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Chapter 1: Introduction

The first computers of the 1940s and 1950s occupied entire rooms. The 1960s and 1970s saw
computers shrink to the size of bookcases. Continued shrinking in the 1980s brought about the era
of personal computers. Around that time, computers also became small enough to be put into other
electrical devices, such as into clothes washing machines, microwave ovens, and cash registers. In
the 1990s, those computers became known as embedded systems.

What is an embedded system?

An embedded system is a computer embedded within another device. The embedded computer
is composed of hardware and software sub-systems designed to perform one or a few dedicated
functions. Embedded systems are often designed under stringent power, performance, size, and
time constraints. They typically must react quickly to changing inputs and generate new outputs
in response. Aside from PCs, laptops, and servers, most systems that operate on electricity and
do something intelligent have embedded systems. Simple embedded system examples include the
computer in a clothes washing machine, a motion-sensing lamp, or a microwave oven. More complex
examples include the computer in an automobile cruise control or navigation system, a mobile
phone, a cardiac pacemaker, or a factory robot. (Wikipedia: Embedded_Systems)

Examples of embedded systems include
computers in simple systems like blinking tennis
shoes or coffee makers, to more complex
systems like mobile phones or automated teller
machines.

Try: List three embedded systems that you interact with regularly.

(Wikipedia: Iphone Wikipedia: PlayStation Wikipedia: SetTopBox Wikipedia:
Engine_Control_Unit Wikipedia: HVAC_Control_System Wikipedia: IP Phone Wikipedia:
Flight_Control_System Wikipedia: Amazon_Kindle)

Each year over 10 billion microprocessors are manufactured. Of these, about 98% end up as part of an
embedded system.
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Integrated circuits (a.k.a. ICs or chips), on which microprocessors are implemented, have been
doubling in transistor capacity roughly every 18 months, a trend known as Moore's Law (Wikipedia:
Moore's Law). Such doubling means: (1) that a same-size system (e.g., a cell phone) gets more
capable, and (2) that a same-capability system can be made smaller (halved every 18 months) thus
enabling new inventions (e.g., computerized pills that can be ingested) (Wikipedia: Motes).

I:l IC size shrinking in half

every 18 months; note
the reduction after just 5
* 18 months = 90 months
or 7.5 years.

Try: Fold a sheet of paper in half as many times as you can. Each fold corresponds to IC size shrinking in 18 months. Notice
how size shrinks dramatically after just a few folds.

Copyright © Frank Vahid and Tony Givargis 2011 5
Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu


http://docs.google.com/File?id=dhg3x2bn_88f5v79ng4_b
http://docs.google.com/File?id=dhg3x2bn_88f5v79ng4_b
ftp://ftp.cordis.europa.eu/pub/ist/docs/embedded/final-study-181105_en.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/embedded/final-study-181105_en.pdf
http://docs.google.com/File?id=dhg3x2bn_90dzhvgh22_b
http://docs.google.com/File?id=dhg3x2bn_90dzhvgh22_b
http://docs.google.com/File?id=dhg3x2bn_92fjwmksdm_b
http://docs.google.com/File?id=dhg3x2bn_92fjwmksdm_b
http://en.wikipedia.org/wiki/Moore%27s_law
http://en.wikipedia.org/wiki/Moore%27s_law
http://en.wikipedia.org/wiki/Motes

Programming Embedded Systems: An Introduction to Time-Oriented Programming

Try: Think of a new invention that would be enabled by a microprocessor that is the size of a speck of dust, self-powers for
years, has ample memory, and can communicate wirelessly.

Basic components

A system with electrical components uses wires with continuous voltage signals. A useful abstraction
is to consider only two voltage ranges, a "low" range (such as 0 Volts to 0.3 Volts) that is abstracted
to 0, and a "high range" (such as 0.7 Volts to 1.2 Volts) that is abstracted to 1. A bit (short for
"binary digit") is one digit of such a two-valued item. A bit that can change over time is called a
digital signal. "Digital" refers to the signal having discrete rather than continuous possible values.

(Wikipedia: Digital signal).
Switch and push button

A switch is an electromechanical component with a pair of electrical contacts. The contacts are in
one of two mechanically controlled states: closed or open. When closed, the contacts are electrically
connected. When open, the contacts are electrically disconnected. (Wikipedia: Switch).

In digital system design, it helps to think of an abstraction of a switch. A switch is a component with
a single bit output that is either a 0 or 1 depending on whether the switch is in the off or on position.

0 on

_ 0 on 1
switch

— 0 switch

A push button operates similar to a simple switch, having a pair of electrical contacts and two
mechanically controlled states: closed or open. Unlike a simple switch, the push button enters its
closed state when it is being pressed. The moment the pressing force is removed, the push button
reverts to and remains in its open state. (Wikipedia: Push button).

An abstraction of a push button is a component with a single bit output that is 0 when the button is
not pressed, and that is 1 while the button is pressed.

e

LED

A light emitting diode (LED) is a semiconductor with a pair of contacts. When a small electrical
current is applied to the LED contacts, the LED illuminates. (Wikipedia: LED).

An abstraction of an LED is a component with a single bit input that can be either 0 or 1. When the
input is 0, the LED does not illuminate. When the input is 1, the LED illuminates.
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We can build a simple system that is composed of a push button and an LED connected as shown
below. When the button is pressed, the LED will illuminate.

- A
buttan LED

This system falls short of being an embedded system because it lacks computing functionality. For
example, the system can't be easily modified to toggle the LED each time the button is pressed, or
to illuminate the LED when the button is pressed AND a switch is in the on position. A component
executing some computing functionality is a key part of an embedded system.

Microcontroller

A microcontroller is a programmable component that reads digital inputs and writes digital outputs
according to some internally-stored program that computes. Hundreds of different microcontrollers
are commercially available, such as the PIC, the 8051, the 68HC11, or the AVR. A microcontroller
contains an internal program memory that stores machine code generated from compilers/
assemblers operating on languages like C, C++, Java, or assembly language.

AT microcontroller

(Wikipedia: Microcontroller Wikipedia: Atmel AVR  Wikipedia: C language)

We will use an abstraction of a microcontroller, referred to as RIM (Riverside-Irvine Microcontroller),
consisting of eight bit-inputs A0, Al, ..., A7 and eight bit-outputs BO, B1, .., B7, and able to execute
C code that can access those inputs and outputs as implicit global variables (this book assumes
reader proficiency with C programming).

. i? g? e ( #include "RIMS b )

™ A2 B2[—™ v oid main()

—= A7 =1 B3 [

— (micro- — while (1) { /f repeat farever

—»| a5 controllen) £ L } BO=A2E& A1 Z&AD, RIM executes C
—* AB B6 [ }

—* AT \\ BT [—™ k\";vr‘ ~

internal C pragram

The example statement "BO = A2 && Al && AQ" sets the microcontroller output BO to 1 if inputs A2,
Al, and AO are all 1. The "while (1) { <statements> }" loop is a common feature of a C program
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for embedded systems and is called an infinite loop, causing the contained statements to repeat
continually.

We can use a microcontroller to add functionality to the earlier simple system to create an embedded
system. The term embedded system, however, commonly refers just to the compute component.
The switch and buttons are examples of sensors, which convert physical phenomena into digital
inputs to the embedded system. The LED is an example of an actuator, which converts digital
outputs from the embedded system into physical phenomena. (Wikipedia: Sensor) (Wikipedia:
Actuator)

A0 = LED
Al lme
—= A2 B2 -
A3 {rﬁilcTD B3 RIM connected to switches,
—- - -
AE co ntrD”Er}l BE buttOI’lS, and LEDs.
—= AR BE =
—* A7 B —™
RIMS

F |Riverside-Irvine Microcontroller Simulator. (RIMS)

File Edit Help

RIMS (RIM Step 1 Step 2 Step 3 Slowest Fiealtime Fastest
simulator) is a [ Open Sample | [ Open.. | or [Terminate | | Break 0
graphlcal PC'based C:ADocuments and SettingswahidyMy Documentshsimple_sxample.c ErEEVon Emeed
tools that supports AD i TR B
C programming and |°™* °f = 3—0
simulated execution [omwl- af & -1 T @
. = o while (1) {

of RIM. RIMS is ompl—a] s BO - iz c& k1 &6 AD: T @
useful for learning I ;

O] | s i T @
to program 5
embedded systems. [0W=1 % T e
A screenshot of Ogml—4 > @
RIMS is shown owml-— @& P
below. The eight ——— :
inputs AO-A7 are = I T @
connected to eight A=7 BB=?1
switches, each of = %07 —. - I = x01
which can be set to

Sumbol W atch UART /Debug Dutput
. . U&ART Input
0 or 1 by clicking on Name Value

the switch. The Setto"Slowest” speed
eight outputs B0-B7
are connected to
eight LEDs, each of
which is red when
the corresponding

output is 0 and
green when 1.

C code can be written in the center text box. #include "RIMS.h" is required atop all C files for RIMS.
The user can first press the "Save" button to save the C code, then press "Compile" (to translate the
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C code to executable machine code, which is hidden from the user), then press "Run" (after which
the button name changes to "Terminate" as in the above figure).

While the program is running, the user can click on the switches on the left to change each of RIM's
eight input values to 0 or 1. RIM's eight output values, written by the running C code, set each LED
on the right to green (for 1) or red (for 0). When done, the user should press "Terminate".

Try: Download, install, and execute RIMS (see www.programmingembeddedsystems.com). Note that a default C program
appears in the center text box. Replace the default C program by the program below. Press "Save" and name the file
"examplel.c", then press "Compile", press "Run", and then click switches for A2, A1, and A0 all to 1, noting that BO becomes
1. Press "Terminate" when done.

#include "RIMS.h"

void main ()
{
while (1) {
BO = Al && AQ;

}

Try: Write a C program for RIM that sets BO=1 whenever the numbers of 1s on A2, A1, and A0 is two or more (i.e., when
A2A1AQ0 are 011, 110, 101, or 111). Run the program in RIMS to test the program.

Pressing "Break" temporarily stops the running (and the button changes to "Continue") and shows
an arrow next to the current C statement, and then each press of "Step" executes one C statement.
Pressing "Continue" resumes running. Pressing "Terminate" ends the program, and re-enables
editing of the C code. A box under the C code shows how many seconds the C program has run.

Try: For the above program named "examplel.c", set A1AO to 00, run the program, and press "Break". Press "Step" 5 times
and observe the arrow pointing to the current statement after each press. Now change A1AO0 to 11, and then press "Step"
several times until BO changes. Press "Continue" to resume running. Press "Terminate" to end the running.

RIMS' Execution Speed slider (upper right) can be moved left to slow running speed; the "Slowest"
setting causes an arrow to appear next to each C statement as it executes.

For debug/test, the C code can include print statements like: 'puts("Hello");"'. Printed items appear
in the Debug Output text box (at bottom right of RIMS).

The user can click "Add Symbols" (at bottom of RIMS) to see the current value of any input, output,
or global variable in the C code.

Numerous samples that introduce features can be found by pressing "Open Sample" (upper left).
Other features will be described later.

Timing diagrams

An embedded system operates continually over time. A common representation of how an
embedded system operates (or should operate) is a timing diagram. A timing diagram (Wikipedia:
Digital Timing Diagram) shows time proceeding to the right, and plots the value of bit signals as
either 1 (high) or 0 (low). The figure below shows sample input values for the above example.c
program that continually computes BO = A1 && A0. A0 is 0 from time 0 ms to 1 ms, when it changes
to 1. AO stays 1 until 2 ms, when it changes to 0. And so on. The 1 and 0 values are labeled for
signal AO, but are usually implicit as for Al.
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The timing diagram shows that B0 is 1 during the time interval when both A0 and Al are 1, namely
between 4 ms and 5 ms.

Vertical dotted lines are sometimes added to help show how items line up (as done above) or to
create distinct timing diagram regions.

Try: Draw a timing diagram showing all possible combinations of three single-bit input signals A0, A1, and A2. Use vertical
dotted lines to delineate each combination.

Try: A program should set BO to 1 if exactly two of A0, A1, and A2 are 1. Draw a timing diagram illustrating this behavior.

A change from 0 to 1 or from 1 to 0 on a bit signal is called an event. The above figure has 10
events. If a signal changes from 0 to 1, the event is called rising. 1 to 0 is called falling.

Try: Circle all 10 events in the above timing diagram.

