
ORIGINAL RESEARCH

Operating systems for low-end smart devices: a survey
and a proposed solution framework

Jasleen Kaur1 • S. R. N. Reddy1

Received: 5 May 2017 / Accepted: 26 September 2017 / Published online: 24 October 2017

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2017

Abstract Everything around us is getting smarter with

whole new world of technology called smart device that

has changed the way we interact in our daily lives. Smart

Devices comprise of both high-end and low-end devices

with respect to software and hardware platform. High-End

smart devices can run on the conventional OS like Linux

though for low-end smart devices it is impossible to run as

such because of stringent resource constraints. In this

paper, detail survey and comparative analysis of various

operating systems available for low-end smart devices is

carried out to bring light on their features and potential

pitfalls. Furthermore, survey in contour of feedback at

various technical institutes is done to gather the research

problems faced in context of smart device operating sys-

tems. This survey resulted in finding the essential

requirements primarily an operating system must meet to

run on low-end smart devices. The findings contribute to

the proposal of a generic framework for automatically

generating application specific lightweight operating sys-

tem for low-end smart devices.

Keywords Smart device � Smart OS Framework � Low-

end devices � Lightweight operating system � Generic OS

framework � Developing smart device

1 Introduction

The Smart environment is portrayed by the ubiety of

intelligence in common objects [1]. It can incredibly affect

the way we experience our lives, with numerous ranges

where there are the potential outcomes of connecting the

devices and sensors. Some smart technology integration

and innovations out of the throng are smart light bulb [2],

smart water saving system [3], smart health cards [4], smart

industrial automation [5] and smart home automation [6].

What makes these devices ‘‘Smart’’ is their ability to access

web services, thereby enabling us to interact with data

regardless of the location, type and number of devices that

may be used. One example is smart health monitoring [4]

that has turned into the piece of our lives for over 10 years,

where the devices can be controlled, connected or moni-

tored remotely.

As show in Fig. 1, about (47%) of the smart devices are

in Healthcare, trailed by security (34%), energy and utili-

ties (30%) and manufacturing (28%). Biotechnology,

safety, retail and transportation each positioned in the

center at about 20%, with construction, entertainment, and

education positioned lowest [7]. Keeping in mind the end

goal to model the low-end smart device, one must com-

prehend what the smart device is composed of and what are

the different classes for low-end devices.

1.1 Components of smart device

Basic Components of a Smart Device as shown in Fig. 2

comprises of computing platform, operating system, com-

munication module, application specific sensors, memory

interface, database, power component and input/output

units.

& Jasleen Kaur

Jasleenkochar89@gmail.com

S. R. N. Reddy

srnreddy@igdtuw.ac.in

1 Department of Computer Science, Indira Gandhi Delhi

Technical University for Women, New Delhi, Delhi, India

123

Int. j. inf. tecnol. (March 2018) 10(1):49–58

https://doi.org/10.1007/s41870-017-0044-5

http://orcid.org/0000-0002-7335-4374
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-017-0044-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-017-0044-5&domain=pdf
https://doi.org/10.1007/s41870-017-0044-5

Computing platform is a hardware component required

for software/OS executions and quicker execution of

operations as the agility in smart devices expands. There-

fore, requirement for the satisfactory computing platform is

obvious. Input/output units represent those components

responsible for entry, storage or processing of data/infor-

mation. Smart device needs an Input/output unit to interact

with a user. Application specific sensors take input from the

smart environment and uses built in resources to execute

the predefined job upon the detection of particular input.

These sensors are used for real time monitoring and control

mechanism in related environment and hence should give

more accurate and automated collection sensed data with

limited erroneous noise during the precisely recorded

information. Database component consists of the compi-

lation of information in a systemized manner so that it can

be freely accessed, managed, and updated [8]. A Smart

device required to be connected to the database component

in order to enhance the performance and facilities. Memory

is a tangible device adept of storing the information tran-

siently or permanently [9]. All the smart devices consist of

internal memory to store and process the certain tasks.

Therefore memory is needed in the smart device for the

better performance, multitasking and to perform complex

operations. Power Component referred to as a source of

power being catered to a smart device. Source of power can

be catered in a different means, such as battery, power

bank, solar panel or main power supply. Smart device

needs a power component in order for its other peripherals

to operate accurately with acceptable framework. Com-

munication Module is one of the essential module in

building a smart device in light of the fact that if a smart

device ought to connect with other devices in its smart

environment then it must give a mode of communication to

these other devices. Operating System is a software that

manages the resources and allows smart device to run

applications and programs. Smart device need to be good

enough to receive, compute, store and process the data by

performing certain tasks. Hence, operating system com-

ponent is desired to support connectivity, communications

and security standards.

