CS245 – Lecture 7

Reconfigurable Computing *Tony Givargis*

Introduction

- Reconfigurable computing, a new paradigm for system design
 - Based on FPGA technology
 - Larger gate count
 - Faster clock
 - Cheaper cost
 - Post fabrication hardware computation
- Underlying technology enables swapping digital circuits:
 - In real-time (i.e., matter of seconds or milliseconds)
 - In circuit
 - On-the-fly (i.e., during execution)
- Application domains
 - Telecon
 - Automotive
 - Settop boxes
 - Space
 - Desktop
 - Mobile

Speedup

- DNA matching
 - FPGA vs. Sparc => 4300x
- RSA crypto
 - FPGA vs. Alpha => 17.8x
- Ray casting
 - FPGA vs. Pentium => 33.8x
- FIR filter
 - FPGA vs. DSP => 17.9

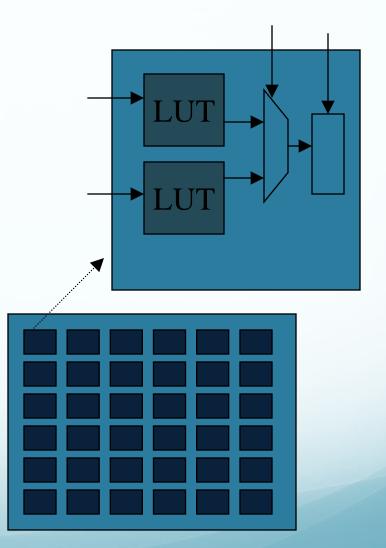
Why R.C.

- Changes in application requirements
 - Most new features are enabled by software!
 - Changing standards
- Cost
 - Time-to-market & NRE
- Performance
 - Power & speed
- Application demands are not excel or word, but multimedia!

R.C. Performance

- Increased compute density
 - Gates dedicated to computing rather than control logic
- Matched data word size
- Parallelism
 - Instruction level
 - Bit level
 - Pipeline

The Basic Idea

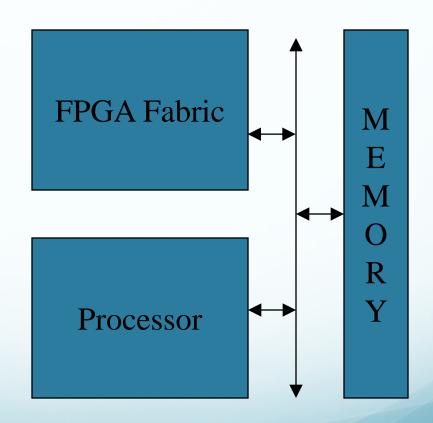


FPGA Basics

- Programmable logic blocks
- Programmable connections between logic blocks
- Mostly digital (but some mixed signal devices available)
- Bit stream programmable: SRAM, EEROM, Flash ...
- As of 2010
 - Millions of gates (equivalent) capacity
 - Up-to 1GHz (maximum) clock speed
 - \$3B market share
 - 100K design starts

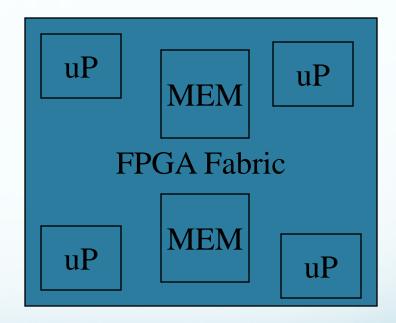
FPGA Internals

- Look up tables (LUTs) form the basic logic generation
 - 3 to 4 inputs wide
 - Multiple LUTs / cell
- Programmable communication grid
- Recent trends:
 - Incorporate memory and processor on chip
- FPGA bit stream



R.C. Model of Computation

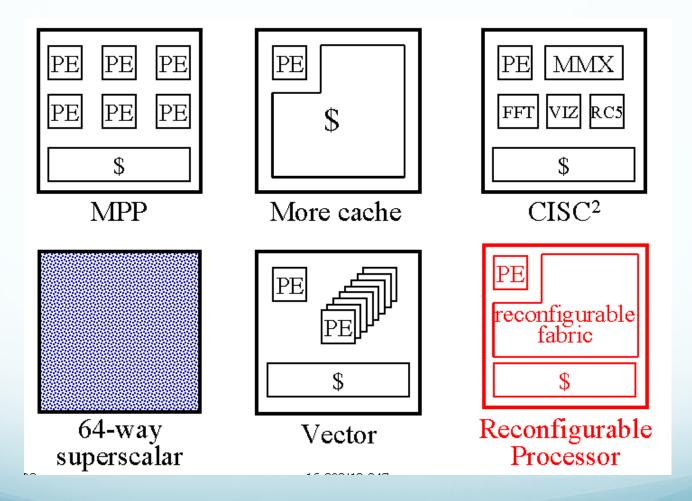
- One or more FPGA contexts (bit streams) presynthesized B_0 , B_1 , B_2 ... B_n
- Cost for reconfiguration C_{reconfig}
- FPGA holds K contexts at a time
 - K < n : Dynamic scheduling
 - K >= n : Static scheduling
- Notion of scheduling
 - Processing stops during reconfiguration
 - Next context being configured while current context is executing (double buffering)
 - NP complete problem (similar to partitioning/scheduling in codesign)


R.C. Basic Architecture

- Processor implements most functions
- FPGA fabric implements some compute intensive functions
- Shared memory (dual port or DMA)
- Shared bus
 - bottleneck

R.C. Extreme Architecture

- One or more processors on FPGA chip
- One or more memory blocks on FPGA chip
- FPGA fabric used for
 - Communication
 - Arbitration
 - Coherency
 - Compute


Coarse Grain Architectures

- A grid of programmable devices (mini-processors)
- A central CPU handling context scheduling and sequencing
- Devices
 - Perform arithmetic operations
 - Data steering & forwarding
- Highly specialized compilers
- Large hand-programmed kernels

Synthesis in the Loop R.C.

- The tools necessary to generate the FPGA context is included in the firmware
- Dynamic profiling of application discovers hot-spots
- Synthesis/compiler tool invoked to generate FPGA hardware
- Application code is patched to redirect execution to hardware
- Repeate

Summary