Testing

Written code should be tested for correctness. One method is to generate different input values
and then observe if output values are correct. To test code implementing "BO = A0 && 'Al1", all
possible input value combinations of A1 and A0 can be generated: 00, 01, 10, and 11. Using
RIMS, switches can be clicked to generate each desired input value. First switches for A1 and A0 can
both be set to, then A0 can be set to 1, then A0 can be set to 0 and Al to 1, and finally both Al
and AO can be set to 1. BO should only output 1, and hence B0's LED should only turn green, in the
second case.

For most code, there are too many possible input combinations to test all of them. Testing should
cover border cases such as all inputs being 0Os and all inputs being 1s, and then several sample
normal cases. For example, completely testing "BO = A0 && Al && A2 && A3 && A4 && A5 &&
A6 && A7" would require 256 unique input value combinations. Border and sample testing might
instead test two borders, A7..A0 set to 00000000 (output should be 0) and to 11111111 (output
should be 1), and then a few (perhaps a dozen) sample normal cases like 00110101 or 10101110.
If code has branches, then good testing also ensures that every statement in the code is executed
at least once, known as 100% code coverage.

(Wikipedia: Software Testing) (Wikipedia: Software Debugging)

RIMS records all input/output values textually over time. That text can be analyzed for correct code
behavior, rather than observing RIMS LEDs. Pressing the "Generate/View Timing Diagram" button
while a program is running (or in a "break" status) automatically saves those textual input/output
values in a file and then runs the timing-diagram viewing tool called RITS (Riverside-Irvine Timing-
diagram Solution).
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B RITS (Riverside-Irvine Timing Diagram Solution)
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RITS timing
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Time (ms) n
JPEG" button.

The saved text file is an industry standard vcd (value change dump) file (Wikipedia: Value Change
Dump file). A vcd file can also be read by many other timing diagram tools. RITS can also be run on
its own, and can open vcd files generated by other tools.

Ideally, input value combinations, known as test vectors, could be captured in a file and then input
to a tool rather than each input value combination being generated by clicking on switches. For tool
simplicity and ease of use, RIMS does not presently support such file input.

Try: Save, compile, and run examplel.c from above. Click the input switches to achieve the following values: A1A0=00,
then 01, then 00, then 10, then 00, then 01, then 11, then 00. Press "Break", then press the "Generate/View Timing Diagram"
button, causing a timing diagram window to appear, and observe how the timing diagram corresponds to the output values
you observed just prior (and should closely match the above RITS figure). Press RITS' "Save JPEG" button to save the timing
diagram to a JPEG file. Open the saved JPEG file using a picture viewing tool (not included with the RI tools). Finally, back
on RIMS,; press the "Terminate" button.

RIMS.h provides three functions for printing to the "Debug output" text window:
e puts(x): Prints a string x. Example:
° puts("Hello.\n");
e putc(y): Prints a character y. Example:
° putc('H'");
e puti(z): Prints an integer z. Example:
o puti(209);

Exercises

1. Write RIM C code that sets BO to 1 only if AO-A3 are all 1s or if A4-A7 are all 1s (or if both
situations are true). Using border and sample input value combinations, test the written code with
RIMS, and generate a timing diagram showing the test results.

2. A car has a sensor connected to A0 (1 means the car is on), another sensor connected to Al

(1 means a person is in the driver's seat), and a sensor connected to A2 (1 means the seatbelt
is fastened). Write RIM C code for a "fasten seatbelt" system that illuminates a warning light (by
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setting BO=1) when the car is on, a driver is seated, and the seatbelt is not fastened. Test the
written code with RIMS for all possible input combinations of A2, Al, A0, and generate a timing
diagram showing the test results.
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Chapter 2: Bit-Level Manipulation in C

C is a popular programming language in embedded systems due to its simplicity and efficiency,
but C was not originally created for embedded systems. C was created in 1972 for mainframe and
desktop computers, which typically manipulate data in files such as integer or character data. In
contrast, embedded systems commonly manipulate bits, in addition to other data types. This chapter
describes C's built-in data types and discusses how to manipulate bits in C (Wikipedia: C language).
Most of the discussion applies equally to the C++ language.

% of embedded systems

Language For most of current project
(2006)

C 51%

C++ 30%

Assembly 8%

Java 3%

BASIC 1%

Source: www.embedded.com, 2006 State of Embedded Market Survey.

C data types

Several C data types are commonly used to represent integers in embedded system programs:

Type Width Range Notes
signed char 8 -128 to +127
unsigned char 8 0 to 255
signed short 16 —215t0 +21°-1 16 .
unsigned short 16 0to +216-1 27" is 65,536
signed long 32 —231to 42311 32 . -
unsigned long 32 0to 42321 277 is about 4 billion

. . N—1 N—1 Though commonly used,
sigReait % —2 Nto +2° -1 we avoid these due to
ehsighed-at 0 to 271 undefined width

Thus, a variable whose value may only range from 0 to 100 might be best declared as "unsigned
char". A variable whose value may only range from -999 to 999 might be best declared as "signed
short". Note that "unsigned" data types represent positive integers, while "signed" types represent
negative and positive integers. If a variable is used to represent a series of bits (rather than a
number), then an unsigned type should be used.

Embedded systems commonly deal with 1-bit data items. C does not have a 1-bit data type, which
is unfortunate. Thus, 1-bit items are typically represented using an unsigned char, e.g., "unsigned
char myBitvar". The programmer only assigns the variable with either 0 or 1, e.g., "myBitvar = 1;",
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even though the variable could be assigned integers up to 255. Checking whether such a variable is 1
or 0 is typically done without explicit comparison to 1 or 0, and is instead done as "if (myBitVar)"

n

or"if (!myBitvar)".

Below are some example variable declarations:

unsigned char ucIl;
unsigned short usI2;
signed long s1I3;
unsigned char bMyBitVar;

A common practice is to name variables with a lower-case prefix indicating the data type, as above
-- uc, us, and ul for unsigned char, short, and long; sc, ss, and sl for signed char, short, and long; or
b for bit -- to help ensure that larger constants or variables aren't assigned to smaller variables. For
clarity of short examples, this book often skips that practice, but programmers of larger programs
should consider it.

char is called such because it is commonly used in desktop programming to represent the integer
value of an 8-bit ASCII character. Note however that char is actually an integer. Also, 8-bits is
sometimes called a byte.

In C, the word "signed" is optional for a signed type, so "char I1" is the same as "signed char I1".
However, for program clarity, we avoid that shortcut. Also, the word "int" may follow the words
short or long, but that word is superfluous so we usually omit it.

Unfortunately, although the above widths are quite common, C actually defines the above widths
as minimum widths, so a compiler could for example create a long as 64 bits. Thus, a programmer
should never assume an exact width, e.g., a program should not increment an "unsigned char"
and expect it to roll over from 255 to 0, because the char could be 16 bits. Another unfortunate
fact is that C allows a variable to be declared merely as type "int", where the width is compiler
dependent. Due to the unpredictability of int, we avoid using the int type entirely. Following
these conventions improves code portability, which is the ability to recompile code for a different
microprocessor without undesirable changes in program behavior.

The underlying representation of each data type is binary. For an 8-bit unsigned char uclI1:

ucIl = 1; // underlying bits will be 00000001
ucIl = 12; // underlying bits will be 00001100
ucIl = 127; // underlying bits will be 01111111
ucIl = 255; // underlying bits will be 11111111

In binary, the rightmost bit has weight 20, the next bit 21, then 22, etc. In other words, from left to
right, the 8 bits have weights 128, 64, 32, 16, 8, 4, 2, and 1. 0001100 is thus 8 + 4 = 12.

Signed data types in C use two's complement representation. At the bit level, a variable of
type char set to 127 would have an internal representation of 01111111, while -128 would be
10000000, and -1 would be 11111111. For the curious reader -- the binary representation of a
negative number in two's complement can be obtained by representing the number's magnitude
in binary, complementing all the bits, and adding 1. For example, -1 is 00000001 (magnitude is
1) --> 11111110 (complement all bits) --> 11111110+1 = 11111111 (add 1). -128 is 10000000
(magnitude is 128) --> 011111111 (complement all bits) --> 011111111+1 = 100000000 (add 1).
Note that the eighth bit will always be 1 for a negative 8-bit number and is thus called the sign bit.
The programmer generally need not deal directly with the binary representations of signed numbers,
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because compilers/assemblers automatically create the proper constants (e.g., "myVar = -1;" would
result in the two's complement representation being stored in myVar). However, knowing whether
an item is signed or unsigned is important when assigning values, and for determining a variable's
range. (Wikipedia: Two's complement)

In RIMS, the microcontroller's inputs and outputs are implicitly defined as global variables "unsigned
char AO;", "unsigned char A1;", ..., "unsigned char BO;", etc. As mentioned above, an item intended
to represent a single bit, such as BO in RIMS, should be set to only 0 or 1, e.g., "BO = 1;".

RIMS also implicitly defines two additional global variables A and B:

unsigned char A; // built-in variable A, representing RIM's 8 input pins
// as a single 8-bit variable

unsigned char B; // built-in variable B, representing RIM's 8 output pins
// as a single 8-bit variable

Thus, setting all of RIM's outputs to 1s can be accomplished by one statement, "B = 255;" (255 is
"11111111" in binary), rather than the eight statements: "BO = 1; B1 =1; ...; B7 = 1;" To set RIM's
outputs to the number 7 in binary (00000111), the statement "B = 7;" could be used. To set RIM's
outputs to RIM's inputs, the statement "B = A;" could be used. Such grouping of bits is uncommon
in desktop programming, but quite standard in C environments for microcontrollers.

Because B is a global variable, a program can write as well as read that variable. However, A is
automatically written by the microcontroller and should never be written by a program, only read.
In RIMS, writing to A results in a runtime error, causing execution to terminate.

Try: Write a C program in RIMS that repeatedly executes "B = 7;" Note that outputs B2, B1, and B0 become 1s, because 7 is
00000111 in binary. Set the input switches such that A3=1, A2=0, A1=0, and A1=1, with the other inputs 0, and note below
the input pins that RIMS indicates the value of A to be 9, because 00001001 is 9 in binary.

Try: Write a C program for RIMS that sets B equal to A plus 1.

Try: Write a C program for RIMS that sets B = 300. Note that the value actually output on B is not 300, because an unsigned
char's range is 0 to 255.

Variables can be initialized when declared, e.g., "unsigned char il = 5;".

The keyword "const," short for constant, can precede any variable declaration, e.g., "const
unsigned char il = 5;". A constant variable's value cannot be changed by later code. A constant
variable must therefore be initialized when declared. Above, 5 is a constant, and il is a constant
variable.

Try: A car has a sensor that sets A to the passenger's weight (e.g., if the passenger weighs 130 pounds, A7..A0 will equal
10000010). Write a RIM C program that enables the car's airbag system (B0=1) if the passenger's weight is 105 pounds or
greater. Also, illuminate an "Airbag off" light (by setting B1=1) if weight > 5 pounds but weight < 105 pounds.

Hexadecimal

Commonly an 8-bit unsigned item isn't used as a number but rather just a eight distinct bits. For
example, if RIM's eight outputs connected to eight light bulbs and we wanted to light all the bulbs,
we could write "B = 255;" (because 2551is 11111111 in binary), but "255" does not directly convey
our intent. Ideally, we could write "B = b11111111;" or something similar, but C unfortunately has
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no binary constant support. But fortunately, C does support hexadecimal constants, which are close
to the ideal.

Hexadecimal (or "hex") is a base 16 number, where each digit can have the value of 0, 1, ..., 8,
9,A, B,C, D, E orF. Ais ten, B is eleven, C is twelve, D is thirteen, E is fourteen, and F is fifteen.
Hex values have the following binary representations: 0:0000, 1:0001, 2:0010, 3:0011, 4:0100,
5:0101, 6:0110, 7:0111, 8:1000, 9:1001, A:1010, B:1011, C:1100, D:1101, E:1110,
F:1111. In the C language, a hex constant is preceded by "0Ox". Thus, "OxFF" represents "11111111"
in binary. Each hex digit corresponds to four bits (four bits is called a nibble). "Oxff" may also be
used; hex constants are not case sensitive. (Wikipedia: Hexadecimal)

Thus, "B = OxFF;" sets all RIM outputs to 1s. The intent of OxFF is clearer than 255. Likewise, "B =
OxAA" sets the outputs to 10101010, having clearer intent than "B = 170;".