1.2 Low-end smart devices

Low-end smart devices are basically resource constrained

in terms of CPU, energy and memory. Some of the well-

known examples of low-end smart devices comprises of

Arduino Due, Atmel Sam R21, Econotag, IoT-LAB M3

nodes, OpenMote nodes, Telosb motes and Zolertia Z1. As

Fig. 2 Basic components of a smart device

Fig. 1 Smart device area distribution

50 Int. j. inf. tecnol. (March 2018) 10(1):49–58

123

reported by Internet Engineering Task Force (IETF), these

low-end devices are standardized into three subcategories

[10] in view of memory limit- class 0, class 1 and class 2.

• Class 0 (with low level resources)—devices

with � 10 kB data size and � 100 kB code size.

• Class 1 (with medium level resources)—devices

with * 10 kB data size and * 100 kB code size.

• Class 2 (with high level resources)—devices

with * 50 kB data size and * 250 kB code size.

Class 0 devices are extreme constrained nodes. Larger

devices such as gateways, servers, or proxies are manda-

tory for class 0 devices to communicate directly with the

internet in a secure aspect. Therefore, software running on

such devices need to be application and hardware specific.

Class 0 devices for the most part comprises of MCU based

on 8-bit architecture whereas class 1 and class 2 devices

can go from 8 to 32-bit architectures. The shared factor of

all the low-end devices are that their resources are too

restricted to be able to run a resource demanding operating

system like Linux [11]. It is expected that smart devices

will develop in the direction of smaller size, low produc-

tion cost, cheaper and more energy efficient [11]. Hence,

lightweight operating system is enforced that can keep

running on hardware platform with restricted resources.

Different lightweight operating systems (open source and

closed source) have been developed for low-end smart

devices which are detailed in Sect. 3.1. Architecture of

these operating systems may vary but they all offer a

technique for interfacing the devices to the internet.

This paper highlights the essential traits of a smart

device operating system and proposes a generic framework

that meets the user expectations and helps them to create

lightweight operating system for the particular use case.

The remaining paper is organized as follows. Section 2

exemplifies the design aspects of an operating system for a

low-end smart device. Section 3 illustrate the research

workflow used in this paper i.e. literature survey, asserting

the research problem, and result analysis. Section 4 pro-

poses the new generic framework for a low-end smart

device. Section 5 outlines the conclusions followed by the

future work.

2 Design aspects of an OS for smart device

The entire unification of the various smart devices create

the smart environment [2]. This unification is attainable

over the software communication at a dynamic level [2]

which is achievable through the operating system running

within each smart device.

The operating system grown for a smart device requires

less kilobytes of memory and small power utilization. The

kernel of the operating system for a smart device can be

either erected in a layered approach, microkernel or

monolithic architecture [12]. The programming model of

these operating systems should be such that experts can

smoothly use the device. High level language is appropriate

for the smooth development although assembly language is

the finest substitute to interface with the hardware [12, 13].

Scheduler of these operating systems should be real time

and support task priorities [13, 14]. Internet connectivity is

an intrinsic requirement of a smart device. Enormous

communication requirements of smart environment are not

accomplished by the WSN protocols such as Bluetooth,

Z-Wave, ZigBee etc. whereas distinctive requirement of a

smart device can be achieved through these WSN protocols

[12, 13]. Tools such as RPL, CoAP, 6LoWPAN etc. [12]

are designed for low power systems. Operating system for

a smart device should be integrated with the application

specific communication requirement. These operating

systems ought to be efficiently portable to various hard-

ware platforms and support huge range of hardware

architectures. An operating system for a smart device

should be open source so as to customize it as per the

specific needs of application [12, 14].

3 Method

As shown in Fig. 3, the research design used in this paper

includes various steps. In this section results are formalized

based upon the literature survey and questionnaire based

user feedback survey. Brief literature survey of various

existing operating systems for smart devices is done with

the main objective being to find their features and flaws.

Essential requirements adopted by majority of smart device

operating systems are formalized based upon the literature

survey. Furthermore, questionnaire based user feedback

survey is done to know the perception of users regarding

smart device development and requirement of an operating

system for the particular use-cases. Participants in this

survey included 90 from two different technical institutes.

3.1 Literature survey

The literature survey of the few existing operating systems

targeted for a low-end smart device is carried out to boost

Fig. 3 Research design

Int. j. inf. tecnol. (March 2018) 10(1):49–58 51

123

the knowledge about the problem domain. Furthermore,

literature survey provides the theoretical background and

knowledge regarding what others have done within the area

of operating systems for smart devices.

