CS245 — Lecture 6

Real-time Operating Systems
Tony Givargis

Introduction

® QOperating System (OS)

® Allows multiple simultaneously executing programs to
coexist

® Responsible for hiding the details of the underlying
hardware

® Real-time Operating System (RTOS)

® |n addition to above, provides constructs to address
timing needs of multiple simultaneously executing
programs

Timing
® Absolute deadline for performing a computation
(hard real-time)

® Performing most computations within deadline
(firm real-time)

® Average case deadline for performing a
computation (soft real-tlmef)

® Interrupt latency

® Context switch latency
® Preemption granularity

® Scheduling problem!

Scheduling Basics

® Static

® A priori knowledge of task/timing information |

® Schedule S constructed during design time

® Schedule S strictly followed during execution

® Efficient scheduling and deterministic execution

® Dynamic
® Task/timing information | becomes available during
execution (as a function of time)

® Schedule S modified during runtime by the scheduler
as task/timing information ' becomes available

® Account for changing task/timing information |

Scheduling Basics

® Preemptive:
® Atask T, broken into multiple disjoint segments
® Segments of different tasks T; and T, may be interleaved

® At regular intervals, the scheduler is invoked to choose
the next task segment to be executed

® Non-Preemptive
® Ataskt, once scheduled for execution will run to finish

® On completion of a task t, control is returned to the
scheduler to choose the next task

® Don’t confuse preemptive/non-preemptive with
static vs. dynamic execution

Scheduling Basics

® Atask T, has:

® \Worse case execution time (C)
® Release time (R)

® Deadline (D)

® Period (P)

® |n addition, for T, a scheduler may maintain:

® Status (S), one of BLOCKED, RUNNING,
RUNNABLE

® Priority (PR)
® Context, registers, program counter, etc.

Scheduling Basics

® Periodic tasks execute once during each period:
® Releasetime (R) =0
® Relative Deadline (RD) = Period

® Static scheduling or quasi-static scheduling
® Scheduler is invoked when a task is released

® A notion of a repeating schedule (cycle)
® Easier to analyze

® Periodic tasks can also be modeled by:
® Releasetime (R)=nxP
® Deadline(D)=(n+1)xP
® nis the number of times the task had to execute thus far

Scheduling Basics

® Atask graph ma
|mposege ecutlo% order

S hehduli IS to chose
XVJ%IC task'to run 51ext

ynamic or static
®* Meet all deadlines and
0 ? ex cuP]on order
de |¥hed y the tas
grap
® Minimize response time

® Minimize ener
consumpt?on (%X/S)

Priority Scheduling

® At any given time, the set of all ready-to-run tasks (i.e.,
S = RUNNABLE) is maintained in a priority-queue (i.e.,
using PR to sort the tasks)

® Scheduler, when invoked, chooses the task with
highest priority to execute

® Specific scheduling algorithms can be implemented by
just selecting the priority

Rate-monotonic
Scheduling

In periodic tasks

® Priority is inversely
yroportional to the period
E.e., PR=1/P)

Processor utilization of a
single task

Total processor utilization
® U=U,+U;+..+U,

o |fU<N x (2UN—1) task set
can be scheduled

® As N grows, bound
approaches 69.3%!

Optimal

Eg | T P C U U Test
Total

1 1150 12 0.24 82% Maybe
2| 40 10 0.25
3| 30 10 0.33

2 1] 80 32 0.4 77.5% | Yes
2| 40 5 0.125
3| 16 4 0.25

3 1] 80 40 0.5 100% | Maybe
2| 40 10 0.25
3| 20 5 0.25

Rate-monotonic

Scheduling

E.g. 1: l

~ 1 I 1] .
10 20 30 40 50

E.Q. 2

--ll-l-l-l-l 0
4 9 16 2032 3640 4548 5258

E.g. 3:

--l-l--l-l _—

_5 1520 2540 45 5560 65 80

Deadline-monotonic
Scheduling

® In non-periodic task

scheduling
T R D C
® Priority is equal to 1/deadline
(i.e., PR = 1/D) . ° 10 °
2 10 40 15
® Ak.a., earliest deadline first
(EDF) 3 15 20 5
4 25 30 5
e Utilization test applied to

intervals

® Optimal

Other Scheduling Schemes

® Cooperative
® Require that the current task to yield to another task
e Difficult to program

