
CS245 – Lecture 4
Models, Languages, & Tools

Tony Givargis

Models, Languages, &
Tools

 A model of computation is a
conceptual notion used to
capture system behavior
 A set of objects
 Composition rules
 Execution semantics

 Languages capture models of
computation
 Syntax
 Semantics

 Tools transform a model
captured in one language to a
model captured in another
language
 Compilers

2

Model M1 Model M2

Language L1

Language L2

Tool
Behavior

Behavior

Models of Computation
 Sequential model of computation
 A single thread of execution (all too familiar)

 Concurrent model of computation
 Multiple threads of execution
 Synchronization
 Communication

 Object Oriented (OO) Model of computation
 View the computation as a set of objects
 Polymorphism: a derived class can modify the

behavior of its base class

3

Models of Computation
 FSM

 A set of states and transitions
 Mealy and Moore

 DFG
 A set of computation nodes and

flow paths

 Petri net
 A set of places, transitions, edges,

and tokens

 Kahn Process Network (KPN)
 A set of concurrent processes

sharing data using unbounded
buffers

 Communicating Sequential
Processes (CSP)

4

P1 P2

P4

P3

Petri net

KPN

Meta Models
 Discrete Events (DE)

 Events occur at discrete points on a time continuum
 Events trigger computations
 Computations trigger more events

 Continuous Time (CT)
 Differential equations model continues i/o response as a function of continues time

 Synchronous Reactive (SR)
 Same as DE
 All event timings snap to a regular clock

 Publish & Subscribe (P&S)
 Sending applications (publishers) publish messages without explicitly specifying

recipients
 Receiving applications (subscribers) receive only those messages that the

subscriber has registered an interest in
 Loosely coupled networked systems

5

Tools
 Compilers
 Native
 Cross
 Optimizing
 Parallelizing
 Vectorizing
 VLIW

 Special
 FSM
 Petri net

 Synthesis
 RTL
 Behavioral
 System

 IDEs

 Simulators
 Functional
 Cycle-accurate
 Non-functional
 Bus-functional

 Interpreters
 Virtual Machine
 Hypervisor

 Emulators
 Hardware assisted

interpreter
 Debuggers
 Visual programming

6

Basic Design Flow
 Research

 Requirement analysis: what is
it we are building?

 Design
 Concept design (e.g., back of

an envelop calculations)
 Preliminary design (e.g.,

Matlab prototype)
 Detailed system design

 Document
 Code
 Integrate

 Research
 Verification
 Validation

7

Research Document

Verification

Preliminary

Integrate

Design

Validation

Highly Iterative

Concept Detailed

Code
Requirement
Analysis

Start

Design
 Concept Design

 Algorithm Design
 Most interesting systems have a computation core requiring innovative and unique solutions

 Prototyping at highest level possible
 Verification and validation of behavior
 Models play an important role!

 Preliminary Design
 Functional partitioning: decomposition of algorithm into functional modules

 Complexity management and early resource allocation
 Implementation oriented tuning of algorithm
 System architecture definition

 Hardware/Software partitioning
 Models play an important role!

 Detailed design
 Tools play an important role!

8

Research
 Verification: Did we build the

thing right?
 Simulation

 Cycle accurate, functional, etc.
 FPGA prototyping
 Hardware emulation
 Product testing

 Formal
 See next slide

 Critical properties are not all
functional (user friendliness,
security)

 Validation: Did we build the right
thing?
 Hard to check (quantitatively)

Abstraction Relative-
speed

Verification
Time

Real-time 1 1 hour

FPGA 10-1 ~1 day

Emulator 100-1 ~4 days

Behavior (system-
level)

1000-1 ~1.4 months

Bus functional
(system-level)

10000-1 ~1.2 years

Cycle accurate
(system-level)

100000-1 ~12 years

RTL 1000000-1 ~1 lifetime

Gate-level 10000000-
1

~1
Millennium

9

Research: Formal Verification

 Equivalence checking
 Reduce A/B to the canonical

form A’/B’
 Does A’ = B’ ?

 Theorem proving
 Conjecture (i/o response) is a

logical consequence of a set of
axioms (circuit/code)

 Model checking
 Property is satisfied by the

model

10

Model
A

Model
B = ?

Axioms
Conjecture

Model Property
Sat?

Document Phase
 Often perceived as the most important phase
 Certainly important to document
 To communicate between people, machines, companies, etc.
 An interface between the research and design phases
 Languages play an important role

11

	CS245 – Lecture 4
	Models, Languages, & Tools
	Models of Computation
	Models of Computation
	Meta Models
	Tools
	Basic Design Flow
	Design
	Research
	Research: Formal Verification
	Document Phase