Contiki [15] is an open source operating system

designed for tiny sensor nodes with a few kilobytes of

accessible memory. It supports pre-emptive multithreading

and build around an event driven kernel [15, 16] Contiki is

executed in the C language and supports ample range of

tiny platforms such as 8051-powered SoC through

MSP430, Atmel AVR and number of ARM devices. It

includes complete IP network stack with UDP and TCP

support, in addition to some low power standards such as

6lowpan, RPL and CoAP. Contiki supports RIME which is

a lightweight stack for network based communication. It

give security solution for wireless sensor networks as

ContikiSec [17]. Network simulator named Cooja, is sup-

ported by Contiki for providing the simulation environment

to the applications.

TinyOS [18]. is an open source operating system

designed for low powered wireless devices used in sensor

networks, smart buildings, smart meters, pervasive com-

puting etc. The base TinyOS framework is under 400 bytes.

It supports multithreading and threads are called as TOS

threads. TinyOS is executed in nesC language a dialect of

C and supports wide range of hardware platforms such as

Atmel AT90L-series, Atmel AT mega-series, and Texas

Instruments MSP-Series processors. TinyOS has no sup-

port for ARM and Intel 8051 but work is in progress. The

standard TinyOS task scheduler uses FIFO scheduling

policy which have no support for real time applications.

Support for Earliest Deadline First (EDF) scheduling

algorithm has been added to simplify real time applica-

tions. It provides support for two multi-hop protocols:

dissemination and TYMO, 6lowpan [19], and IPV6 net-

working layer. It gives database bolster as TinyDB [20] and

communication security solution as TinySec [21]. TOSSIM

is supported by TinyOS for providing the simulation

environment to the applications [22].

Mantis [23] is an open source operating system for

wireless micros sensor systems such as BTNodes [24]

project, Europe Smart-Its [25] project etc. It is lightweight

operating system with a footprint of 500 bytes. Mantis

supports pre-emptive multithreading. It is executed in C

language and supports extensive range of hardware plat-

forms such as Mica2, MicaZ and Telos. It provides the

cross platform support as it can be tested on PC’s or PDA

before porting to any hardware platform [23]. AVRORA

[26] is supported by Mantis for providing the simulation

environment to the applications.

VxWorks [27] is a proprietary software, developed ini-

tially in 1987 by Wind River. VxWorks supports numerous

hardware architectures such as Intel, MIPS, Power PC, SH-

4 and ARM architectures. Vxworks has support for IPv6

and other Smart Device features but lack support for

6LoWPAN stack.

QNX [28] is closed source OS, developed by Quantum

Software Systems in 1982 which was renamed as QNX

software systems. It was acquired by Blackberry in 2010.

QNX was one of the first commercially effective micro-

kernel based operating system and has been utilized in

many smartphones and cars. The latest version, ONX

Neutrino, is supported by many hardware platforms such as

PowerPC, X86, MIPS, ARM and SH-4.

Android [29] developed by google is a variation of

Linux, focusing largely on touchscreen mobile devices like

smartphones and tablets, yet has been additionally utilized

as a smart cars, smart watches, smart TV, digital cameras,

smart notebooks, game consoles etc. The idea of mobile

applications, available through online stores where clients

can buy and download applications, helped the advance-

ment of smartphones. The primarily hardware platform

support for Android is ARM. It was initially developed by

Android Inc. and bought by Google in 2005. The Android

source code is publicized by the Google under open source

licences, yet many of the device driver and hardware

support is proprietary. In 2015, Brillo [30] was announced

by the Google, which is a reduced version of Android.

Brillo is designed to be utilized for low power and memory

constrained smart devices. It is supported across many

hardware platforms such as ARM, Intelx86 and MIPS

based hardware.

EmbOS [31] is a real time and priority controlled mul-

titasking operating system developed by Segger MCU

Systems. It has been optimized for basic memory utiliza-

tion in both RAM and ROM usage i.e. only the required

functions are linked into the application, keeping the ROM

size small. EmbOS is composed in ANSI C dialect, high-

lighting a priority based, tickles, pre-emptive scheduler and

focusing on different compelled 8-bit, 16-bit, and 32-bit

MCUs. A network stack including ZigBee, USB support, a

GUI, and a file system are available as separate add-on

products.

FreeRTOS (R. [32] is an open source RTOS which

supports pre-emptive multithreading. It is easy to use and

has smaller footprint. It is developed by Real Time Engi-

neers Ltd. It supports the tickles mode for low power

applications [32] and has been ported to numerous MCU.

In spite of the fact that it doesn’t give its own network

stack, outsider network stacks can be utilized for Internet

network.