Try: Write a single statement for RIM that sets B7-B4 to 1s and B3-B0 to 0s, using a hex constant.
Try: Write a single statement for RIM that sets BO to 1 if all eight A inputs are 1s, using a hex constant.

Example: The following program sets B to 00000000 when A1A0=00, to 01010101 when A1A0=01,
to 10101010 when A1A0=10, and to 11111111 when A1A0=11:

#include "RIMS.h"

/* Set B to 00000000 when A1A0=00, to 01010101 when AlA0=01,
to 10101010 when A1A0=10, and to 11111111 when AIA0=11 */

void main ()

{

1) |

'A1 && 'A0) {

while (
(
B = 0x00; // 0000 0000

if

}
else if (!'Al && AO0) {

B = 0x55; // 0101 0101
}
else 1f (Al && !AQ) {

B = OxAA; // 1010 1010
}
else if (Al && AQ) {

B = OxFF; // 1111 1111

}

Example: Consider the following embedded system with a dial that can set A3..A0 to binary 0 to 9,
and a 7-segment display (Wikipedia: 7-Segment Display) connected to B6..B0 as shown:

Copyright © Frank Vahid and Tony Givargis 2011 16
Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu


http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/7-segment_display

Programming Embedded Systems: An Introduction to Time-Oriented Programming

g 90, [ ™ A0 BO - BO
?@2 gl B1 B1 B2
6.7 3 A2 oI B2 B3
—* A3 B3 >

g — (micro- B4 F—" p—

0 | a5 controller) B85 - .

0 —* A6 =13] -

0 —™ AT BT ™

Below is a (partial) RIM C program that appropriately sets the display for the given dial position:

#include "RIMS.h"

void main ()
{
while (1) {
switch( A )
{
case 0 : B = 0x77; break; // 0111 0111 (0)
case 1 = 0x24; break; // 0010 0100 (1)
case 2 : B = 0x5d; break; // 0101 1101 (2)
/]
case 9 : B = 0x6f; break; // 0110 1111 (9)
default: Ox6b; break; // 0101 1011 (E for Error)

w
|

w
I

Try: Complete the above program using hex constants to produce the correct display for dial settings 3..8. Test in RIMS.

Bitwise operators and masks

An important programming skill for an embedded C programmer is manipulating bits within an
integer variable. For this, C's bitwise operators are needed:

& : bitwise AND
| : bitwise OR

A : bitwise XOR
~ : bitwise NOT

Bitwise operators operate on the operands' corresponding bits, as shown:

0x0F & OxF2: 0x0F | OxF2: 0x0F ~ OxFO: ~0x0F:
00001111 00001111 00001111 00001111
& 11110010 | 11110010 ~ 11110010 ~
00000010 11111111 11111101 11110000
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Try: Compute "0xAA OP 0x33" for OP being &, then |, then .

In contrast, Boolean operators &&, ||, and ! (there is no Boolean XOR operator) treat operands as
zero (false) or non-zero (true). So "OxOF & OxF0" (bitwise AND) evaluates to 0 because each AND
of corresponding operand bits evaluates to 0, whereas "Ox0F && OxFQO" (Boolean AND) evaluates to
1 because both operands are non-zero. Likewise, if unsigned char x has the value of 1, then ~x is
"11111110", while !x is just 0 (the "!" of any non-zero value becomes zero).

Below are some examples of using bitwise operators:

= ~A; // Invert each bit in A, e.g., 00001111 becomes 11110000
& 0x0F; // Sets B3..BO to A3..A0, and B7..B4 to 0000

| O0xFO; // Sets B3..BO to A3..A0, and B7..B4 to 1111

& 0xF7; // Sets B to A, except that bit #3 is cleared to 0
| 0x04; // Sets B to A, except that bit #2 is set to 1

| 0x04; // For unsigned char x, sets bit #2 to 1

X W W W ww
I

if (A & 0x03) { // Sets BO to 1 if AlAQ0 are 11

BO = 1;
else {
BO = 0;

(Note: bit #0 refers to the least significant bit, or LSB, so bit #2 is the third bit from the right).
Try: Write a single C statement for RIM that sets B to A except that bit #7 and bit #6 are set to 1s.

A mask is a constant value having a desired pattern of Os and 1s, typically used with bitwise
operators to manipulate a value. In the above examples, 0x0F, OxFO, OxF7, and 0x04 are masks.

Masks are typically used based on the following ideas (below, assume "a" is a single bit):
e To force a bit position to 0, AND with a mask having 0 in that position (a & 0 = 0)
e To force a bit position to 1, OR with a mask having 1 in that position (a | 1 = 1)
e To pass a bit position through, AND with a mask having 1 in that position (a & 1 = a), or OR
with a mask having 0 in that position (a | 0 = a)

Masks are sometimes defined as constant variables:

const unsigned char MaskLoNibls = 0xOF;
B = A | MaskLoNibls; // Passes high nibble, sets low nibble to 1111

The term mask comes from the role of letting some parts through while blocking others, like a mask
someone wears on his face letting the eyes and mouth through while blocking other parts.

Two more bitwise operators are commonly used:

o << ! left shift
e >> ! right shift

For unsigned integer types, shift operators move their first operand's bits left/right by the number
of positions indicated by their second operand (the shift amount), as shown:
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0x0F << 2: 0x0F >> 3:
00001111 00001111

<< 2 >> 3
00111100 00000001

Note that vacated positions on the right (for left shift) or left (for right shift) have 0Os shifted in.
Below are some examples of using shift operators:

B =A<< 1l; // Sets B7 to A6, B6 to A5, ..., Bl to A0, and BO to 0
= A > 4; // Sets B7..B4 to 0000, and B3..B0 to A7..A4
B =2A & (0x0F << 2); // Passes A's 4 middle bits to B

™

The shift amount should be between 0 and the number of left-operand bits, inclusive.
Try: Compute "B = A << 6;" and "B = A >> 5" for A being OxFE.

Try: Test the above shift operator examples using RIMS, by creating a distinct program for each.

Try: Write a single C statement for RIM that sets B3-B0 to A5-A2 and sets other output bits to Os.

Example: The following program treats A7..A0 as one 4-bit binary number and A3..A0 as another
4-bit binary number, and outputs the sum of those two numbers on B:

#include "RIMS.h"

0x0F;
const unsigned char HiNibls = 0xFO;

const unsigned char LoNibls

unsigned char opl;
unsigned char op2;

void main ()
{
while (1) {
opl = A & LoNibls; // 0000a3a2ala0
op2 = (A & HiNibls) >> 4; //a7a6a5a40000 --> 0000a7a6aba4
B = opl + op2;

Try: Run the above program. Press "Break", then add symbols opl and op2 to symbols being watched. Press "Continue" and
then move the speed slider to "Slowest." Now set values on A3..A0 and A7..A4 and observe their values in the symbol watch
area, e.g., set A3..A0 to 0011 and set A7..A0 to 0100, and note that op1 is 3 and op2 is 4, with B being 7.

Try: A parking lot has eight spaces, each with a sensor connected to A7..A0 (1 means a car is detected in the space). Spaces
A7 and A6 are reserved handicapped parking. Write a RIM C program that: (1) Sets BO to 1 if both handicapped spaces are
full, and (2) Sets B7..B5 equal to the number of available non-handicapped spaces.

Shifting can be performed on signed integer types too, but we do not recommend such use. Such
shifting was previously popular because shifting a binary number left or right is equivalent to
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multiplying or dividing by 2, respectively (just as shifting a decimal number left or right is equivalent
to multiplying or dividing by 10), and shifting could result in faster code execution than the slower
* and / operations on some processors. However, modern compilers automatically replace * and /
by shifts when possible, so today the programmer can emphasize understandable code rather than
such low-level speedup attempts. For the curious reader, shifting a signed number performs an
"arithmetic" shift that preserves the number's sign, rather than a "logical" shift that merely shifts all
bits. We will never shift signed types. (Wikipedia: Arithmetic Shift Wikipedia: Logical Shift)

Bit access functions

Defining C functions that perform common bit manipulation tasks can be quite useful.

The following function returns a value in which the k'th bit of an unsigned char x is set to 1:

unsigned char set bitl (unsigned char x, unsigned char k) {
return (x | (0x01 << k));
}

The mask 0x01 is shifted left k positions to get the sole 1 bit into the k'th position, and then bitwise
ORed with x so that in the result the k'th bit is 1 (because single-bit a | 1 = 1) while x's bits pass
through to the remaining positions (because a | 0 = a). If k is 2, the mask will be shifted to become
00000100. Recall that the rightmost bit is position 0, not position 1. Similar functions can be created
for short or long integer types.

The following function returns a value in which the k'th bit of an unsigned char x is set to 0:

unsigned char set bitO (unsigned char x, unsigned char k) {
return (x & ~(0x01 << k));
}

The mask 0x01 is shifted left k positions to get the sole 1 bit into the k'th position, and then bitwise
complemented using "~" to yield a mask with a 0 in the k'th bit and 1s in the other bits. For example,
when k is 1, the shifted constant will be 00000010, which will then be complemented into 11111101.
The resulting mask is bitwise ANDed with x, so that in the result the k'th bit is 0 (because single-bit
a & 0 = 0), while x's bits pass through to the remaining bits (because a & 1 = a).

Example: The following statements set B to A except for setting B7 to 0O:

unsigned char tmp;

tmp = A;
tmp = set bitO(tmp, 7);
B = tmp;

The above functions can be used to create another function that takes as a parameter the bit value
to be set .

unsigned char SetBit (unsigned char x, unsigned char k, unsigned char b) {
return (b ? set bitl(x, k) : set bit0(x, k));
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The function uses C's ternary conditional operator (?:) , which returns its second operand when
the first operand is non-zero, else it returns its third operand. So for "m = (n<5) ? 44 : 99;", if n <
5 then m will be assigned 44, else m will be assigned 99.

An example of using the SetBit function involves setting all B bits to the value of AO:

unsigned char i;
for (i=0; 1i<8; i++) {
B = SetBit (B, i, A0);

Finally, the following function gets (rather than sets) the value of a particular bit in an integer
variable:

unsigned char GetBit (unsigned char x, unsigned char k) {
return ((x & (0x01 << k)) !'= 0);
}

The function creates a mask m containing a 1 in position k and 0s in all other positions, then
performs a bitwise AND to pass the k'th bit of x through, resulting either in a zero result if the k'th

bit was 0, or a non-zero result if the k'th bit was 1. The function compares the result with 0, then
returning either a 1 or a 0.

Example: A parking lot has eight parking spaces, each with a sensor connected to input A. The
following program sets B to the number of occupied spaces, by counting the number of 1s using the
GetBit function:

#include "RIMS.h"

unsigned char GetBit (unsigned char x, unsigned char k) {
return ((x & (0x01 << k)) !'= 0);
}

void main ()

{

unsigned char i;
unsigned char cnt;
while (1) {
cnt=0;
for (i=0; i<8; i++) {
if (GetBit(a, 1)) |
cnt++;

[
Il

cnt;
}

Note that the above bit access functions do not perform error checking (e.g., you can attempt to set
the 9th bit of a variable).
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The examples using the SetBit and GetBit functions may seem inefficient due to computing the
mask, but today's optimizing compilers handle these very efficiently. Furthermore, the inline
keyword can be prepended to each function declaration (e.g., "inline unsigned char GetBit(...)") to
encourage compilers to inline the function calls (though many compilers would do so anyways).
Inlining means to replace a function call by the function's internal statements. Compiler
optimizations may then eliminate most of the statements within the GetBit and SetBit functions.

A programmer may wish to copy the bit-access functions to the top of a file whose program performs
bit manipulation, as in the below example program that copies A's bits to B's bits in reverse order
(with function SetBit performing the set to 1 and 0 directly rather than using the set_bitl and
set_bit0 functions),

// Bit-access functions

inline unsigned char SetBit (unsigned char x, unsigned char k, unsigned char b) {
return (b ? x | (0x01 << k) : x & ~(0x01 << k));

}

inline unsigned char GetBit (unsigned char x, unsigned char k) {
return ((x & (0x01 << k)) !'= 0);

}

void main () {
unsigned char i;
while (1) {
for (i=0; i<8; i++) {
B = SetBit (B, 7-1i, GetBit(A,i));

(Wikipedia: Bit Manipulation Wikipedia: Bitwise Operation Wikipedia: Mask Wikipedia: ?:
Operator)

Try: Write a C program for RIMS that sets BO=1 if a sequence of three consecutive 1s appears anywhere on input A (e.g.,
11100000 and 10111101 have such sequences, while 11001100 does not), using a C for loop and the GetBit() function.

