time for listAdjacent(v) is O(degree(v))

▪ Time for areAdjacent(v,w) is O(1) if sets have
hash tables, like in Python

A Unified Computational

Representation of Networks
B

C

A

D

Adjacency Set

A: Adjacencies: {C}, Edges: {(A,C)}

B: Adjacencies: {}, Edges: {}

C: Adjacencies: {B}, Edges: {(C,B)}

D: Adjacencies: {B,C}, Edges: {(D,B), (D,C)}

Network Structures
• Network structures characterize how

networks “look”:
– Large or small diameter?

– Number of edges: sparse or dense?

– Degree distributions: heavy/long tail with a power law?

– Clustering coefficient: high or low?

• These are empirical phenomena

• How do you compute them?

Image from https://matrix.berkeley.edu/research/social-networks-history

https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history
https://matrix.berkeley.edu/research/social-networks-history

Degree Distribution

• x axis: number of neighbors (degree)

• y axis: number of vertices with that degree

A long tail
(also known as a “heavy tail”)

Degree Distribution Algorithm

1. Compute the degree, deg(v), of each vertex, v.

– If G is represented as an adjacency list, count the number

of elements in v’s list.

2. Create a histogram count array, H, of size n, and

initialize each H[i] = 0.

3. For each vertex, v, increment H[deg(v)].

4. Plot the values of H from 0 to n-1 on a regular and

log-log scale

5. If the values on the log-log plot form a straight line,

determine its slope to find the exponent of the power

law degree distribution

Example 1

• Degree distribution without a long/heavy tail .

• Does not exhibit a power law.

x

fr
e
qu

e
n
cy

(x
)

log(x)

lo
g
(f
re

qu
e
nc

y(
x
))

Example 2

• Degree distribution with a long/heavy tail .

• Does exhibit a power law, with exponent -2.5.

Slope = -2.5

Distance
• The distance between two vertices is the length of

the shortest path connecting them.
– This assumes the network has only a single connected component

– If two vertices are in different components, their distance is infinite

Image from

https://www.sci.unich.it/~francesc/teaching/network/geodesic.html

https://www.sci.unich.it/~francesc/teaching/network/geodesic.html
https://www.sci.unich.it/~francesc/teaching/network/geodesic.html

Diameter

• The diameter of a network is the maximum
distance between a pair of vertices in the network
– It measures how near or far typical individuals are from each other

From https://users.dimi.uniud.it/~massimo.franceschet/bottlenose/bottlenose.html

https://users.dimi.uniud.it/~massimo.franceschet/bottlenose/bottlenose.html

Definitions

Example

• A graph with diameter 6

• Numbers next to nodes denote eccentricity values

Naïve Algorithm

• Diameter is equal to the largest value returned

by an All Pairs Shortest Path (APSP) algorithm

• Brute-force: for each vertex v, execute a Breadth

First Search (BFS) from v in O(m) time to find v’s

eccentricity. Return the largest value found.

• Time complexity O(nm)

• Problematic if n = 8 million and m = 1 billion.

– If one BFS takes 6 seconds on a 3.4GHz machine,

this brute-force algorithm takes 1.5 years to compute

the diameter . . .

Heuristic Idea 1

• If we can find one of the nodes in a diameter pair,

we can compute the diameter with one more BFS.

1. Perform a BFS from a random sample of nodes,

recording nodes with maximum found distance, d.

2. Perform a BFS from all the far nodes (if small) or a

random sample of this set (if large).

Heuristic Idea 2

1. Let r be a random vertex and set Dmax = 0.

2. Perform a BFS from r.

3. Select the farthest node, w, in this BFS.

• If the distance from r to w is larger than Dmax, set

Dmax to this distance, let r = w, and repeat the above

two steps.

Plot Results as a Function of n

• If the networks exhibit the small world

phenomenon, then diameters are small.

• So plot diameters as a function of n on a lin-log

scale:

LinLogScale.png: davidfg derivative work: Autopilot [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)]

The log n function
looks like a straight line

Clustering Coefficient
• “friend of a friend is a friend”

• If a connects to b, and b to c,

 then with high probability

 a connects to c.

• Clustering coefficient C:

 C = 3*number of triangles / number of 2-edge paths

C = 3*(1)/(1+1+6+0+0) = 3/8 = 0.375

v1

v2

v3

v4

v5

Jure Leskovec

• Clustering coefficient might
have a power law:

• It is speculated that in real
networks:

 C=O(1) as n→∞

Clustering Coefficient (2)

Synonyms network

World Wide Web

Clustering Coefficient Algorithm

• Clustering coefficient C:

 C = 3*number of triangles / number of 2-edge paths

• Computing the denominator is easy:

– For each vertex v, let deg(v) denote its degree.