Key features of the various operating systems surveyed

in this section are evaluated and compared in Table 1. As

discussed in Sect. 2, there are various design aspects/re-

quirements of an operating system for a low-end smart

device. Hence, support of these requirements by an existing

52 Int. j. inf. tecnol. (March 2018) 10(1):49–58

123

operating systems surveyed in this section is summarized

in Table 2. The closed focuses are epitomized in the Fig. 4.

Following points are concluded from the summarized

data of Table 2 and Fig. 4.

• Priority based scheduling is adopted by majority of the

operating systems.

• Majority of the operating systems support C language,

which is the popular choice for the programming.

• Majority of the operating systems are open source/free

based for research and educational purpose.

• Few operating systems support integrated development

environment (IDE).

• Majority of the operating system have platform support

for ARM processors.

• Very few operating systems have full support for real

time requirements.

3.2 Asserting the research problem

There are large numbers of operating systems for a low-end

smart device. Few out of the many are surveyed in this

paper to formalize the essential requirements of an oper-

ating system for a low-end smart device. This variety in

operating systems can lead to difficulties for developers as

to which operating system is best suited for the particular

use-case.

Table 1 Key features of an existing operating systems for low-end smart device

Features ?
Swart

Device

OS ;

Design

objectives

Licence Architecture Scheduling

algorithm

Platforms Language

supported

Support in IDE

Contiki

[15]

Commercial BSD/Free for

educational

Monolithic Interrupts execute

w.r.t priority

Tmote, AVR Series, ARM C Supported by

Eclipse IDE

TinyOS

[18]

Educational/

Research.

BSD/Free for

educational

Monolithic FIFO Atmel AT90L-series,

AtnieL ATmega-series, and

TI,Tmote

nesC No Support

Mantis

[23]

Educational/

Research

BSD Layered Pre-emptive

priority based

scheduling

Mica2, MicaZ, Telos C No Support

VxWorks

[27]

Commercial Proprietary Layered Pre-emptive and

Round Robin

Scheduling

ARM. Intel 64, MIPS,

PowerPC, SH-4:

Strong ARM, xScale

C/C ?? Supported by

Toolbox IDE

QNX

Neutrino

[28]

Commercial Proprietary Microkernel Priority- Pre-

emptive

Scheduling

MIPS, PowerPC, 5H-4,

ARM, xScale

C/C ??/

Java

Supported by

Toolbox IDE

Android

[29]

Commercial

Educational/

Research

GPL/Free for

educational

purpose

Monolithic Fair Scheduling ARM,X36, MIPS C/C ??/

Java

Eclipse

EmbOS

[31]

Commercial Proprietary Modular Priority based pre-

emptive

8/16/32 bit processors, ARM

cortex, ARM 7/9/11

C No support

FreeRTOS

[32]

Personal

Interest

based

Modified

GNU GPL

Microkernel

RTOS

Priority Based pre-

emptive

ARM (ARM7,

ARM9, Cortex-M3,

Cortex-M4), Atmel

AVR,AVR32, SuperH, Nios

II.Cortex-R4

C No support

Fig. 4 Support of basic OS requirements

Int. j. inf. tecnol. (March 2018) 10(1):49–58 53

123

Questionnaire based user feedback survey has been

conducted in various workshops on ‘‘Design and Devel-

opment of Smart Device’’ [33]. The questionnaire com-

prises of few questions solely regarding the operating

system requirements for the design and development of a

smart device. Following questions with multiple answers

were designed which advances to this survey.

Q1. What operating system would you like to employ for

your smart device?

Q2. Which programming language would you like to use

to build your smart device solution?

Q3. Which communication protocol would you like to

use for developing your smart device?

Q4. What are your top 3 concerns for developing smart

device?

Q5. What memory footprint would you like to employ

for your smart device solution?

Q6. What are the possible ways to build lightweight

application specific operating system for your smart

device?

3.3 Results

Participants were asked to complete survey questionnaire

[34] as given in Sect. 3.2. Responses gathered from total 90

[35, 36] participants of two workshops are summarized in

Fig. 5. Based upon the literature survey of an existing

operating systems given in Sect. 3.1 and responses gath-

ered from the participants, a list of essential traits for an

operating system of a low-end smart device is formed as

summarized below. A generic architecture for a low-end

smart device is depicted in Fig. 6. Based upon the

responses gathered, it has also been found that more that

65% of participants would like to have a generic frame-

work for automatically generating user- directed applica-

tion specific operating system.

(a) Support for Heterogeneous Hardware There are

number of use cases within smart environment,

hence smart device operating system must be able to

support large variety of hardware architectures.

Based upon literature survey, large number of

operating systems are designed for ARM, Atmel

AVR and Texas Instruments MSP Series of proces-

sors. Hence an operating system for low-end smart

device must be capable of handling heterogeneous

platforms in the heterogeneous environment.