Exercises

Assume the RIMS environment for all exercises below.

1. Write a C program to set B3-B0 to A7-A4, and B7-B4 to A3-AO0.

2. Write a C program that treats A1A0, A3A2, and A5A4 as three 2-bit unsigned binary number. The
program should output the sum of those three numbers onto B.

3. Write a C program that rotates input A right once and outputs the result on B (rotate right is the
same as shift right, except the LSB becomes the MSB). Use a variable X to store A, and use the right
shift operator to avoid having to explicitly set each bit with a unique statement.

4. Write C statements that set B to the reverse of A, such at B7 = A0, B6 = Al, etc. Rather than
writing 8 assignment statements, instead write a for loop that makes use of the GetBit and SetBit
functions.

5. Write a C program that interprets the input A as an 8-bit unsigned binary number representing a
temperature in Fahrenheit, and outputs the temperature in Celsius on B .
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Chapter 3: Time-Ordered Behavior and State
Machines

Introduction

Time-ordered behavior is system functionality where outputs depend on the order in which input
events occur. Consider a simple electronic lock with two inputs A1 and A0 coming from switches,
and output BO. BO=0 locks a device, while BO=1 unlocks it. To unlock, a user must first set the
switches such that A1AO0 are 00, then 10, then 11. Any other sequence leading to 11, such as 00
then 01 then 11, does not unlock the device. The system has time-ordered behavior due to reacting
to events ordered in time (such behavior is sometimes called reactive because it reacts to events).
However, C was not designed for time-ordered behavior. Like most programming languages, C
uses a sequential instruction computation model, which consists of a list of statements, and whose
execution consists of continually executing instructions one after another, until the end of the
statements is reached. That model is good for capturing algorithms that transform input data into
output data, known as data processing. That model is less well suited for capturing time-ordered
behavior.

Try: Capture the simple lock behavior using C (do not look at the below C code).

The following (less than ideal) C code strives to capture the above desired time-ordered behavior
using sequential instructions:

void main ()
{

BO = 0; // start with lock set

while (1) {

|

while (! ((!Al) && (!A0))) {}; // wait for first unlock step 00
while ((!Al) && (!AQ)) {}; // wait while 00
if (Al && !'A0) { // 10 is correct second unlock step
while (Al && !'A0) {}; // wait while 10
if (Al && A0) { // 11 is correct third unlock step
BO = 1; // unlock
while (Al && AQ) {}; // wait while 11
BO = 0; // lock again

}

Although the code may work, one can begin to see why sequential instructions are not well-suited
for time-ordered behavior. The while statements and nested if statements are awkward. Extending
the C code for modified behavior could be difficult, as for the following.

Try: Extend the above code to sound an alarm by setting another output B1 to 1 if A1AO=11 is reached by any sequence other
than the correct unlocking sequence.

There are many different ways to extend the code for the above modified behavior. Any such
extension makes the code much harder to understand. The lesson is this: Forcing time-ordered
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behavior directly onto a sequential instruction computation model is challenging. Instead, a
computation model better suited for time-ordered behavior is needed.

State machines

State machines are a computation model intended for describing time-ordered behavior. Numerous
kinds of state machines exist. Common features of state machines are a set of single-bit inputs
and outputs, a set of states with actions, a set of transitions with conditions, and an initial state.
State machines are commonly drawn graphically, resulting in a state diagram. (Wikipedia: Finite

state machine) (Wikipedia: State diagram).
ToggleButton

1AD Al

\"‘ LedOffRelease LedOnPress
BO=10; im0l BO=1;
L] Al !AU
LedOffPress AD ledOnRelease
BO=0; BO=1;

The above figure shows a state machine (assume bit input A0 and bit output BO); with four states
LedOff, LedOnPress, LedOn, and LedOffPress, each having actions BO = 0, B0 =1, B0 =1, and BO =
0, respectively; with eight transitions labeled either A0 or |AO; and with the initial state being LedOff
as indicated by the arrow pointing from nothing to LedOff.

A system described by a state machine "executes" as follows. The system is always "in" some state,
called the current state. Initially, the specified initial state is made the current state and its actions
are executed once -- above, the initial state is LedOff and its action BO=0 is executed once. The
following process, which we call a single tick of the SM, then occurs:

e The current state's outgoing transitions are checked to see which one transition has a true
condition; one and only one should be true, else the state machine has not been properly
created.

e The system's new current state is set to the state pointed to by that transition (that
state may be the same as the previous current state). Th new current state's actions are
then executed once. Above, supposing A0 was 1, the tick would cause transition to state
LedOnPress and its action BO=1 would be executed once.

The ticking process then repeats. Ticks take a small unknown non-zero amount of time. Ticks are
assumed to occur at a much faster rate than input events, such that no events are missed.

Continuing the above example, while A0 stays 1, each tick will set the system's current state to
LedOnPress and execute BO=1 once; this is called staying in state LedOnPress. When AO changes to
0, then on the next tick the system's current state becomes LedOn, with action BO=1. The SM stays
in that state until A0 changes to 1, causing transition to LedOffPress, with action BO=0. And so on.

Try: Draw the BO signal for the given A0 signal and the above state machine.
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Inputs
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(The above system happens to carry out toggle functionality, wherein a system output changes
between two values. Some household lights utilize a single button that toggles a light between on
and off).

Transitions leaving a particular state should have mutually exclusive transitions (otherwise, which
of two true transitions should be taken?). A transition need not have a condition specified, which
means the condition is always true (thus, that transition should be the only one leaving a particular
state). A state may have multiple actions, such as "BO = 1; B1 = 1;" or may have no actions at all.

We will use a particular variation of a state machine model, referred to in this book just as an
SM, intended for creating C programs that support time-ordered behavior. The SM has C variables
declared, rather than inputs and outputs; we'll continue to use RIMS' implicitly-declared A and B
input and output variables though. The SM's state actions consist of C statements, and the SM's
transitions consist of C expressions.

Using an SM, the earlier simple lock example can be captured as follows.

SimpleLock
==z RIMS' AB [10; no other variables dedarad.

1A 28 1A0) A1 88 140 Al 82 140 Al 88 A0
{ ) arsswm mazn £ )

Wait0o

BO=10: If (LA1 B8 LA0) BO=D0; ; BO = 1;
1] Al &5 A0y

I (Al && 140
IIf Al &8 DY)

I{Al 88 AD)

Try: For the above SM, indicate the current state throughout the time period shown below for the following input signal values
(the initial state Wait00 is shown as W00). Also show the B0 signal value.

Inputs

AD [ 1 |
A1 [

State Voo
Output s
BO
>
i 3 3 3 1 3 'm™
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Notice that the SM model and the earlier C code have the same behavior. However, the SM more

explicitly captures the desired time-ordered behavior. This straightforwardness can be further seen
by trying to extend the SM.

Try: Extend the SM to sound an alarm if A1AO=11 is reached by a sequence other than 00, 10, 11.
The extension can be achieved by adding transitions leaving Wait00 and Wait10, where each
transition checks for "Al && AQ0" and points to an "Alarm" state that sets B1=1 (all other states

should set B1=0). The transitions leaving Wait00 and Wait10 that point back to the same state
would also need to have their conditions refined to not include the "Al && AQ" case.

RIBS

The RIBS (Riverside-Irvine Builder of State machines) tool supports graphical state diagram capture
of SMs.

fﬂ C:\Documents and Settings\vahidMy Documents\ToggleExample.sm

File  Edit Help

Global Vanables and Functions
Controls
Step 1 ’ Inzert State I Step 2 l Inzert Transition l Step 3 Generate C Step 4 #This code wil be accessible from al State Machines."/
System Name: | ToggleExample [] Enable Timer [] Enable UART

State Machine 5 5 Object

“ariables and Functions
Mame: | Toggle FDrefine ser Variables and Functions For this State Machine Here.™/ Mame |LedOffRelease
Prefis: | TG Inputs: A7-40 Iritial State
Outputs: B7-B0 . Delete
. Actions
Perind:

BO=10;
Carvas

ms
B0 = D}
e Condition

\\_,

A user can insert states and insert transitions between states. The user can click on a state and
write C code for the state's actions (in the text box on the right). Likewise, the user can click on
a transition and write C conditions (bottom-right text box). Pressing "Generate C" automatically
generates C code for RIMS. Pressing "RIMS Simulation" automatically starts RIMS and runs the
generated C code on RIMS, where the user can set input switches and observe output LEDs, while
RIBS highlights the currently-executing state.

Try: Run the RIBS tool and create the above-described Toggle state machine. Unselect the "Enable Timer" checkbox, and
delete any text from the "Period" text box (these items will be described later). Press "Generate C" and then press "RIMS
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Simulation", which causes the RIMS tool to automatically execute. With both the RIBS and RIMS tools visible on your screen,
click on the A0 switch on RIMS several times and notice how the current state changes in RIBS.

Try: Capture an SM for a three-LED sequencer. Initially BO's LED is on. When A0 rises, BO turns off and B1 turns on. When
A0 rises again, B1 turns off and B2 turns on. When A0 rises again, B2 turns off and B0 turns on again. And so on. Try capturing
the behavior in C directly first, and then instead capture it as an SM (use a distinct state for each distinct output situation). Test
the SM using RIBS.

Try: Extend the three-LED sequencer by reversing the sequence if Al=I, else following the earlier sequence if A1=0. Try
extending the C code first (hard!), and then the SM.

Converting an SMto C

Because microprocessors typically have C compilers but not SM compilers, converting an SM to C
is necessary. Using a standard method for converting an SM to C enhances the readability and
correctness of the resulting C code. The following illustrates such a method for the given SM named
Latch (abbreviated as LA), which saves (or "latches") the value of A1l onto BO whenever AO is 1.

SM name: Latch (abbrewv, L&)

#include "RIMS.h"
enum LA States { LA sO, LA sl } LA State;
void LA Tick()

{
switch(LA_State) { // Transitions

case -1: // Initial transition
LA State = LA sO;
break;

case LA sO0:
if (!A0) |
LA State = LA sO;
}
else if (AO) {
LA State = LA sl;
}
break;
case LA sl:
if (!A0) |
LA State = LA s0;
}
else if (AO0) {
LA State = LA sl;
}
break;
} // Transitions
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switch (LA State) { // State actions

case LA s0:
break;

case LA sl:
BO = Al;
break;

} // State actions
}

void main () {

B = 0; // Initialize outputs

LA State = -1; // Indicates initial call
while (1) {
LA Tick();

}

While the code may at first glance look imposing, it follows a simple pattern. The first line creates
a new enum data type LA_States defined to have possible values of "LA_s0" and "LA_sl1." That
same code line declares global variable LA_State to be of type LA_States. enum is a C construct for
defining a new data type (in contrast to built-in types like char or short) whose value can be one of
an "enumerated" list of values. The programmer provides the enumeration list ("{ LA_sO, LA_s1 }"
above). Each item in the list becomes a new constant, with the first item having value 0, the second
item having value 1, etc.

The main function sets the current state to a value of -1 (which is a small trick used to indicate
the start of execution, because items in the enumeration list are numbered 0 or greater), initializes
outputs, and then enters the normal infinite "while (1)" loop, which just repeatedly calls a function
LA_Tick().

LA_Tick carries out one "tick" of the SM. For the current state, the first switch statement in LA_Tick
carries out the appropriate transitions for the current state; if LA_State is -1, the transition is to the
SM's initial state. The second switch statement then carries out the appropriate actions for that new
current state.

Try: Run the above code in RIMS. Press "Break" and then repeatedly press "Step" (setting A0 accordingly), observing how
the code executes each tick of the state machine.

Capturing behavior as an SM and then converting to C using the above method may result in more
code than capturing behavior directly in C. However, more code does not always mean worse code.
The C code generated from an SM may be more likely to be correct, may be more easily extendible
and maintainable, and has other benefits that will be seen later.

Variables, statements, actions, and conditions in SMs
Variables
An SM can have variables declared at the SM scope (i.e., not within a state), which can be accessed

by all actions and conditions of the SM. For example, a variable "unsigned short UnlockCnt;" could be
declared. Above, you can think of the AO, B0, and similar items as having been declared as "unsigned
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char" variables. When a user adds a variable declaration, the variable should be initialized. While the
variables could be initialized when declared (e.g., unsigned short UnlockCnt=0;), it is better practice
to use a new state named "Init" to carry out initializations of variables as well as of outputs. In
this way, not only are all initializations in one place, but the system can be re-initialized merely by
having a transition point back to the Init state.

