
CS245 – Lecture 5
Optimizing Compilers

Tony Givargis

What is a Compiler?
 Transforms one computer language to another
 High-level to low-level
 Low-level to high-level (de-compiler)
 High-level to high-level (source to source translator)

 Internals
 Preprocessing
 Lexical analysis (Lexer)
 Semantic analysis (Parser)
 Code Generation
 Code Optimization

 2

C/C++ Pre-Processing
 Expands and substitutes #xxxxxx directives

 Lacks syntax and semantics knowledge of underlying C
 Has been criticized

 Macros (#define)
 Replaced by inline functions (performance)
 Replaced by templates (extensible)

 Conditional compilation (#if-#then-#else)
 Replaced by dead code elimination

3

Lexical Analyzer (Lexer)
 Converting a sequence of characters into a sequence

of tokens (a.k.a., scanner)

 Lexical rules of language are captured by regular
expressions
 Finite state machine lexer recognizes tokens
 Longest match rule
 White-space delimiters

 Lexer generators
 Lex, Flex (Rewrite of Lex), JLex (Java), etc.

4

Semantic Analyzer (Parser)
 Match a sequence of tokens to against a formal

grammar of the language
 On a match, call the back-end
 Else, issue error

 The language is captured by a context-free grammar
 Hand parsers or generated parsers recognize productions
 Typically, parsers recognize a superset of a language
 Rely on back end to catch errors

 Top-down / bottom-up parsers
 Recursive descent parser / LALR parser

5

Code Generation
 Lexer/Parser yield an internal representation
 Abstract syntax tree
 Parse tree

 Embedded compilers often make multiple passes over
the internal representation
 Convert the parse tree into a linear sequence of

instructions
 Abstract 3-address code

 Final passes generate executable code from the abstract
3-address code sequence

6

Code Optimization
 Code optimization modifies code (as parsed) to make it

more efficient (Performance, footprint, power)
 Must retain program behavior
 Optimization may takes place at all phases of compilation

 Kinds of optimizations
 Algorithmic optimization
 General (dataflow and loop) optimization
 Machine dependent/independent optimization

 No universal optimization objective
 Optimization overhead

7

Optimizations
 Alias and pointer analysis
 A pointer may point to any memory location (big trouble)
 Restricting the scope of references helps with subsequent

optimizations

 Dataflow optimization
 Common sub-expression elimination
 3 * (X+Y) - 2 * (X + Y) => 3 * Z – 2 * Z

 Constant folding
 Y = 4; X * (Y * Y) => X * 16

8

Optimizations …
 Loop optimization
 Induction variable elimination
 Loop fission
 Loop splitting
 Loop fusion
 Loop inversion
 While(x) {} => if(x) { do {} while(x) }
 Reduces the number of jumps, helps with pipeline stalls

 Loop-invariant code motion
 Loop-nest optimization
 Loop unrolling

9

Optimizations …
 Loop optimizations …
 Loops unswitching
 Hoist conditional expression out of the loop body

 Software pipelining
 Split the loop body into several sections, start new loop

iteration when first section is complete and so on
 Loop parallelization
 Execute the loop using several threads

 Machine-dependent optimization
 Register allocation
 Instruction selection & scheduling

10

Optimizations …
 General optimizations
 Dead-code elimination
 Code factoring (opposite of code inlining)
 Function versioning

 Advanced optimizations
 Task partitioning
 Static evaluation assisted optimizations
 Trace assisted optimization

 Most code optimizations focus on dataflow
 Control-flow optimizations are more challenging???

11

Embedded System Compilers
 Optimization objectives are more stringent
 A blend of power, performance, and area

 Can afford to spend more time on compilation to
achieve the objectives

 Additional issues
 Often deal with cross compilers
 Generated code forms part of the firmware
 Code is generated to execute directly on micro-controller

or an RTOS

12

Forms of Compilation
 Common understanding of a compiler
 Generates code from high-level language that runs on

this machine

 Cross compiler
 Slight variation on above

 Interpreter
 As code is generated, it is executed and discarded

 JIT
 Interpreter that does not discard the code

13

Embedded Software
 Programming language issues
 Multi-core and reconfigurable architectures
 Distributed real-time control and other complex RT

systems
 Reliability, security, and privacy
 Virtual machines

 Compilers
 Architecture, RTOS
 Binary translation & optimization
 Support for debugging, profiling, and exceptions

14

Embedded Software …
 Compilers …
 Optimization for low power, low energy, low code and

data size, and high (real-time) performance

 Tools for analysis, specification, design, and
implementation of embedded systems
 Validation and verification
 System integration and testing
 Timing analysis, timing predictability, WCET analysis and

real-time scheduling analysis
 Performance monitoring and tuning

15

JIT Example

16

#include <jit.h>

unsigned char buf[1024];
typedef (*p2f)(int, int);

int main() {
 if(jit_compile(“int min(int x, int y) {”
 “ return x < y ? x : y;”
 “}”, buf)) {
 printf(“%i\n”, (p2f)buf(3, 5));
 }
 else {
 assert(0);
 }
 return 0;
}

Conditional Expressions
 Determine the execute path
 The more we know about them, the better we can

optimize the control flow
 Static evaluation can yield information about C.E.

 Control flow optimizations
 Loop body optimization
 Loop nest optimization
 Loop splitting
 Etc.

17

C.F. Optimization Example

18

C. E. Evaluation
 Start with the syntax tree for a C.E. and normalize
 2X0 + X1 > -4
 2X0 + X1 – 4 = 0

 Solve for roots
 Assume all, but one variable, as constants
 Estimate an initial interval for each variable
 Use interval for all arithmetic in root finding algorithm
 Repeat

 Partition the domain space
 Optimize

19

C. E. Evaluation

20

	CS245 – Lecture 5
	What is a Compiler?
	C/C++ Pre-Processing
	Lexical Analyzer (Lexer)
	Semantic Analyzer (Parser)
	Code Generation
	Code Optimization
	Optimizations
	Optimizations …
	Optimizations …
	Optimizations …
	Embedded System Compilers
	Forms of Compilation
	Embedded Software
	Embedded Software …
	JIT Example
	Conditional Expressions
	C.F. Optimization Example
	C. E. Evaluation
	C. E. Evaluation

