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1. Exercise 6.3.2 on page 251 of Hopcroft et al.
Convert the grammar

S → 0S1 | A
A → 1A0 | S | ε

to a PDA that accepts the same language by empty stack.

We follow the construction given in the textbook on page 244. We let P have the single state
{q}, input alphabet {0, 1}, stack alphabet {0, 1, S,A}, transition function δ, start state {q},
and start symbol S.

We need to build all of the productions into our transition function, so we add the following
transitions for our variables.

• δ(q, ε, S) = {(q, 0S1), (q, A)}

• δ(q, εA) = {(q, 1A0), (q, S)}

We also need to be able to match terminals against our input string, so we add a transition
for each terminal.

• δ(q, 0, 0) = {(q, ε)}

• δ(q, 1, 1) = {q, ε)}

These rules define a complete new PDA that accepts the same language as our grammar.

2. Exercise 6.3.4 on page 252 of Hopcroft et al.
Convert the PDA of Exercise 6.1.1 to a context-free grammar.

P = ({q, p}, {0, 1}, {Z0, X}, δ, q, Z0, {p}), with the following transition function:

• δ(q, 0, Z0) = {(q,XZ0)}

• δ(q, 0, X) = {(q,XX)}

• δ(q, 1, X) = {(q,X)}

• δ(q, ε,X) = {(p, ε)}

• δ(p, ε,X) = {(p, ε)}

• δ(p, 1, X) = {(p,XX)}
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• δ(p, 1, Z0) = {(p, ε)}

To apply the construction given in the proof of Theorem 6.14 in the text, we would first have
to convert this machine to accept with an empty stack, rather than accepting when it is in
state p.

However, we note that this PDA will accept any string that starts with 0. We need to read a
0 when we see Z0 on the stack, because there is no value given for δ(q, 1, Z0). But after the
first zero, we can just read 1’s and 0’s, staying it state q and pushing an extra X onto the
stack for each 0. Then once we reach the end of the input, we can follow an ε transition to
state p and accept. (This requires having an X on the stack, which we had already pushed
by reading the first 0.)

So we write a grammar that produces any string starting with 0.

S → 0T

T → 0T | 1T

3. Exercise 7.1.3 on page 277 of Hopcroft et al.
Begin with the following grammar:

S → 0A0 | 1B1 | BB
A → C

B → S | A
C → S | ε

(a) Eliminate ε-productions.

Since C can produce ε, A can also produce ε, so B can produce ε, so S can produce ε.
therefore, we need to change the productions for every symbol.

S → 00 | 0A0 | 11 | 1B1 | B | BB
A → C

B → S | A
C → S

(b) Eliminate any unit productions in the resulting grammar.

We note that A, B, and C will all just produce S again. So we remove them.
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S → 00 | 0A0 | 1B1 | BB
A → 00 | 0A0 | 1B1 | BB
B → 00 | 0A0 | 1B1 | BB
C → 00 | 0A0 | 1B1 | BB

(c) Eliminate any useless symbols in the resulting grammar.

The variable C has now become unreachable. We also remove A and B, because they
are exactly equal to S. Our grammar becomes:

S → 00 | 0S0 | 1S1 | SS

(d) Put the resulting grammar into Chomsky Normal Form.

To make this a CNF grammar, we first create variables A → 0 and B → 1. We then
divide the two productions of length 3 using variables C and D.

Our final CNF grammar is:

S → AA | AC | BD | SS
A → 0

B → 1

C → SA

D → SB

4. Exercise 7.1.6 on page 278 of Hopcroft et al.
Design a CNF grammar for the set of strings of balanced parentheses. You need not start
from any particular non-CNF grammar.

We begin with the following grammar for this language given in class:

S → SS | (S) | ()

To convert this to a CNF grammar, we first let L → ( and R →). Now we can write our
grammar as:

S → SS | LSR | LR
L → (

R → )
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Lastly, we need to change our productions so that we can only produce two non-terminals in
each step. So we introduce a new symbol, A, to break up the production of LSR. This gives
us:

S → SS | LA | LR
A → SR

L → (

R → )

5. Exercise 7.2.1(b,c) on page 286 of Hopcroft et al.
Use the CFL pumping lemma to show that each of these languages is not context-free.

(b) L = {anbnci|i ≤ n}.

Assume this language is context free. We will apply the pumping lemma to reach a
contradiction.

Let our string be z = apbpcp, where p is the pumping length. We can break z into
uvwxy, where

• |vwx| ≤ p

• |vx| > 0

• uviwxiy ∈ L for all i ≥ 0

Now we have five different cases:

• v and x both contain only a’s

• v contains only a’s and x contains only b’s

• v and x both contain only b’s

• v contains only b’s and x contains only c’s

• v and x both contain only c’s

Note that v and x cannot bridge the gap between the a’s and the c’s, because it has
length p, and the length of vwx is at most p. Also, v and x each must contain a single
type of character, or else pumping them up will break the format of our language (a’s,
and then b’s, and then c’s).

In the first case, we choose i = 0. Note that v and x cannot both be empty, so in case
1, we have removed some a’s, but no b’s or c’s. A string with more b’s and c’s than a’s
cannot be in our language.

In case 2, again having choosing i = 0, we remove either some a’s, some b’s, or both. So
either the number of c’s is larger than the number of a’s, or it is larger than the number
of b’s, or both. This string cannot be in our language.
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Case 3 follows similarly. In case 4, we choose i = 2. If we add b’s, the b’s will no longer
match the a’s. If we add c’s, there will be more c’s than a’s. Since |vx| > 0, there is no
way for the resulting string to be in our language.

In case 5, we again choose i = 2. We add c’s, so there is no way for the string to be in
our language.

(c) L = {0p|p is a prime}. (Hint: Adapt the same ideas in Example 4.3, which showed this
language not to be regular.)

Assume L is context free, and let z = 0k, where k is a prime that is at least n+ 2, where
n is the pumping length.

Now z = uvwxy, and no matter how we pump, v and x, we will get another string in
our language. Let |vx| = m, and let z′ = uvk−mwxk−my. Then |z′| = m(k −m) +m =
(m+ 1)(k −m).

m+ 1 must be at least 2, because |vx| > 0. Also, k −m must be at least 2, because we
chose k to be at least n + 2, and |vx| ≤ |vwx| ≤ n. Therefore, |z′| cannot be prime, so
L cannot be context free.
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