When converting to C, the synchSM variables can be declared as global variables above the
synchSM's tick function.

Statements

The statements that can appear in actions can include more than just assignment statements. Any
C statements can appear, such as an if-else statements and even some for loops. However, for our
purposes, statements in actions should NEVER wait on an external input value, such as the
statement "while (!A0) {};". Such behavior should be captured as states and transitions so that
all time-ordering information is visible at the transition level.

Try: Create an SM that counts the number of times that A0 rises, and outputs that number onto B. Declare, initialize, and use
a variable "Cnt" to maintain the count.

Example: Consider an applause-meter system intended for a game show. A sound sensor measures
sound on a scale of 0 to 7 (0 means quiet, 7 means loud), outputting a three-bit binary number,
connected to RIM's A2-A0. A button connected to A3 can be pressed by the game show host to save
(when A3 rises) the current sound level, which will then be displayed on B. The system's behavior
can be captured as an SM with a variable, as shown.

ApplauseMeter
unsigned char levCurr;

lewCurr=0;
B = levCurr;

levCurr=A & 0x07; ¥ 0000 0111
B=levCurr,

Note that the SM's Init state has a transition leaving it but with no associated condition. A transition
with no shown condition is shorthand for a transition having a "1" condition, meaning the condition
is always true. Obviously, such a transition can be the only transition leaving a state.

Try: Extend the SM so that pressing A4 would output the maximum level seen so far onto B. Use another variable to store the
maximum.

Mealy/Moore actions

The above state machine model associates actions with states only, known as a Moore-type state
machine. A Mealy-type state machine allows actions on transitions too. A Mealy-type SM can
make some behaviors easier to capture.

For example, notice in the Applause Meter example that the SaveCurr state is used just to perform
actions, after which the SM immediately transitions to the WaitNotA3 state. Using Mealy actions, the
SM could be simplified to the following:
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Applausei eter
unsigned charlevCurr,;

A3 lewCur = A& 0x07,; /0000 0111
B = levCurr;

lewZurr= 0,
B = levCurm,

Try: For the SimpleLock SM, maintain a global variable "unsigned short Fail;" that counts every time that the system leaves
state Wait00 but then returns to that state without having been unlocked. Hint: create a new initial state to initialize Fail, and
then increment the variable on the appropriate transitions.

When translating to C, a transition's actions appear in the transition switch statement, in the
appropriate if-else branch.

Conditions

Conditions in an SM must be C expressions. Exactly one of a state's leaving transitions must have a
condition that evaluates to true at a given time, no more, no fewer. Note in the earlier SimpleLock
SM that we sometimes had transitions going to next states such as a transition with "!Al1 && !AQ0" and
another transition with "Al && !A0, and then a transition having a condition that covered all other
possibilities, such as "! (1A1 && 'A0) || (Al && !A0) )". To simplify the SM's appearance, a special
condition called other may be associated with one transition leaving a state, which is shorthand for
the opposite of the ORing of all conditions from the remaining leaving transitions of that state. An
example for part of the SimpleLock SM is shown:

I{1AT &&8 1AD) A1 && 140

; other BO=0;

When translating to C, "other" may be implemented as a last "else" branch (with no expression) in
the state's transitions if-else code.

How to capture behavior as an SM

Capturing behavior as an SM is an art. The following process may help. Consider the earlier-
described toggle example that toggled an LED between on and off each time a button was pressed.
A first step is to list the obvious states of the system, adding actions as appropriate:

BO=0: BO=1;

The second step of the process is to add transitions to each state to achieve the desired behavior.
In doing so, sometimes we encounter the need for more states. We add a transition A0 to LedOff
pointing back to LedOff, and another transition A0 pointing to LedOn. We add a transition A0 from

LedOn back to LedOn. X\ée then add a transition !'A0, but to where should it point?
1AD

TR+ Tt

BO = O; =1
' iag| B0=T
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If that transition points to LedOn, we can never leave that state. If it points to LedOff, the LED turns
off (B0=0), but we want the LED on until the next button press (A0). Thus, we need states that keep
the LED on, one while the button is pressed, and one while the button is released. We thus rename
LedOn to LedOnPressed, add a state LedOnReleased, and point that transition to LedOnReleased.
We proceed to create transitions for LedOnReleased, and similarly encounter the need for two LED
off states, ultimately resulting in the toggle SM earlier in the chapter.

The third step is to mentally check the behavior of the captured SM. For each state, we should check
that exactly one transition's condition will be true, modifying the conditions or adding transitions
if necessary. We should also check that the behavior is as desired; drawing a timing diagram may
help.

Testing an SM

Testing time-ordered behavior requires generating good sequences of test vectors, in contrast
to earlier chapter's examples where the outputs depended solely on the current input values.
Minimally, test vectors should ensure that each state and each transition is executed at least once.
Furthermore, if a state's action code has branches, then test vectors should also ensure that every
statement is executed at least once. Even more ideally, every path through the SM would also be
tested. Designing good test vectors can take much effort and is as important as capturing a good

SM.

For the ThreeLEDs SM above, good test vectors would cover each state and each transition, as

follows:

A0 Covers

0 S0_Output, SO_Output's A0 transition
S0_Output's A0 transition, S1_Wait, S1_Wait's

1 o
AO transition

0 S1_Wait's A0 transition, S1_Output,
S1_Output's A0 transition

etc...

Capture/convert process

The above sections described a two-step process that is common in disciplined embedded
programming. The first step is to capture the desired behavior using a computation model
appropriate for the desired system behavior, such as SMs. The second step is to convert that
captured behavior into an implementation, such as C that will run on a microprocessor. The
conversion is typically very structured and automatable. The capture/convert process will be used
in subsequent chapters for more complex behavior and can result in code that is more likely to be
correct, that is more maintainable, and that has many other benefits compared to behavior that is
captured directly in C's sequential instruction model. The capture/convert design process is perhaps
one of the most important concepts in disciplined programming of embedded systems.
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Capture the system's desired
Capture hehavior using an appropriate
computation model such as SMs

[
Convert the captured behavior to

Convert run on the availakle implem entation

platformm such as C running on RIM.

Even in the absence of a tool like RIBS, programmers can (and should) capture time-ordered
behavior as an SM, typically drawing the SM on paper first, and then converting to C. All
modifications are done by changing the SM (capture), and then updating the C code (convert) An
experienced programmer can work with SMs in C without always having to see a state diagram, and
can see or draw a state diagram from C code. The concept of thinking of program behavior as
state machines, even though the actual code is in C, is the most important concept in this

book.

We're always ﬁ" o
thinking of \O" % o d
program wT!:) 'g 3 3
hehavior as | = 3 3
state machines, ! 9 o
—_
void BL_Tick({ ) { ... =
even though Q 5 _E
the actual . i 2 (T
code iginC. "-"ﬂ:ﬂ_l_fll'lﬂl?(]l{ 3 T3

ile ..

(131 | = sl
= i+,

Try: For the below C code, draw the corresponding SM state diagram.
#include "RIMS.h"

unsigned char x;

enum EX States { EX SO, EX S2, EX S1 } EX State;

void EX Tick() {
switch (EX State) { // Transitions
case -1:
EX State = EX SO;
break;
case EX SO:
if (1) |
EX State

EX S1;
}
break;
case EX S2:
if (A3) {
EX State

EX S2;
}
else if (!A3) {

EX State = EX S1;
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break;
case EX Sl:
if (!'A3) {
EX State = EX S1;
}
else if (A3) {
EX State = EX S2;
x = A & 0x07;
B = x;
}
break;
default:
EX State = EX SO;

switch (EX State) { // State actions
case EX S0:
x = 0;

B = x;
break;
case EX S2:
break;
case EX S1:
break;
default:

break;

void main () {
EX State = -1; // Initial state
B = 0; // Init outputs
while (1) {
EX Tick();

You should have obtained a state diagram identical to the earlier ApplauseMeter example, just with
different names.

Note that the RIBS tool does not run a C compiler on the C code in actions/conditions/declarations,
but rather just generates a new C program that contains that code. Any syntax errors will only be
determined upon running a C compiler on that program, requiring a RIBS user to correlate the error
message to the SM code.

Try: For the earlier Toggle example in RIBS, introduce a C syntax error by removing the semicolon after the action in the
initial state. Save, generate C, then press "RIMS Simulation". Note the error message that is generated, and strive to correlate
that with the RIBS synchSM.

The SM model in this chapter is a basic state machine model specifically intended to aid the
capture of time-ordered behavior and for conversion to C. Many other state machine models exist,
such as UML state machines (Wikipedia: UML state machine). Some state machine models have a
more formal mathematical basis, but translation to C is more cumbersome and the code harder to
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maintain. Another common category of computation model involves dataflow models, which are well
suited to digital signal processing applications but are beyond our scope.

Exercises

Capture each system as an SM. Use RIBS and RIMS as appropriate below. (Be sure RIBS' "Enable
timer" box is unchecked).

1. A doorway is for exit only. Sensors A0, Al, A2 detect a person passing through. A proper exit
causes A2A1A0 to be 000, then 100, then 010, then 001, then 000. Any other sequence causes a
buzzer to sound (BO=1) until 000.

2. An automatic door at a store has a sensor in front (A0) and behind (Al). The door opens (B0=1)
when a person approaches from the front, and stays open as long as a person is detected in front or
behind. If the door is closed and a person approaches from the behind, the door does not open. If
the door is closed and a person approaches from the front but a person is also detected behind, the
door does not open, to prevent hitting the person that is behind.

3. A dimmer light system has increase (AO) and decrease (Al) buttons. B sets the light intensity, 0
is off, 255 is the maximum intensity, and:

(a) Pressing both buttons does nothing.

(b) Pressing both buttons immediately turns the light off.

4. An amusement park ride has sensor mats on the left (AO) and right (Al) of a ride car. A ride
operator starts the ride by pressing a button (A7); each unique press toggles the ride from stopped
to started (BO=1) and vice-versa. If anyone leaves the ride car and steps on a sensor mat, the ride
stops and an alarm sounds (B1=1). The alarm stops sounding when the person gets off the sensor
mat. The only way for the ride to restart is for the operator to press the button again. The ride never
starts if someone is on the sensor mat.

Curved arrows are sometimes drawn in a timing diagram to show that one event triggers (meaning
"causes") another. In the above timing diagram, the first rising Al triggers the change of state from
Wait00 to Waitl10, and the first rising AO triggers the change of state from Wait10 to Unlock and also
triggers the rise of BO.
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Chapter 4: Time Intervals and Synchronous SMs

Introduction

In addition to time-ordered behavior, embedded systems commonly must carry out time-interval
behavior. Time-interval behavior is system functionality where events must be separated by
specified intervals of real time. Consider a system that should repeatedly blink an LED on for 500 ms
and off for 500 ms. "500 ms" is a time interval. Time intervals have a magnitude (e.g., "500") and
a real-time unit (e.g., "milliseconds" or "ms"). The following timing diagram illustrates the behavior,
assuming BO connects to the LED. Time intervals are commonly listed explicitly between vertical
lines, as shown.

B00 500
Outputs :

B0 ﬁmﬁ L]
-+ttt

o b Lo =~ lime
[44] [4:] [25]

ol

Synchronous SMs

Time intervals for outputs

SMs can be extended to support time-interval behavior. In the previous chapter, the tick of an SM
was assumed to take a small unknown non-zero amount of time. The tick rate can instead be set to
a specific real-time rate such as 500 ms, known as the SM's period. We call an SM with a real-time
tick period a synchronous SM, or synchSM. The blinking LED can be captured as a synchSM:

BlinkingLed
Period: 500 ms;
BO =0; BO=1;

Entering a state causes (nearly) immediate execution of its actions, after which the system waits for
500 ms, due to the 500 ms tick period, before evaluating transitions and entering the next state.

Another example is a system that lights one of three LEDs connected to BO, B1, and B2, one LED
per second in sequence, such that the lit LED appears to move (and wrap around). Such a system
might be found in a highway construction sign, indicating that traffic should move to the left.
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ThreelLeds
Period: 1000ms

CORCPRCED

BO =1, BO=0, BO =10,
B1=0, B1=1, B1=0,
B2 =0, B2=0, B2=1,

Try: Create a festive light display system that works by controlling eight electric sockets (B7-B0), into each of which a light
strip may be plugged in. When activated (AO=1), the system generates the following patterns for 1 second each: 00000000,
11111111, 11110000, 00001111, repeat. When deactivated, the system turns off all sockets within one second.