® Round Robin
® Processor fairly shared among all runnable tasks
® Default scheduling among tasks with equal priority
® Not efficient use of processor

Worse Case Execution Time

e Static profiling of task code
® Count instructions
® Assume most number of iterations done by loops

® Dynamic profiling of task code
® Run code with a large set of input vectors
® Take the worse case run time

® How about architectural effects?
® (Caches
® Some success analyzing direct mapped caches
® DMA and bus contention
® Branch predictors

® In hard-real time systems, non-deterministic architecture artifacts
are avoided

Task Synchronization, Priority
Inversion, and Deadlocks

® Most interesting systems have synchronized
tasks

® ATask can be blocked waiting for another task to
reach a certain point

® When a task H with higher priority is blocked
waiting for a lower priority task L, L’s priority Is
set to that of H (priority inheritance)

® Deadlocks occur when a task A is blocked
waiting for another task B, and task B is
blocked waliting for task A

® Timeouts can be used to detect and resolve
deadlocks

Timeouts

Interrupts

® Interrupt service routine (ISR) is a function responsible for a
strategy in handling an interrupt

® A specially marked routine (close to hardware)

® An application level routine registered (close to application)
® FEtc.

® Interrupt dispatch time

¢ Time taken from the moment an event occurs until the routine with a
strategy for handing the event is invoked

Processor needs time to poll and detect interrupt
RTOS takes time to set flags, and route the interrupt to the application
Application may need time to spawn a thread to handle the interrupt

® Interrupt service time
® Time taken to completely handle interrupt
® |ncludes interrupt dispatch time

QNX

® QONX is a Real-time Operating System
® Provides multitasking
® [ast context switching

® POSIX Compliant

® QNX + windowing system can fit in less then
1M of flash or ROM
® Bare-bones' configuration of a kernel with a few

small modules to a full-blown network-wide system
equipped to serve hundreds of users

QNX Architecture

® Microkernel architecture

® Message-based inter- Process & Filesystem &

process communication Manager & Manager ||
® Priority-based preemptive 4
scheduling

L Microkernel

® System processes are
no different from any
user-written program

Device M etwork
* http://www.swd.de/docu \ """ S Manager g
ments/manuals/sysarch

Index en.html

http://www.swd.de/documents/manuals/sysarch/index_en.html�
http://www.swd.de/documents/manuals/sysarch/index_en.html�
http://www.swd.de/documents/manuals/sysarch/index_en.html�

VxWorks

® Apopular RTOS for embedded systems
® Flexibility
® Alarge API (1800 of them)
e Compatibility
® Runs on all popular embedded processors
® TCP/IP, POSIX
® Scalability

® Microkernel Design
® Preemptive round robin scheduling
® Shared memory (intertask)
® Pipes and IPC (intratask)

° hgp://Ovl\:tww.windriver.com/products/vxworksS/vxworksSx
S.

http://www.windriver.com/products/vxworks5/vxworks5x_ds.pdf�
http://www.windriver.com/products/vxworks5/vxworks5x_ds.pdf�

VxWorks Architecture

HOST TARGET
TORMADD® 2.2 Embedded Developrmant Tools VW ORKS® 5.5 Scalable Runtime System

Debugger

Project Facili
st |[Vet beror

Compiler

TS Eventand Object Ana by=i=

&Application Oata and Event Analysis

Code Coverage Analysis

Memory Analysis

Source Code Execution Analysis

Other RTOS

Windows CE .NET
RT-Linux

BlueCat Linux
eCos

Embedix RT

Hard Hat

uCLINnux

Etc.

Conclusion

®* RTOS

® Hardware abstraction
® Resource management

® Process management
® Scheduling

® Process communication
® [nterrupts

® Agood RTOS is one that behaves
deterministically even under heavy/faulty load
conditions

	CS245 – Lecture 6
	Introduction
	Timing
	Scheduling Basics
	Scheduling Basics
	Scheduling Basics
	Scheduling Basics
	Scheduling Basics
	Priority Scheduling
	Rate-monotonic Scheduling
	Rate-monotonic Scheduling
	Deadline-monotonic Scheduling
	Other Scheduling Schemes
	Worse Case Execution Time
	Task Synchronization, Priority Inversion, and Deadlocks
	Timeouts
	Interrupts
	QNX
	QNX Architecture
	VxWorks
	VxWorks Architecture
	Other RTOS
	Conclusion

