CS245 – Lecture 3

Embedded Design Domains *Tony Givargis*

Hybrid Embedded Systems

- Computation systems whose behavior is tightly integrated with the physical world
 - Eg., the behavior of an unmanned aerial vehicle (UAV) can be modeled by a combination of differential equations (the aerodynamics and low level feedback controllers) and a finite state automata (high level flight path decisions, such as to ascend or descend).
- Behavior is governed by both continuous-state dynamics from the physical world and discrete-state dynamics from the computation
- Passage of time during computation affects the state of the physical world

Hybrid Embedded Systems

- Aerospace
 - Flight control
 - Positioning & navigation
 - Instrumentation
 - Radar

Automobiles

- Engine management
- Emission control
- Safety & stability
- Entertainment & comfort
- Robotics
 - Mission oriented

Sensor Networks

- Many sensor nodes
 - Sensing
 - Computation/storage
 - Communication
- Examples
 - Structure safety
 - Search and rescue
 - Military use
- Properties
 - Self organization
 - Energy Efficient
 - Distributed

Multimedia

- Compute systems centered around:
 - Signals, analog to digital conversion, quantization, sampling, processing, and digital to analogue conversion
 - Information theory, entropy, Huffman codes, compression, lossless compression
 - Images, audio, video
- Examples
 - Setup boxes
 - Blue ray players
 - Virtual reality
- Properties
 - Quality of service
 - Lots of data (formats and standards too)!

Consumer Electronics

- Home appliances
 - Yesterday's appliances: add computation
 - Tomorrow's appliances: add networking (Internet)
- Office electronics
 - Integration
 - Electronic paper (filing, printing, sending, and receiving)
- Home/office automation
 - Common fantasy about the automated home or office of the future with lights and appliances that operate by themselves or with minimal effort

Networking Equipment

- Stitching LANs
 - Bridge: same identity
 - Router: different identity
- Ports
 - Switch: recipient only
 - Hub: transmit to all
- Properties
 - Handle large volume of highly structured data
 - Little transformation

Medical Instruments

- Perform diagnosis (screening/evaluation)
 - Data collection & display
 - Appraisal (plan of action) of data
 - Observation & monitoring
 - Sensing & actuation
 - Accuracy and precision
- Examples
 - Radiation therapy
 - Artificial hearts
- Properties
 - Reliability

Distributed & Grid Computing

- Coordinated resource sharing and problem solving
- The grid is static, reliable, and has infinite resource (for practical purposes)
- Users (the mobile device e.g., PDA) has limited resources
- Middleware mitigates the resource sharing and coordination efforts

MEMS

- Small mechanical devices and systems
 - Few microns to a few millimeters
- These devices are called:
 - Micro Electro Mechanical Systems (MEMS)
 - Micro System Technology (MST)
 - Micromechanics
 - Micro Machines
 - Micro
 - Nanotechnology by some (usually refers to devices ranging in size from a nanometer to a micron)
- Encompasses all aspects of science and technology

MEMS Design Concerns

- Forces related to volume (e.g., weight and inertia) decrease in significance
- Forces related to surface area (e.g., friction, surface tension, and electrostatics) increase in significance
- Examples from nature:
 - An ant carrying many times its weight
 - A water bug walking on the surface of a pond
- A need for thinking "outside" the box and adopting a new intuition of mechanical devices

Inside MEMS Devises

- Motors, gears, pivots, linkages, and other mechanical devices
 - Made using silicon surface micromachining
- Transistors, resistors, capacitors, inductors, and other electronic devices
- MEMS internals tend to be rugged, respond rapidly, use little power, occupy a small volume, and are often much less expensive than conventional macro parts

MEMS – Spider & Machine

MEMS – Tiny Heater

MEMS – Mirror

Nanotechnology

- A continuation of the MEMS slides ...
- Molecular scale manipulation of systems
 - Due to the importance of quantum physics at the nanometer scale the mechanic, dynamic, and electro-magnetic properties act unusual
 - Atomic copper wires are bad conductors
 - Atomic magnetic bits lose their memory too quickly
- Is ohm's law correct at the molecule/atom level?

Nanotechnology

- Much of what you hear is nanofiction
- All nanotechnology today is passive
 - Silicon based
 - Synthetic material
- Most nanoscience concerned with controlling material properties (e.g., melting temperature, magnetic properties, charge capacity, mechanical properties, and color) without changing the materials' chemical composition
- Future nanoscience will attempt to create active components