The earlier ThreeLeds synchSM could be extended for eight LEDs by using eight states, but a better
approach makes use of bit manipulation methods (see Chapter 2) as follows:

Sequenceleds
Period: 1000 ms;

MextLed

B =01, ifi B ==0x08) {  wrap
B =m0,

'

else{ iishift
BE=B==1;

'

Note how the "1" bit moves from BO to B1 to B2 ... to B7, once per second, wrapping back to BO
again.

Try: A festive light display controls 8 light bulbs (B7-B0). A0 activates the system. Al chooses a
mode. When A1=0, the lights blink all-on and all-off 1 second each. When Al=1, the lights give
the illusion of a ball bouncing back and forth: 10000000, 01000000, ...., 00000001, 00000010, ...,
1000000, repeat. Use bit manipulation methods for the bouncing ball mode, rather than using a
separate state for different output combinations.

Time intervals for inputs

The above examples showed the usefulness of time intervals for outputs. Time intervals are also
used for inputs. Consider a system that should output the average of the last three temperature
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readings, where readings are taken every 20 seconds. Assume a temperature sensor has an 8-bit
output connected to input A. The system behavior can be captured as the following synchSM:

TemperatureAva
Period: 20000 ms;
unsigned chartt, t2, t3;

ReadTemp

2=13=A; t3=12,12=1,t1 = A;
B=(1+12 +13/3;

The synchSM has a period of 20000 ms, which is 20 seconds. Three variables hold the past three
temperature readings. t1 holds the current reading, t2 the previous reading, and t3 the reading
previous to that. State Init initializes the variables and the output to the current temperature. 20
seconds later, state ReadTemp sets t1 to the current read temperature, after having updated the t2
and t3 variables. It then computes and outputs the average (which will be rounded due to integer
division). The transition leaving ReadTemp will be taken every 20 seconds, and thus temperature
reads and output updates will occur every 20 seconds.

Try: A car has a fuel-level sensor whose value appears in binary on input A, 0 meaning empty and 100 full. A system checks
the fuel level every 10 seconds, and displays the level graphically to a driver by illuminating 5 light segments B4-B0: 11111
means full, 11110 means 80% full, 11100 60% , 11000 40% , 10000 20% , and 00000 means empty. When 20% full or less,
the system also turns on a low-fuel warning light (B7).

Variables are commonly used in conjunction with time intervals. For example, consider computing
the speed of marathon runners as they pass two sensors, separated by 10 feet, and connected to
A0 and Al. Suppose we set the synchSM period to 100 ms for timing precision. The synchSM should
start incrementing a counter when AO is 1, and stop when Al is 1, computing and displaying the
runner's speed. Such a synchSM is shown below.

el hieaiie Y arables and Functions

Mame: | RunnerTimer unzighed short cnt;
Prefiz:  |RT Inputs: A7-A0

Outputs: B7-BO
Period: | 20 ms

Carrvaz

cnt=0,
B—D,

c:nt++ El SBDDDI 528*cnt)
(10ft*mi/a28047) /
H (c:nt*1EIDms sf‘lDEIEIms*hfSEDEIs)

Try: Create a simple reaction timer. A user presses a button (A0) to reset the system. A few seconds later, an LED illuminates
(B0), after which the user should press a second button (A1) as soon as possible. The system then displays the reaction time
on B, in binary and x10 ms. Use a 10 ms synchSM period.
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Choosing a period for different time intervals

Sometimes one system involves multiple different time intervals. For example, consider a system
that repeatedlys blink an LED on for 500 ms and off for 1 second. The system involves two different
intervals: 500 ms, and 1 second. The system can be captured as a synchSM having a 500 ms period
and three states: LedOn, LedOffl, and LedOff2. The idea is to choose the period as the greatest
common divisor of the required time intervals, and then use multiple states (or counting within a
state) to obtain the actual desired interval.

Try: A system should repeatedly blink an LED on for 750 ms and off for 1 second. Capture the behavior as a synchSM, clearly
specifying the period.

Counting within a state is better than using multiple states when the desired interval is much
larger than the SM period. The following shows the above blinking LED example using a variable for
counting.

Blinking Led2
Perod: 250 ms;
unsigned char x;

I =304
=10

(¥ = 4y
=|'_'|;

The advantage of the counting approach is clearer for a longer off interval, such as 5 seconds.
Converting a synchSM to C

Microcontrollers with timers

Microcontrollers come with one or more timers to measure time intervals. A timer is a hardware
component that can be programmed to tick at a user-specified rate, such as once every 100 ms.
(Wikipedia: Programmable Interval Timer). When the timer ticks, it interrupts the microcontroller's
execution. Interrupt means to temporarily stop execution of the main C code and jump to a special
C function known as an interrupt service routine (ISR). (Wikipedia: Interrupt Service Routine).
When that ISR function finishes executing, execution resumes where it previously stopped in the
main C code.

e D= TimerlSR()
/_ called
void TimerlSR() { automatically
M user inserts code here when timer

(rsil.:ﬂ 1 Returns ticks
- h
contraller) void main () { Ie“; ui;Ein

while(1) { farever
BO=A0 B8 AT, w4

!
\ ~~

Timer can be setto "tick" every T ms. At each timer tick, RIM stops executing the main code, calls
Timerl SR() autormnatically, and then resumes e xecuting the main code where it previously stopped.

main

LLbbbddd
EERRRRY
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In RIMS, the ISR is called TimerISR. It can be defined by the user as follows:

void TimerISR() {
// user inserts code here

}

Every time the hardware timer ticks, the TimerISR function gets called automatically by the
microcontroller. The user can insert code into the ISR that should be executed whenever the timer
ticks. The user's own main code should never call the TimerISR function directly.

The user sets the timer's tick rate by calling another RIMS built-in function, TimerSet(Period),
where Period is an unsigned short indicating the tick period in milliseconds. To activate the timer,
the user calls TimerOn().

While programmers sometimes insert various statements into timer ISRs, we will use ISRs only in

a disciplined way -- our ISR will set a global flag to 1. A flag is a global variable used by different
parts of a C program to communicate basic status information with one another. (Wikipedia:

Flag(computing)). The user's main C code can thus monitor the flag's value, waiting for it to become
1, to determine that the timer has ticked. For example, the following code would toggle BO every 1
second:

#include "RIMS.h"
volatile unsigned char TimerFlag = 0;

void TimerISR() {
TimerFlag = 1;
}

void main () {
BO = 0;//Initialize output

TimerSet (1000); // Timer period = 1000 ms (1 sec)
TimerOn () ; // Turn timer on

while (1) {
BO = !BO; // Toggle BO
while (!TimerFlag) {} // Wait 1 sec
TimerFlag = 0;
//NOTE: better style would use a synchSM
//This example just illustrates use of an ISR and flag

}

The user's main code initializes the timer period to 1 second (1000 ms) and turns the timer on.
The code enters the while(1) loop, toggles B0, and waits for the timer flag to become 1. Though it
appears the flag could never be set to 1 due to the code never leaving the "while(!TimerFlag) {}"
loop, the functionality of an ISR is such that when the timer ticks, the microcontroller automatically
stops executing that while loop, jumps to TimerISR() and thus sets the flag to 1, and then returns
to that while loop. Upon that return, the flag value will have changed, so the while loop will exit and
the remaining statement will be executed, which clears the flag back to 0, and then the while(1)
loop repeats (causing another toggle and another wait).
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Setting a flag to 1 is called raising the flag, and setting it to 0 is called lowering the flag.

The TimerFlag variable has been defined using the volatile keyword. Modern C compilers optimize
C programs for better performance. A C compiler might analyze the above code and determine
that timerFlag is initialized to 0 and that TimerFlag is changed by two functions, namely TimerISR
and main. Since TimerISR is not called within the program, the compiler may incorrectly conclude
that TimerFlag is always 0. This can lead to a problematic compiler transformation. The C compiler
might transform the statement "while (!TimerFlag);" to "while (1)", causing an infinite loop and
thus incorrect execution. By defining TimerFlag as volatile, the compiler will assume that timerFlag
may be changed at any time by some external entity, thus it is "volatile" in nature. As a result,
the compiler will not make a transformation such as the one just described. An experienced
programmer asks: How would the compiler interpret my code? Based on insight in and knowledge
of compilers, the programmer writes programs that are portable, less prone to undesired compiler
transformations, efficient, maintainable, compact, and so on. Embedded systems programmers
benefit from being knowledgeable of compiler technologies, microcontroller architectures, and
operating systems.

RIMS graphically animates the timer using a . ., . o
rectangle under the C code. As time passes, the |15 -veidmainp £
percentage of the timer's period that has passed is ™' | - Timezsas (pario ://5et viver perica
displayed ("43%" in the figure on the right) and a =1 7| i TAEEOR() 2/ e TR o8
green bar fills the timer rectangle. When one timer Juwm1 7} 2° BT /fmmiviasiee oure
period has passed and a timer tick thus occurs, #7 . i
RIMS calls TimerISR(). A=0 . v B -
4

. . Symbol Watch LART /Debug Output

Running the above C code in RIMS, a user can Al T T

view the timer behavior by pressing "Break" and

then pressing "Step" repeatedly, noting that the current instruction arrow stays at the "while
('TimerFlag)" statement until the timer period passes, at which point the current statement
automatically changes to the TimerISR (the user may have to scroll up to see the current
statement), which sets TimerFlag=1. When TimerISR reaches its end, the user will note that the
current statement automatically jumps back to the "while (!TimerFlag)" statement; because
TimerFlag is now 1, execution then proceeds past the while statement.

Try: Run the above C code on RIMS. Observe the timer display under the C code, showing the timer counting up to the timer

period. Use break and step buttons to see how the ISR is called. Use RIMS' symbol watch to watch the value of the TimerFlag
variable.

Converting a synchSM to C on a microcontroller with a timer

A synchSM can be translated to C code for a microcontroller with a timer. The code is similar to
that for an SM, with additional code to initialize and start the microcontroller timer to the synchSM's
period, and code that ensures that the synchSM's tick function is only called when the timer ticks,
via use of a flag. The following shows C code for the earlier BlinkingLed (BL) example:

#include "RIMS.h"

volatile unsigned char TimerFlag=0; // raised by ISR, lowered by main code

void TimerISR() {
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TimerFlag = 1;

enum BL States { BL LedOff, BL LedOn } BL State;
void BL Tick() {

switch( BL_State ) { //Transitions

case -1:
BL State = BL LedOff; //Initial state
break;

case BL LedOff:
BL State = BL LedOn;
break;

case BL LedOn:
BL State = BL LedOff;
break;

switch (BL State ) { //State actions
case BL LedOff:
BO = 0;
break;
case BL LedOn:
BO = 1;
break;

void main () {
B = 0; //Init outputs
TimerSet (500) ;
TimerOn () ;

BL State = -1; // Indicates initial tick function call

while (1) {
BL Tick(); // Execute one tick of the BL synchSM
while (!TimerFlag){} // Wait for BL's period
TimerFlag = 0; // Lower flag raised by timer

Try: Use RIMS to observe the behavior of the above code.

Try: Capture the ThreeLEDs synchSM using RIBS, click "Generate C", and then click "RIMS Simulation". Observe the
correspondence between the microcontroller timer ticks in RIMS and the synchSM ticks in RIBS.

In addition to or instead of using RIBS' animation of the current state, debugging synchSMs can be
aided by temporarily adding print statements. The following code adds "puts" statements to print
the current state. We have also introduced a bug somewhere in the code.

#include "RIMS.h"
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volatile unsigned char TimerFlag=0; // raised by ISR, lowered by main code

void TimerISR() {
TimerFlag = 1;

enum BL States { BL LedOff, BL LedOn } BL State;
void BL Tick() {

switch( BL State ) { //Transitions

case -1:
BL State = BL LedOff; //Initial state
break;

case BL LedOff:
BL State = BL LedOff;
break;

case BL LedOn:
BL State = BL LedOff;
break;

switch (BL_State ) { //State actions

case BL LedOff:
puts ("BL_State: BL_LedOff\n");
BO = 0;
break;

case BL LedOn:
puts ("BL_State: BL_ LedOn\n");
BO = 1;
break;

void main () {
B = 0; //Init outputs
TimerSet (500) ;
TimerOn () ;

BL State = -1; // Indicates initial tick function call

while (1) {
BL Tick(); // Execute one tick of the BL synchSM
while (!TimerFlag){} // Wait for BL's period
TimerFlag = 0; // Lower flag raised by timer

Try: Run the above code, and note that the LED does not blink. Observe the printed strings to understand the basic problem
and thus find and fix the bug in the code. Also, use the built-in debug features of RIMS, namely Break and Step, to observe
how the code is executing.

