
CS245 – Lecture 6
Real-time Operating Systems

Tony Givargis

Introduction
 Operating System (OS)
 Allows multiple simultaneously executing programs to

coexist
 Responsible for hiding the details of the underlying

hardware

 Real-time Operating System (RTOS)
 In addition to above, provides constructs to address

timing needs of multiple simultaneously executing
programs

2

Timing
 Absolute deadline for performing a computation

(hard real-time)
 Performing most computations within deadline

(firm real-time)
 Average case deadline for performing a

computation (soft real-time)
 Interrupt latency
 Context switch latency
 Preemption granularity

 Scheduling problem!

3

Scheduling Basics
 Static
 A priori knowledge of task/timing information I
 Schedule S constructed during design time
 Schedule S strictly followed during execution
 Efficient scheduling and deterministic execution

 Dynamic
 Task/timing information I becomes available during

execution (as a function of time)
 Schedule S modified during runtime by the scheduler

as task/timing information I becomes available
 Account for changing task/timing information I

4

Scheduling Basics
 Preemptive:
 A task Ti broken into multiple disjoint segments
 Segments of different tasks Ti and Tj may be interleaved
 At regular intervals, the scheduler is invoked to choose

the next task segment to be executed

 Non-Preemptive
 A task t, once scheduled for execution will run to finish
 On completion of a task t, control is returned to the

scheduler to choose the next task

 Don’t confuse preemptive/non-preemptive with
static vs. dynamic execution

5

Scheduling Basics
 A task Ti has:
 Worse case execution time (C)
 Release time (R)
 Deadline (D)
 Period (P)

 In addition, for Ti a scheduler may maintain:
 Status (S), one of BLOCKED, RUNNING,

RUNNABLE
 Priority (PR)
 Context, registers, program counter, etc.

6

Scheduling Basics
 Periodic tasks execute once during each period:
 Release time (R) = 0
 Relative Deadline (RD) = Period
 Static scheduling or quasi-static scheduling
 Scheduler is invoked when a task is released

 A notion of a repeating schedule (cycle)
 Easier to analyze

 Periodic tasks can also be modeled by:
 Release time (R) = n × P
 Deadline (D) = (n + 1) × P
 n is the number of times the task had to execute thus far

7

Scheduling Basics

 A task graph may
impose execution order

 Scheduling is to chose
which task to run next
(dynamic or static)

 Meet all deadlines and
obey execution order
defined by the task
graph

 Minimize response time
 Minimize energy

consumption (DVS)

8

T1

T7 T4

T5

T6

T3

T2

Priority Scheduling
 At any given time, the set of all ready-to-run tasks (i.e.,

S = RUNNABLE) is maintained in a priority-queue (i.e.,
using PR to sort the tasks)

 Scheduler, when invoked, chooses the task with
highest priority to execute

 Specific scheduling algorithms can be implemented by
just selecting the priority

9

Rate-monotonic
Scheduling

 In periodic tasks
 Priority is inversely

proportional to the period
(i.e., PR = 1 / P)

 Processor utilization of a
single task
 Ui = Ci / Pi

 Total processor utilization
 U = U0 + U1 + … + UN
 If U < N × (21/N – 1) task set

can be scheduled
 As N grows, bound

approaches 69.3%!

 Optimal

E.g. T P C U U
Total

Test

1 1
2
3

50
40
30

12
10
10

0.24
0.25
0.33

82% Maybe

2 1
2
3

80
40
16

32
5
4

0.4
0.125
0.25

77.5% Yes

3 1
2
3

80
40
20

40
10
5

0.5
0.25
0.25

100% Maybe

10

Rate-monotonic
Scheduling

11

time

E.g. 2:
3

4
2

9
1

16
3

32
3

36 45 20
1

40
1 2

48
1 3

52 58
1 …

time
3

10
2

20
1

30

E.g. 1:
3

40
2

50

time

E.g. 3:
3

5
2

15
1

20
3

40
3

45 55 25
1 2

60
1 3

65 80
1 …

Deadline-monotonic
Scheduling

 In non-periodic task
scheduling

 Priority is equal to 1/deadline
(i.e., PR = 1/D)

 A.k.a., earliest deadline first
(EDF)

