
CS245 – Lecture 8
Embedded Software Reliability

Tony Givargis

Software
 Unlike mechanical or electrical devices, software never

“breaks”
 Intuitively software stays as is
 Unless problems in hardware effecting compute/storage

 Software has no shape, color, and mass

 Software does not age, rust, or deteriorate
 But it has real existence and is critical component

 Unless proven correct, software is likely to be buggy

2

Software Tragedies
 Computer-controlled radiation-therapy machine of 1986

failed due to software not detecting a race condition

 The British destroyer Sheffield was sunk because the
radar system identified an incoming missile as friendly

 Golf War, the math error that missed 0.000000095
second in precision every 10th of a second,
accumulating for 100 hours, made the Patriot missile
fail to intercept a scud missile and 28 lives were lost

 In 1991, after changing three LOC in a program with
millions of LOC, the telephone systems in CA crashed

3

Should we use Software?
 ATM machine miscalculates your money
 50% chance you’ll be happy

 Airplane software makes a mistake
 Long way down

 Your heart pace-maker or radiation-therapy machine
fails due to software error
 matter of life and death

 Are we embedding potential disasters while we embed
software into systems?

4

Software Reliability
 The probability of failure-free software operation for a

specified period of time in a specified environment
 Probabilistic function with the notion of time

 But, Software Reliability is not a direct function of time
 As in age-related failure

 Software Reliability is an attribute
 Similar to functionality, usability, performance,

serviceability, capability, installability, maintainability

 Software Reliability is hard to achieve
 Complexity of software

5

Software Complexity
 Software is easy to generate, thus more is generated

 Easy to implement features in software
 More functionality is pushed onto software

 Software is easy to augment
 Software components grow over time

 Examples
 Aircraft over 5 million LOC, International Space Station

over 5 million LOC + 10 million LOC on ground support,
modern car has over 2 million LOC, etc.

6

Software Failures
 Software failures may be due to
 Programming errors
 Ambiguities
 Oversight or misinterpretation of the specification
 Carelessness or incompetence in writing code
 Inadequate testing
 Incorrect usage
 Unexpected usage

 Hardware vs. Software
 Physical vs. design

7

Design Faults
 Design faults differ from physical faults
 Hard to visualize
 Hard to classify
 Thus, hard to detect & correct

 Design faults are closely related to human factors and
design methodologies

 Design faults can not be address by duplication of
components
 Can’t be masked by voting

 Design faults are not manufacturing faults
8

Reliability Models
 Over 500 models developed
 But still no good model for software reliability in existence
 No single model is complete or can be applied at all times

 Most models are based on measurement metrics
 Complexity of software == reliability of sotware

 Is LOC a measure of software complexity?
 How do you count LOC?

 Functionality measurements
 Count the number of functions delivered to the user

9

Reliability Models …
 Control-oriented complexity measurement
 Reduce the code to its control structure
 Eliminate data paths
 Obtain a control-flow graph

 Data-oriented complexity measurement
 Reduce the code to its data structure
 Eliminate control paths
 Obtain a data-flow graph

 Control/Data-oriented complexity measurement
 Combine the above

10

Reliability Models …
 Coverage metric is to measure the amount of software

that is executed correctly
 Simulation based test
 Under some input assumption
 Under some expected behavior

 Project management metric
 Better project management lead to more reliable software

 Process metrics
 Better software development methodologies lead to more

reliable software
 ISO-9000 certification 11

Reliability Models …
 Fault and failure metrics is to measure the rate at which

bugs are discovered
 Keep testing until you the rate at which errors are

discovered decreases

 Formal models
 Generate (automatically) proofs or counter proofs that

some software has certain property
 What software?
 What property?
 How costly is the evaluation?

12

Redundancy
 Software requires different redundancy
 Airplane might have two identical engines as a measure

of redundancy and failure recovery
 Can’t do the same with Software

 Software redundancy requires
 Duplicate effort
 Write the software using a different algorithm, process,

programmer, etc.
 Voting system
 Must be much less complex than the duplicated functions
 Formally proven to be correct

13

	CS245 – Lecture 8
	Software
	Software Tragedies
	Should we use Software?
	Software Reliability
	Software Complexity
	Software Failures
	Design Faults
	Reliability Models
	Reliability Models …
	Reliability Models …
	Reliability Models …
	Redundancy