Copyright © Frank Vahid and Tony Givargis 2011 42
Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu



Programming Embedded Systems: An Introduction to Time-Oriented Programming

State actions should never wait

We earlier stated that statements inside a state should never include statements that wait.
synchSMs clearly illustrate why this requirement exists. Consider the following part of a synchSM
with a 100 ms period:

BO =1,
while [LAD); f wait
BO =0;

If the synchSM enters state S1 and is waiting at the while statement when another 100 ms passes,
how should the synchSM proceed? Should it move on to state S2, or should it continue to wait at
the while statement? synchSM behavior becomes indeterminate if state actions include waits.

A state's statements should thus be written such that they execute and reach their end, a feature
known as run to completion.

A key assumption in a synchSM is that every state's statements always run to completion faster
than the synchSM's period. Actions are assumed to run in a small but non-zero time.

Functions can be declared in a synchSM and called by any state's statements, as long as functions
always run to completion. Functions thus serve as a programming convenience to eliminate
redundant code in different states (e.g., the earlier-defined GetBit function may be used in the
actions of multiple states), or to make a state's actions more clear or less cluttered (e.g., a state's
actions may consist of the statement:"B = computeNum1sOnA()" where that function is defined at
the top of the synchSM.

Example

Consider a simple crosswalk system. The system initially illuminates a don't-walk
symbol (BO=1). When a pedestrian presses button A0Q, the system illuminates a walk
symbol (B1=1) for 10 seconds.

The system can be captured as the following synchSM. We choose a period of 500 ms to
detect button presses (meaning a button press should be at least 500 ms long to be
consistently detected). We use a cnt variable to stay in state Walk for 10 seconds, by
counting to 20 (20 * 500 ms = 10 seconds).

Crosswalk
Period: 500 ms
unsigned char crt; 140 ot = 20/

A better system might warn the pedestrian by blinking the don't walk symbol for the last 4 seconds,
captured as follows.
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Crosswalk
Period: 500 ms

unsigned char cnt; cnt= 127 cnt= 8/
cnt++; cht++,

BlinkDortWalk

B0 = IB0;
Bl =0

ather/

Note how we use the synchSM's period for several timing purposes: to read the input button at 500
ms intervals, to stay in Walk for 6 seconds, to blink the don't walk symbol on/off for 500 ms each,
and to stay in BlinkDontWalk for 4 seconds.

Try: Improve the crosswalk system by requiring at least 15 seconds to pass between the end of one crossing and the beginning
of the next (so cars have a chance to drive).

Exercises

Capture each system as a synchSM. Use RIBS and RIMS as desired.

1. A baby monitor system detects motion using a sensor (A0=1). The system should sound an alarm
(BO=1) if no motion is detected for at least 60 seconds. A button (A1) or detected motion resets the
system.

2. Create a festive lights display with 8 light bulbs (B7-B0). When activated (AO=1), the appearance
is of two balls bouncing off each other, as follows: 10000001, 01000010, 00100100, 00011000,
00100100, 01000010, 10000001, repeat. Each output configuration lasts for one second. Use bit-
manipulation methods rather than numerous states. When deactivated, the display turns off all bulbs
within 1 second.

3. A simple display driver writes to a display having 3 rows and 3 columns, for 9 pixels. B1-B0
specifies a current row and B3-B2 a current column. B5-B4 represent a 2-bit pixel shading (00 is
white, 01 light gray, 10 dark gray, and 11 black) for the current row and column. An array "unsigned
char F[3][3]" holds the desired pixel values, each element storing either 0, 1, 2, or 3. The driver
should repeatedly write the pixel values to the display, 1 pixel per 20 milliseconds. Even though
writing a pixel only temporarily lights the pixel, by such rapid repeated writing, a person viewing the
display might see what appears to be 9 continually-lit pixels due to persistence of the display and of
his eyes. Hint: Create nested loops using state machine constructs.
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Chapter 5: Input/Output

Several detailed issues must be considered when embedded systems interact with inputs and
outputs.

Sampling of inputs

Data inputs

Reading a sensor at a specified period is called sampling, the period is the sampling rate, and each
data item read is a sample. (Wikipedia: Sampling). Choosing a good sampling rate is important. An
earlier example sampled a temperature sensor once every 20 seconds.

Consider a system that prevents an audio system speaker from being damaged, by disabling the
speaker (B0=0) if the input audio level exceeds a threshold of "85" as detected by an 8-bit audio-
level sensor connected to A. A synchSM is shown.

SpeakePraect

Period: _ 7 ms
coret unsigned char Thresh = 85;

A= Thresh) A= Thresh

A= Thresh

AboveThresh

B0 =1, I{A=Thregh) BO=0;

The response must be fast enough to prevent damage. A 25 second rate is clearly too slow.
Assuming that speaker damage may occur if audio exceeds the threshold for 500 ms, we might
choose a synchSM period of 100 ms.

Ideally, a system would sample the input as fast as possible. However, when a synchSM is
implemented as C on a microcontroller, the instructions do take time. If the input sampling rate is
too fast, then the instructions to carry out a synchSM tick's transitions and state actions may not
complete before the next tick, possibly resulting in erroneous execution. Therefore, the synchSM
period needs to be chosen to be as large as possible while still safely satisfying system requirements,
in order to reduce microcontroller utilization. The need for such reduction will become even
more critical when implementing multiple synchSMs on the same microcontroller. A later chapter
discusses utilization further. Due to this need to reduce microcontroller utilization, we generally
do not use SMs (which do not have a period, in contrast to synchSMs, and thus execute as fast
as possible on the microcontroller); SMs were introduced primarily as a stepping-stone towards
understanding synchSMs.

Try: Create a synchSM with a period of 20 ms and having extensive actions such that the actions do not complete within 20
ms on RIM. Try executing the synchSM using RIBS/RIMS and observing incorrect results.

Event inputs

An earlier-stated assumption was that an SM's tick rate was on a faster scale than events, such
that events would never be missed. Choosing the largest possible synchSM period thus requires
explicitly thinking about the smallest separation of events that we wish to detect. The minimum

Copyright © Frank Vahid and Tony Givargis 2011 45
Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu


http://en.wikipedia.org/wiki/Sampling_%28signal_processing%29

Programming Embedded Systems: An Introduction to Time-Oriented Programming

event separation time is the smallest time between any two input events. Choosing a synchSM
period less than the minimum event separation time guarantees that all events of interest will be
detected. Consider detecting button presses in a toggle button system (see previous chapter) where
a button press lasts more than 500 ms (1/2 second). If the sampling rate is slightly greater than
500 ms, then the rising and falling events on AO in the below figure could be missed, as shown by
the black circles representing the times at which the signal was sampled. All three samples are 0.
If the sampling rate is less than or equal to 500 ms, as shown by the lightly-filled circles in the
below figure, then all events are detected. The first sample is 0, the second is 1, and the third
is 0, so all the rising and falling events on A0 were detected, albeit delayed slightly from when
the events actually occurred. Any shifting in time of those lightly-filled circles (maintaining their
horizontal separation) cannot miss a 500 ms event.

500
ms
0 0 0
AD o ®
a 1= 0
I R .
UIS | ’Iis l Time
(sec)

Try: Consider a sensor in a street used to count the number of cars that pass over the sensor. If the sensor detects just a single
point above it, the shortest car is 6 feet long, and the fastest speed to be considered is 200 mph, what is the minimum event
separation time for a single car passing over the sensor?

Minimum event separation time for input items such as for a button or for a car sensor includes not
only button presses or car detections, but also the time between such items. If button presses need
only be separated by 300 ms, then a sampling rate greater than 300 ms could miss a button release,
as shown in the figure below.

=300
Lms .

a 1 1
| —
0s Is Time
(sec)
The minimum event separation time is actually 300 ms, and thus the sample rate should be less
than 300 ms.
Latency

Some input events trigger new output events or output data. The time between the input event and

the new output is called latency. (Wikipedia: Latency(Engineering)). In the earlier toggle button
system, the time between the start of a button press (AO rising) and the toggled LED output is

the system latency. Reduced latency is usually desired. While reducing microcontroller utilization
demands a longer synchSM period, reducing latency demands a shorter period. For the toggle button
system, a 300 ms latency might be undesirable, so a synchSM period of perhaps 50 ms might be
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chosen instead to minimize latency at the expense of more microcontroller utilization. Observers

indicate that 100 ms latency may be slightly
Ganssle: A Guide to Debouncing).

noticeable to humans, but 50 ms may not be (see

Example: Consider an electronic doorbell, with a button connected to A0, and BO
connecting to a bell. Consider the following timing features. The minimum button

press length considered is 400 ms. The minimum separation between presses is
500 ms. The maximum latency between a press and the start of the bell ringing
should be 100 ms. When a valid button press is detected, the bell should ring for
1 second and then stop ringing until the next distinct button press. The following

table lists how each timing feature constrains the synchSM:

Timing feature

Constraint

Minimum press length 400 ms

Period should be < 400 ms

Minimum press separation 500 ms

Period should be < 500 ms

Maximum latency between press and bell 100
ms

synchSM period should be < 100 ms, and state
sequence should ensure latency <= 100 ms

Bell rings for 1 sec

Period should evenly divide 1000 ms

(Nearly always present) Minimize processor
utilization

Period should be as large as possible

Based on the constraints, the largest possible period is 100 ms. Other possible periods are 50, 25,
20, 10, ... (divisors of 100), but we should try the largest period first. We can create the following

synchSM:

Slilte b=eiiie Warnables and Func

Mame: |Coorbel unzigned char cht;
Prefie. (DB |nputs: &7-A0
Qutputs: BY-BO
Period: | 100 ms
Canvas
A0 crt=10
![crrt<1tlj
Al
BO=0; crit=0; BO=1:
cnt++

TIMER_ISR -

B2
B1
BO
AT
AB
A5
Ad
A3
A2

Al
A0 ——
1

[
1796

[E
1696

1945

Time (ms)

1746 1846 1896

We evaluated the synchSM and note that the bell ring will occur 100 ms or less after A0 becomes
1, as also validated by the timing diagram obtained using RIBS/RIMS/RITS.

Input conditioning

Sensors are not perfect. The values they provide to a microcontroller commonly must be adjusted
to reduce the impact of such imperfections; such adjustment is known as input conditioning. A
common input conditioning task is button debouncing. A real button, being a mechanical device,
physically bounces a small amount when it is initially pressed, just like a bowling ball dropped to the
ground bounces a small amount before coming to rest on the ground. The figure below shows an
example of a button's signal, connected to A0, bouncing when pressed once. If the sampling of the
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input signal is fast, the system may incorrectly treat the button as having been pressed twice, as

shown.
AOD H
0
101
| —
0s 1s Time
(sec)

Button debouncing is the task of ignoring the bouncing on the signal from a button so that a single
press is interpreted by the system as a single press and not as multiple presses. A simple solution is
to sample at a slower rate than the bouncing. Modern buttons typically do not bounce for more than
10-20 ms (Ganssle: A Guide to Debouncing), and thus a minimum of 50 ms sampling period is likely
sufficient for such buttons; the actual best period depends on the button being used.

For the above Doorbell example, the debounce requirement introduces another row in the features
table:

Debounce achieved by sampling no faster than

Period should be >= 50 ms
every 50 ms.

The earlier-chosen period of 100 ms would satisfy the above. Note that the only other valid period
would be 50 ms.

Try: For the ToggleButton system from the previous chapter, assume the button may bounce for up to 20 ms. Assume the the
maximum latency between a press and toggle is 50 ms. Assume button presses last at least 250 ms and are separated by at least
500 ms. Choose a good period for the ToggleButton synchSM. Also indicate why a much smaller period and a much larger
period would be bad.