(b) Programming Model There should be support for

appropriate languages i.e. ANSI C and C ?? that

allow memory efficient programming for low-end

smart devices.

T
a
b
le

2
S

u
p

p
o

rt
o

f
b

as
ic

o
p

er
at

in
g

sy
st

em
re

q
u

ir
em

en
ts

O
S

re
q

u
ir

em
en

ts

? S
m

ar
t

d
ev

ic
e

O
S
;

O
p

en

so
u

rc
e

(a
)

P
o

rt
ab

il
it

y

(b
)

R
ea

l
T

im
e

R
eq

u
ir

em
en

t
(c

)

H
ig

h

R
el

ia
b

il
it

y

(d
)

R
o

b
u

st
n

es

(e
)

F
ai

lu
re

H
an

d
li

n
g

(f
)

S
ec

u
ri

ty

(g
)

S
ca

la
b

il
it

y

(h
)

M
u

lt
ia

sk
in

g

(i
)

Io
T

(j
)

S
ch

ed
u

li
n

g

(k
)

N
et

w
o

rk

S
u

p
o

rt

(l
)

M
em

o
ry

m
an

ag
em

en
t

(m
)

C
o

at
ik

i
[1

5
]

4
4

*
9

9
9

9
4

4
4

4
4

4

T
in

y
O

S
[1

8
]

4
9

*
9

9
9

9
4

9
4

4
4

4

M
an

ti
s

O
S

[2
3

]

4
4

*
9

9
9

9
4

4
4

4
4

4

V
x

W
o

rk
s

[2
7

]

4
4

*
4

9
9

4
4

4
4

4
4

4

Q
N

X

N
eu

tr
in

o

[2
8

]

4
4

*
4

9
9

4
4

4
v

4
9

4

A
n

d
ro

id
[2

9
]

4
4

9
*

4
4

*
4

4
4

4
4

4

E
m

b
O

S
[3

1
]

9
9

4
4

9
9

9
9

4
9

4
4

4

F
re

eR
T

O
S

[3
2

]

4
4

*
9

9
9

9
4

4
4

4
4

4

4
-f

u
ll

su
p

p
o

rt
,
9

-
n

o
su

p
p

o
rt

,
*

-p
ar

ti
al

su
p

p
o

rt

54 Int. j. inf. tecnol. (March 2018) 10(1):49–58

123

(c) Small Memory Footprint Low-End smart devices are

wonted to become smaller, cheaper and have limited

resources. This device caters only few kilobytes of

memory. To support these constrained devices, the

device designer must be provided with set of

optimized libraries i.e. the memory footprint of an

operating system must be kept small.

Fig. 5 Responses of participants gathered based upon survey questionnaire

Int. j. inf. tecnol. (March 2018) 10(1):49–58 55

123

(d) Communication Protocols and communication

Radio Widely used communication protocol stan-

dards are vital for smart devices [11]. They should

cater low power consumption and high level of

security. The internet protocols residing in the

network layer of OSI model such as IPv6 and

6LowPAN serve as useful for imminent smart

devices [11, 37]. Operating system for low-end

smart devices should support communication proto-

cols based upon IEEE 802.15.4 radio technology.

The Bluetooth Low Energy (BLE) is also targeted

for low power networks.

e) Real Time Efficiency Accurate timing and conve-

nient execution are critical in different smart devices

such as in smart robots, smart health monitoring

applications, smart vehicular networks etc. An

operating system that processes the data as it comes,

without any delay is known as real time operating

system (Real time operating system, [38]. Hence,

operating system for smart device should have real

time efficiency.

f) Energy Performance As found large number of low-

end smart devices are powered by batteries. For

example smart industry/building automation are

required to work for years within a single battery

charge [39]. Therefore, energy performance becomes

vital for these devices. Hence, an operating system

designed for these low-end smart devices should

cater low energy operations.

Fig. 6 Generic Architecture of an OS for low-end smart devices

Fig. 7 Generic flow chart of the targeted framework

56 Int. j. inf. tecnol. (March 2018) 10(1):49–58

123

4 Proposed solution

How to reconfigure and customize general purpose oper-

ating system has attracted attention for application-specific

low-end smart devices. Developers find it difficult to create

application specific lightweight operating system for the

particular use case due to various reasons that includes

resource constraint or lack of knowledge.

A new generic framework may be proposed to encour-

age the user expectations and help developers to create

lightweight application specific operating system for the

particular use case. Targeted framework may incorporate

an intelligent graphical user interface for the selection of

different peripheral interfaces being computing platform,

operating system, sensors and communication module for a

particular application-specific smart device which may

eliminate the use of official heavy weight operating system.