 Utilization test applied to
intervals

 Optimal

T R D C

1 0 10 5

2 10 40 15

3 15 20 5

4 25 30 5

12
time 1

5 0
2

15
3

20
2

25
4

30
2

35 10

idle idle

Other Scheduling Schemes
 Cooperative
 Require that the current task to yield to another task
 Difficult to program

 Round Robin
 Processor fairly shared among all runnable tasks
 Default scheduling among tasks with equal priority
 Not efficient use of processor

13

Worse Case Execution Time
 Static profiling of task code

 Count instructions
 Assume most number of iterations done by loops

 Dynamic profiling of task code
 Run code with a large set of input vectors
 Take the worse case run time

 How about architectural effects?
 Caches

 Some success analyzing direct mapped caches
 DMA and bus contention
 Branch predictors

 In hard-real time systems, non-deterministic architecture artifacts
are avoided

14

Task Synchronization, Priority
Inversion, and Deadlocks

 Most interesting systems have synchronized
tasks
 A Task can be blocked waiting for another task to

reach a certain point

 When a task H with higher priority is blocked
waiting for a lower priority task L, L’s priority is
set to that of H (priority inheritance)

 Deadlocks occur when a task A is blocked
waiting for another task B, and task B is
blocked waiting for task A
 Timeouts can be used to detect and resolve

deadlocks
 Deadlock recovery important in embedded systems 15

Timeouts

16

Running

Blocked

Runnable TB > X

TB = 0

Exception
Terminated

Interrupts
 Interrupt service routine (ISR) is a function responsible for a

strategy in handling an interrupt
 A specially marked routine (close to hardware)
 An application level routine registered (close to application)
 Etc.

 Interrupt dispatch time
 Time taken from the moment an event occurs until the routine with a

strategy for handing the event is invoked
 Processor needs time to poll and detect interrupt
 RTOS takes time to set flags, and route the interrupt to the application
 Application may need time to spawn a thread to handle the interrupt

 Interrupt service time
 Time taken to completely handle interrupt
 Includes interrupt dispatch time

17

QNX
 QNX is a Real-time Operating System
 Provides multitasking
 Fast context switching

 POSIX Compliant

 QNX + windowing system can fit in less then
1M of flash or ROM
 Bare-bones' configuration of a kernel with a few

small modules to a full-blown network-wide system
equipped to serve hundreds of users

18

QNX Architecture
 Microkernel architecture
 Message-based inter-

process communication
 Priority-based preemptive

scheduling

 System processes are
no different from any
user-written program

 http://www.swd.de/docu
ments/manuals/sysarch
/index_en.html

19

http://www.swd.de/documents/manuals/sysarch/index_en.html�
http://www.swd.de/documents/manuals/sysarch/index_en.html�
http://www.swd.de/documents/manuals/sysarch/index_en.html�

VxWorks
 A popular RTOS for embedded systems
 Flexibility
 A large API (1800 of them)

 Compatibility
 Runs on all popular embedded processors
 TCP/IP, POSIX

 Scalability

 Microkernel Design
 Preemptive round robin scheduling
 Shared memory (intertask)
 Pipes and IPC (intratask)

 http://www.windriver.com/products/vxworks5/vxworks5x
_ds.pdf

20

http://www.windriver.com/products/vxworks5/vxworks5x_ds.pdf�
http://www.windriver.com/products/vxworks5/vxworks5x_ds.pdf�

VxWorks Architecture

21

Other RTOS
 Windows CE .NET
 RT-Linux
 BlueCat Linux
 eCos
 Embedix RT
 Hard Hat
 uCLinux
 Etc.

22

Conclusion
 RTOS
 Hardware abstraction
 Resource management
 Process management
 Scheduling

 Process communication
 Interrupts

 A good RTOS is one that behaves
deterministically even under heavy/faulty load
conditions

23

	CS245 – Lecture 6
	Introduction
	Timing
	Scheduling Basics
	Scheduling Basics
	Scheduling Basics
	Scheduling Basics
	Scheduling Basics
	Priority Scheduling
	Rate-monotonic Scheduling
	Rate-monotonic Scheduling
	Deadline-monotonic Scheduling
	Other Scheduling Schemes
	Worse Case Execution Time
	Task Synchronization, Priority Inversion, and Deadlocks
	Timeouts
	Interrupts
	QNX
	QNX Architecture
	VxWorks
	VxWorks Architecture
	Other RTOS
	Conclusion