– The number of paths of length 2 with v in the middle

is deg(v) choose 2 = deg(v)(deg(v)-1)/2.

– So, to get the denominator for C, sum up

deg(v)(deg(v)-1)/2 for all vertices, v, in G.

v

Number of 2-edge paths with

v in the middle is 4(3)/2 = 6.

Counting Triangles

• To get the numerator for C, we need to count the

number of triangles in the graph, G.

• Naïve algorithm:

– For every triple, u, v, w in G, see if they form a

triangle. If so, add 1 to a running count.

– Running time is O(n4) if G is represented with

an adjacency list.

v

u
w

This is bad.

Counting Triangles:

Slight Improvement
• Put every edge, (v,w), into a hash table, T, so

we can do a lookup to see if an edge exists in

O(1) expected time, i.e., with a get((v,w)).

• Slightly better naïve algorithm:

– For every triple, u, v, w in G, see if they form a

triangle. If so, add 1 to a running count.

– Running time is O(n3) expected if edges in G

are stored in a hash table.

v

u
w

This is still bad.

Graph Degeneracy
• The degeneracy of a graph is the smallest value

of d for which every subgraph has a vertex of

degree at most d.

• If a graph has degeneracy d, then there exists

an ordering of the vertices of G in which each

vertex has at most d neighbors that are earlier in

the ordering.

An ordering for a

graph with degeneracy 2:

Public domain image by David Eppstein

Real-World Graphs

• Real-world graphs tend to have small

degeneracy, d.

Data from “Listing All Maximal Cliques in Large Sparse Real-World Graphs,” by David Eppstein and Darren Strash

Degeneracy Ordering Algorithm
• Degeneracy can be computed by a simple greedy

algorithm:

– Repeatedly find and remove the vertex of

smallest degree, adding it to the end of the list.

– The degeneracy is then the highest degree, d,

of any vertex at the moment it is removed.

– The ordering is a d-degeneracy ordering.

Public domain image by David Eppstein

2-degeneracy

ordering

Linear-time Implementation
1. Initialize an output list, L, to be empty.

2. Compute a number, dv, for each vertex v in G, which is the number of

neighbors of v that are not already in L. Initially, dv is just the degrees of v.

3. Initialize an array D such that D[i] contains a list of the vertices v that are not

already in L for which dv = i.

4. Let Nv be a list of the neighbors of v that come before v in L. Initially, Nv is

empty for every vertex v.

5. Initialize k to 0.

6. Repeat n times:

– Let i be the smallest index such that D[i] is nonempty.

– Set k to max(k, i).

– Select a vertex v from D[i]. Add v to the beginning of L and remove it

from D[i]. Mark v as being in L (e.g., using a hash table, HL).

– For each neighbor w of v not already in L (you can check this using HL):

• Subtract one from dw

• Move w to the cell of D corresponding to the new value of dw , i.e., D[dw]

• Add w to Nv

Triangle Counting Algorithm

• Compute a d-degeneracy ordering of the vertices,

e.g., using the algorithm of the previous slide.

• Process the vertices according to this ordering, L:

For each vertex, v:

For each pair of vertices, u and w, adjacent to v

and earlier in the ordering, i.e., u and v are in the

list Nv from the degeneracy algorithm:

If (u,w) is an edge in the graph, then add one

to the triangle count.

• Running time is O(d
2n) = O(dm) expected, assuming

edges are stored in a hash table.

	Slide 1: Network Algorithms
	Slide 2: Traditional Computational Representations of Networks
	Slide 3: A Unified Computational Representation of Networks
	Slide 4: Network Structures
	Slide 5: Degree Distribution
	Slide 6: Degree Distribution Algorithm
	Slide 7: Example 1
	Slide 8: Example 2
	Slide 9: Distance
	Slide 10: Diameter
	Slide 11: Definitions
	Slide 12: Example
	Slide 13: Naïve Algorithm
	Slide 14: Heuristic Idea 1
	Slide 15: Heuristic Idea 2
	Slide 16: Plot Results as a Function of n
	Slide 17: Clustering Coefficient
	Slide 18: Clustering Coefficient (2)
	Slide 19: Clustering Coefficient Algorithm
	Slide 20: Counting Triangles
	Slide 21: Counting Triangles: Slight Improvement
	Slide 22: Graph Degeneracy
	Slide 23: Real-World Graphs
	Slide 24: Degeneracy Ordering Algorithm
	Slide 25: Linear-time Implementation
	Slide 26: Triangle Counting Algorithm