The basic requirements for smart device operating sys-

tem are identified on the basis of literature survey and

subjective experimentation as described in Sect. 3.3.

Hence, the operating system generated from the targeted

framework may comprises of all these essential basic traits

in addition to the optimized application code, API &

packages required for the selected sensors, communication

modules and the device drivers. For an example, if user

wants to build smart home automation system with ARM

microcontroller and would like to integrate three sensors

(light sensor, temperature sensor and ultrasonic sensor),

one communication module (WiFi) and one multimedia

module (Camera). User may find it difficult to write opti-

mized application codes for different integrated peripherals

and to create lightweight customize operating system for

this particular use-case. In this case, user would like to

have a generic framework which may automatically gen-

erate the lightweight customized operating system image

for smart home automation project as per the requirements

defined by the user. Thus, for building smart home

automation project, targeted framework may generate

lightweight customized operating system image for ARM

computing platform that comprises of optimized codes and

API packages for light sensor, temperature sensor, ultra-

sonic sensor, WiFi and camera module in addition to all the

basic requirements as defined in Sect. 3.3.

Figure 7 shows the flow chart of targeted lightweight

framework. In the first module, the framework will fetch

the basic information from the user i.e. name of the smart

device, processor type and operating system type. In the

next module framework will request an input from the user

with selection, to load an official image or customized

lightweight image for the selected processor and operating

system. In official image case, an official image for the

selected processor and operating system will start

downloading on the user’s system. In customized image

case, there will be user inputs for selecting various appli-

cation specific peripherals for building smart device.

Thereafter, a lightweight customized image will start

downloading on the user’s system which can be burn onto

the SD card and can run successfully onto the selected

processor.

5 Conclusion and future lines

In this paper, essential requirements for smart device

operating system are formalized based upon the literature

survey of existing operating systems and subjective

experimentation. Based upon the user feedback analysis it

has also been found that users would like to have a generic

framework for automatically generating lightweight cus-

tomize operating system as per the application specific

requirements.

In today’s era, smart device technology is increasing

tremendously and the users are building smart devices in

various domains at various places (schools, colleges,

industries etc.). Hence, there is a need of such a generic

framework which can provide ease to the users for

selecting application specific peripherals and automatically

generating lightweight customize operating system as per

the application specific requirements. This framework

should be an open source tool which can be easily accessed

by all the users. It has been perceived that there is a need of

such a generic framework which should be implemented in

line with proposed solution.

Acknowledgements This survey and proposed solution framework is

supported by Microsoft University Relations, Finland under the

research grant of project Mobile Education Kit to Indira Gandhi Delhi

Technical University for women, Delhi.

References

1. Davy A (2003) Components of a smart device and smart device

interactions - M-Zones White Paper [online]. http://www.m-

zones.org/deliverables/d234_1/papers/davy-components-of-a-

smart-device.pdf. Accessed 20 Jan 2017

2. Lys I and Muller GG (2003) Smart light bulb. US Patent 6,528,

954, issued March 4, 2003

3. Popper S, Friedman R, et al. (2005) ‘Smart device and system

forimproved domestic use and saving of water. US Patent

6,895,985, issued May 24, 2005

4. Mohaideen AH (2009) System and method for providing health

care services using smart health cards. US Patent 2,009, 025,

4363, issued Oct 8, 2009

5. Lawson DC, Reichard DJ et al. (2016) Smart device for industrial

automation. US Patent 9,363, 336, issued June 7, 2016

6. Ehsani F, Witt Ehsani SM et al (2016) ‘Smart home automation

systems and methods’, US Patent 9,230,560, issued Jan 5, 2016

Int. j. inf. tecnol. (March 2018) 10(1):49–58 57

123

http://www.m-zones.org/deliverables/d234_1/papers/davy-components-of-a-smart-device.pdf
http://www.m-zones.org/deliverables/d234_1/papers/davy-components-of-a-smart-device.pdf
http://www.m-zones.org/deliverables/d234_1/papers/davy-components-of-a-smart-device.pdf

7. Wipro and UBM Tech (2013) what smart systems can teach us—

Wipro [online] http://www.wipro.com/documents/what-smart-

systems-can-teach-us.pdf. Accessed 20 Jan 2017)

8. Rouse M (2006) Database-Techtarget [online] http://searchsql

server.techtarget.com/definition/database. Accessed 20 Jan 2017

9. Beal V (2016) Memory–Webopedia [online] http://www.webo

pedia.com/TERM/M/memory.html. Accessed 20 Jan 2017

10. Bormann C, Ersue M, and Keranen A (2014) Terminology for

constrained mode networks—Internet Eng. Task Force [online.

https://tools.ietf.org/html/rfc7228. Accessed 26 Jan 2017

11. Hahm O, Baccelli E, Petersen H, Tsiftes N (2016) Operating

systems for low-end devices in the internet of things—a survey.

IEEE Internet Things J 3:720–734

12. Gaur P, Tahiliani MP (2015) Operating system for IoT Devices: a

critical survey. In : IEEE Region 10 Symposium (TENSYMP),

2015, pp 33–36

13. Baccelli E, Hahm O et al (2013) RIOT OS: towards an OS for the

Internet of Things. In: IEEE Conference on Computer Commu-

nications Workshops (INFOCOM WKSHPS), 2013, pp 79–80

14. Chandra TB, Verma P, Dwivedi AK (2016) Operating systems

for internet of things: a comparative study. In: ACM International

Conference on information and communication technology for

competitive Strategies (ICTCS’16), 2016, pp 1–6

15. Dunkels A, Gronvall B, Voigt T (2004) Contiki —a lightweight

and flexible operating system for tiny networked sensors. In:

IEEE International Conference on Local Computer Networks

16. Contiki (2017) [online] http://www.contiki-os.org/. Accessed 7

Feb 2017

17. Casado L and Tsigas P (2009) ‘‘ContikiSec: a secure network

layer for wireless sensor networks under the contiki operating

system. Springer Book—identity and privacy in the internet age,

pp 133–147

18. Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo

A, Gay D, Hill J, Welsh M, Brewer E, Culler D (2005) TinyOS:

an operating system for sensor networks, ambient intelligence

book. Springer, Berlin

19. Montenegro G, Kushalnagar N, Hui J, Culler D (2007) Trans-

mission of IPV6 packets over IEEE 802.15.4 Networks, RFC

4944. http://tools.ietf.org/html/rfc4944/. Accessed 10 Mar 2017

20. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005)

TinyDB: an aquisitional query processing system for sensor

networks. ACM Trans Database Syst 30:122–173

21. Karlof C, Sastry N, Wagner D (2004) TinySec: a link layer

security for wireless sensor networks. In: Prooceedings of the 2nd

ACM SenSys, Baltimore, MD, USA, 3–5 November 2004

22. Levis P, Lee N, Welsh M, Culler D (2003) TOSSIM: accurate

and scalable simulation of Entire TinyOS Applications. In: Pro-

ceedings of the 1st ACM SenSys, Los Angeles, CA, USA, 5–7

November 2003

23. Bhatti S, Carlson J, Dai H, Deng J, Rose J, Sheth A, Shucker

Gruenwarld BC, Torgerson A, Hen R (2005) MANTIS OS: an

embedded multithreaded operating system for wireless micro

sensor platforms, mobile networks and applications. Springer,

Berlin, pp 563–579

24. Leopold M, Dydensborg MB, Bonnet P (2003) Bluetooth and

sensor networks: a reality check. In: 1st ACM Conference on

Sensor Systems (SenSys’03), Nov 2003

25. The Smart-Its Project (2017) [online]. http://www.smart-its.org/.

Accessed 11 Mar 2017

26. Titzer BL, Lee DK, Palsberg J (2005) Avrora: Scalable Sensor

Network Simulation with precise timing [online]. http://compi

lers.cs.ucla.edu/avrora/papers/avrora_ipsn2005.pdf Accessed 11

Mar 2017

27. Wind River System VxWorks (2005), [online] https://www.uio.no/

studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/

laboppgaver-rt/VxWorks-6.2_Application_Programmers_Guide.

pdf. Accessed 21 Mar 2017

28. QNX Neutrino RTOS (2014) [online]. http://support7.qnx.com/down

load/download/26183/QNX_Neutrino_RTOS_System_Architecture.

pdf. Accessed 15 Mar 2017

29. Google (2014) Open Handset Alliance, Android Operating Sys-

tem’’ 2014 [online]. http://www.android.com/. Accessed 27 Feb

2017

30. Brillo (2016) [online]. http://events.linuxfoundation.org/sites/

events/files/slides/Brillo%20and%20Weave%20-%20Introduction_

v3_1.pdf. Accessed 15 Mar 2017

31. embOS Real time operating system (2015) [online] https://www.

segger.com/admin/uploads/productDocs/UM01001_embOS_Gen

eric.pdf. Accessed 21 Mar 2017

32. Barry R (2016) ‘FreeRTOS, a free open source RTOS for small

embedded real time systems’, 2016 [online. http://www.freertos.

org.Accessed 27 Feb 2017

33. Workshops on build your own smart device (2016) [Online].

http://mysmartphonekit.mobileeducationkit.net/index.php/blog/.

Accessed 27 Feb 2017
34. Feedback form (2016) [Online. http://mysmartphonekit.mobilee

ducationkit.net/index.php/feedback-form/. Accessed 05 July 2017

35. Build Your Own Smart Device Workshop (2015) [Online]. http://

mysmartphonekit.mobileeducationkit.net/index.php/nitttr/. Accessed

07 July 2017

36. Make My SmartPhone Workshop (2016) [Online]. http://mys

martphonekit.mobileeducationkit.net/index.php/msrit/. Accessed

07 July 2017

37. Mirani L (2014) Chip-makers are betting that Moore’s Law won’t

matter in the internet of things—Quartz [online]. http://qz.com/

218514/chip-makers-are-betting-that-moores-law-wont-matter-in-

the-internet-of-things/. Accessed 26 Jan 2017

38. What is real time operating system (2013), [online] http://www.

ni.com/white-paper/3938/en/.Accessed 25 Mar 2017

39. Min R, Bhardwaj M, Cho SH, Chandrakasan A (2002) Energy-

centric enablingtechnologies for wireless sensor networks. IEEE

Wireless Commun 9(4):28–39

58 Int. j. inf. tecnol. (March 2018) 10(1):49–58

123

http://www.wipro.com/documents/what-smart-systems-can-teach-us.pdf
http://www.wipro.com/documents/what-smart-systems-can-teach-us.pdf
http://searchsqlserver.techtarget.com/definition/database
http://searchsqlserver.techtarget.com/definition/database
http://www.webopedia.com/TERM/M/memory.html
http://www.webopedia.com/TERM/M/memory.html
https://tools.ietf.org/html/rfc7228
http://www.contiki-os.org/
http://tools.ietf.org/html/rfc4944/
http://www.smart-its.org/
http://compilers.cs.ucla.edu/avrora/papers/avrora_ipsn2005.pdf
http://compilers.cs.ucla.edu/avrora/papers/avrora_ipsn2005.pdf
https://www.uio.no/studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/laboppgaver-rt/VxWorks-6.2_Application_Programmers_Guide.pdf
https://www.uio.no/studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/laboppgaver-rt/VxWorks-6.2_Application_Programmers_Guide.pdf
https://www.uio.no/studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/laboppgaver-rt/VxWorks-6.2_Application_Programmers_Guide.pdf
https://www.uio.no/studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/laboppgaver-rt/VxWorks-6.2_Application_Programmers_Guide.pdf
http://support7.qnx.com/download/download/26183/QNX_Neutrino_RTOS_System_Architecture.pdf
http://support7.qnx.com/download/download/26183/QNX_Neutrino_RTOS_System_Architecture.pdf
http://support7.qnx.com/download/download/26183/QNX_Neutrino_RTOS_System_Architecture.pdf
http://www.android.com/
http://events.linuxfoundation.org/sites/events/files/slides/Brillo%20and%20Weave%20-%20Introduction_v3_1.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Brillo%20and%20Weave%20-%20Introduction_v3_1.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Brillo%20and%20Weave%20-%20Introduction_v3_1.pdf
https://www.segger.com/admin/uploads/productDocs/UM01001_embOS_Generic.pdf
https://www.segger.com/admin/uploads/productDocs/UM01001_embOS_Generic.pdf
https://www.segger.com/admin/uploads/productDocs/UM01001_embOS_Generic.pdf
http://www.freertos.org
http://www.freertos.org
http://mysmartphonekit.mobileeducationkit.net/index.php/blog/
http://mysmartphonekit.mobileeducationkit.net/index.php/feedback-form/
http://mysmartphonekit.mobileeducationkit.net/index.php/feedback-form/
http://mysmartphonekit.mobileeducationkit.net/index.php/nitttr/
http://mysmartphonekit.mobileeducationkit.net/index.php/nitttr/
http://mysmartphonekit.mobileeducationkit.net/index.php/msrit/
http://mysmartphonekit.mobileeducationkit.net/index.php/msrit/
http://qz.com/218514/chip-makers-are-betting-that-moores-law-wont-matter-in-the-internet-of-things/
http://qz.com/218514/chip-makers-are-betting-that-moores-law-wont-matter-in-the-internet-of-things/
http://qz.com/218514/chip-makers-are-betting-that-moores-law-wont-matter-in-the-internet-of-things/
http://www.ni.com/white-paper/3938/en/
http://www.ni.com/white-paper/3938/en/

	Operating systems for low-end smart devices: a survey and a proposed solution framework
	Abstract
	Introduction
	Components of smart device
	Low-end smart devices

	Design aspects of an OS for smart device
	Method
	Literature survey
	Asserting the research problem
	Results

	Proposed solution
	Conclusion and future lines
	Acknowledgements
	References