More generally, filtering involves ignoring certain input events. A system's inputs may be subject to
noise, such as electromagnetic interference (EMI) from nearby electrical products (e.g., a powerful
vacuum cleaner or plasma TV). EMI can cause sensors or wires to output unintentional 1s (or 0s) for
very brief periods of time, known as spurious signals, spikes, or glitches. While a slower sampling
rate reduces the probability of detecting a glitch, a glitch could still be detected as a 1 if the sample
is coincidentally taken during the glitch, as shown in the figure below.

glitch
Al
'
—t—t
2 é Time

A more powerful solution is to require that a 1 be detected for multiple consecutive samples, such as
two or three samples, before being confirmed as a legitimate 1. Sampling should obviously be longer
than the maximum glitch duration. For a 50 ms sampling rate of a button and glitches that last at
most 10 ms, we might require that two consecutive samples be 1 before treating the input as a 1.
Note that such a consecutive sample requirement impacts period selection related to minimum event
separation time, decreasing the maximum allowable period; requiring two consecutive samples cuts
the maximum allowable period in half.
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Filtering just reduces the likelihood of glitches being interpreted as actual events, but does not
eliminate the possibility entirely. For example, in the above glitch figure, if a second glitch happened
to occur 50 ms after the first glitch, the filtering approach would interpret the two consecutive 1s as
a valid event.

Note also that filtering increases latency.
Example: Consider a synchSM whose only purpose is to condition the signal on input A0 coming

from a motion sensor (A0O=1 should mean motion is sensed), into a clean signal on output BO such
that BO=1 indicates motion. Timing features are summarized in the below figure.

Valid periods (no Min pulse
Max bounce time —=l1  mutisample | j— Separation
' fitering) I |e— Min pulse length
Max glitch length =]
= = t : t t
] 100 200 300 400 500
Time (ms)

From the figure, we see that, without consecutive sample filtering, the period must be greater than
50 ms and less than 300 ms. If we introduce filtering that requires two consecutive 1 samples, the
period must be less than 300 / 2 = 150 ms (and still greater than 50 ms). We may choose 100 ms
as the period. The input conditioning synchSM is shown below:

140 A0

a0 A0

BO=0, BO=1;

140

Try: Capture the above synchSM in RIBS, specifying a period of 100 ms. Press "Generate C" and "RIMS Simulation", then
set RIMS' speed to Slowest. Next, generate 1s on A0, some 1s longer than two 100 ms timer ticks (see the green bar below
RIMS' C text box), noting that BO becomes 1 after some latency, and some 1s shorter -- noting that those shorter A0 pulses
(usually) get filtered out and never appear on BO. (You might also try generating two glitches that just happen to appear right
at the timer ticks, causing them to unfortunately pass through to BO as a 1).

Glitches could cause a 1 to temporarily become a 0, and so we might also require that two
consecutive 0s be detected before treating the input as having changed from a steady 1 to a 0.

Input conditioning may have to be considered for various sensor types. A switch may generate
glitches when moved. A motion sensor or sound sensor may be very sensitive to EMI and thus
generate glitches. A temperature sensor may output spurious values on occasion. Handling imperfect
inputs must be balanced with conserving microcontroller use; the impact of incorrectly interpreting
a spurious input value may not be negative enough to warrant excessive microcontroller use.

The above describes software solutions to sensor imperfections. Designers sometimes instead use
hardware solutions to reduce the complexity of software, such as purchasing a sensor with a cleaner
output (e.g., less bounce), insulating sensors and wires to reduce glitching from noise, introducing
capacitors to filter glitches, etc.
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Outputs

Steady output

The simplest form of output is to generate a steady 0 or 1 bit value. Such a value typically will
enable or disable an output device. For example, an output connected to an indicator LED may be 1
(device is powered on) or 0 (device is powered off). Such outputs are assigned to the desired value
in appropriate states of the synchSM. A related form of output is a steady integer value output in
binary. Previous chapters had examples of such outputs.

Care should be taken to avoid generating output glitches when values should instead be steady.
Consider the code below on the left that repeatedly counts the number of 1s on A and writes the
count to B:

#include "RIMS.h"
#include "RIMS.h" unsigned char

) GetBit (unsigned char x, int k) {
unsigned char

GetBit (unsigned char x, int k) {

return ( (x & (0x01 << k)) != 0 );
return ( (x & (0x01 << k) !'= 0 ); ¥
by void main () {
) ) unsigned char i;
void main () {

unsigned char cnt; // use to avoid
// glitches on B
B = 0; // initialize output
while (1) {
cnt=0;
for (i=0; 1i<8; i++) {
if (GetBit (A, 1)) {
cnt++;

unsigned char 1i;
B = 0; // initialize output
while (1) {
B=0;
for (i=0; 1<8; i++) {
if (GetBit(a, 1)) {
B++;

[
Il

cnt;

The code on the left will result in glitches on B as 1s are found and B is incremented. The code on
the right uses a variable cnt to count, and then updates B when done.

Try: Run the code on the left in RIMS and observe the glitches, especially as more inputs are set to 1; you may have to move
RIMS' Execution Speed slider to a slower setting to see the glitches. Next, run the code on the right, and note that no glitches
occur.

Pulse output

Embedded systems sometimes must generate an output pulse. A pulse is a change on a signal from
0 to 1 and back to 0 again, holding the 1 for a particular time interval, known as the pulse duration.
The figure below shows a single pulse. The pulse duration is 600 ms. Unlike a steady output, a pulse
is typically used to trigger an output device. For example, one embedded device may output a pulse,
signaling a second embedded device to increment its counter.
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Pulse width modulation

Embedded systems sometimes generate a periodic sequence of pulses. The figure below shows two
pulses from such a sequence. The first pulse is shown with dotted lines surrounding it. The pulse
duration is 600 ms. The second pulse is also 600 ms. Signal BO is a periodic signal because its
pattern repeats, in this case with a period of 1 second. The signal is low for the first 400 ms of the
period and then high for 600 ms. The duty cycle is the percentage of time the signal is high during
the period, in this case 600/1000 = 60%. A signal with a duty cycle of 50% is called a square
wave.

G600
ms

BO _ J L

- I T
Os 15 2s Time
(sec)

Outputs

Try: Draw a waveform for a periodic signal with a 500 ms period and an 80% duty cycle.

A pulse width modulator (PWM) is a programmable component that generates pulses to achieve a
specified period and duty cycle. A PWM can be captured as a synchSM and implemented in C on a
microcontroller. Assume a PWM allows a period that is a multiple of 1 second (e.g., 2 seconds) and a
duty cycle that is a multiple of 10% (e.g., 40%). To implement this PWM, a synchSM can be defined
with a period of 100 ms. Variables H and L store the number of synchSM ticks to hold the signal
high and low, respectively; for 2 seconds and 40%, H would be 2000ms*0.40 = 800 ms, meaning 8
ticks, and L would be 12.

P waim
Period: 100 ms;
ungigned char H, L;
unsigned char X;

¥ <H X<l

10 < H I
X=0

? X< L)/
X=0

One use of a PWM is to control a DC (direct current) motor (Wikipedia: DC motor). The motor spins
when its input is 1 and coasts when its input is 0. A PWM can be used to achieve the desired spinning
speed. Suppose a DC motor will spin at a maximum of 1000 revolutions per minute (rpm) if its input
is held at 1. Instead, the input can be set by a PWM with a period of 100 ms and a duty cycle of
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50% to achieve spinning at 500 rpm. A 40% duty cycle spins the motor at 400 rpm. Many common
products, such as a cordless drill, use a PWM for such purposes. On the average, a PWM's output, in
terms of energy, is equivalent to its duty cycle. (Wikipedia: Pulse Width Modulation)

Another use of a PWM is to generate a tone on a speaker. A square wave can be created (50% duty
cycle) with a period selected for the desired tone frequency. Consider generating music notes. A
musical note can be generated using a signal of a particular frequency. Frequencies for some notes
are shown in the table below. These are low notes, corresponding perhaps to the leftmost keys on a
piano (for reference, "middle C" is C4 which is 261.63 Hz).

Note Freq. (Hz) [Period (sec)
Co 16.35 0.061
Do 18.35 0.054
Eo 20.60 0.049
Fo 21.83 0.046
Go 24.50 0.041
A 27.50 0.036
Bo 30.87 0.032
Ci 32.70 0.031

The required intervals are half of the notes' periods. The greatest common denominator of the
required intervals is 1 ms. Suppose each switch AQ, Al, ... corresponds to notes Cp, Do, ..., with
higher inputs having priority over lower inputs. An SM can be constructed with a period of 1 ms
that spends X ticks in a state that outputs 1 and X ticks in a state that outputs 0. Before those two
states, another state can set X to the interval required by the input switch. (Note: RIMS does not
presently support periods less than 20 ms). Tones generated by square waves sound rough (sine
waves sound smoother).

In the music example, another consideration is the duty cycle. A duty cycle of 50% will deliver the
maximum power to the speaker. At 50% duty cycle, the speaker diaphragm will travel inwards and
outwards in equal amounts, and to the maximum extent, generating a loud sound. A duty cycle of
less than 50% will move the diaphragm inwards (or outwards) less, and hence will generate a softer
sound. Interestingly, a duty cycle of more than 50% will also generate a softer sound (with respect
to a 50% duty cycle). Can you see why?

I/0 electrical issues

Most digital circuits (sensors, actuators, microcontrollers, and other logic devices) are designed to
easily connect together. In other words, the output of one device (e.g., a temperature sensor) can
directly be connected to the input of another device (e.g., a microcontroller). In some cases, such
direct connections may not work. A common case is that a microcontroller output cannot sufficiently
drive the device/devices to which it connects. Suppose a microcontroller's output has a max voltage
of 5V and a max current of 25 mA. That output clearly cannot directly drive a DC motor that requires
12 V and 1 A. Likewise, that one output cannot drive 5 LEDs that each require 15 mA. A buffer IC
may be added to a microcontroller output to increase the voltage and/or current drive capability,
such as a 74HC125 IC. Conversely, a device like a particular LED may require a lower voltage (and
may be damaged by too high a voltage); a load resistor may be added to reduce a microcontroller's
output voltage to the desired voltage. Similarly, a device that connects to a microcontroller's input
may require a load resistor.
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Buffer
Micro- IC
controller

Microcontrollers commonly support two configurations for an input pin, normal and pull-up. In the
normal configuration, if a pin is not driven with a 0 or a 1 (e.g., if the pin in not unconnected),
reading the pin yields an indeterminate value; the pin should thus always be driven. In contrast, in
the pull-up configuration, if a pin is not driven with a 0 or a 1, reading the pin yields a 1. A pull-
up configuration is useful for a passive button, for example, wherein pressing the button causes a
connection between the button's terminals and hence a connection between 0 and a microcontroller
input pin (so the pin is read as 0), while releasing the button causes disconnection (so the pin is

read as 1).
Read as Read as
;1 ¢ 0
|;| £
] _r:'_‘i Micro- ’ Micro-
Discon- I Connected | controller
nected

If a microcontroller does not have internal pull-up support, one can add a resistor (typically 1K to
5K Ohms) from the pin to the positive terminal of the power supply, creating the pull-up condition.

Careful attention to I/O electrical characteristics specified in a microcontroller's datasheet and
basic electronics knowledge are necessary to properly connect microcontrollers with other physical
components.

Dealing with too few pins

Time-multiplexed output with registers

A common problem is that a more outputs are needed than are available on a microcontroller. For
example, consider wishing to drive 12 LEDs but with only 8 microcontroller output pins. A solution is
to add external registers (such as a 74HC173) to extend the number of outputs. Below, the program
would first set B3-B0 to the values for the top four LEDs and then pulse B5 to store those values in
the top 4-bit register. The program would then set B3-B0 to the values for the middle four LEDs and
then pulse B6. Likewise for the bottom four LEDs, pulsing B7.
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The above approach is known as time-multiplexed output, wherein the desired output data is
divided into pieces and then sent one piece at a time.

Time-multiplexed output with rapid refresh

In some cases, a microcontroller can time-multiplex output without storing the data in external
registers. For example, the above 4-bit registers could each be replaced by a group of four
transistors, each group controlled by B5, B6, or B7 (a transistor passing its input to its output if
the control is 1, else disconnecting its output). Because the LEDs don't fade off instantly when a
1 is removed, and because a human's eyes and brain have limited ability to see very fast visual
events, an LED may appear to be on even if it is driven by a 1 only intermittently. As long as each
LED is refreshed (meaning rewritten with the appropriate value) frequently enough, typically about
50-100 times per second, it can appear to a human to be constantly lit; if the refresh rate is too
slow, the human will see flickering. (Rapid refresh is akin to the classic entertainment act of keeping
spinning plates balanced on sticks). Furthermore, the brightness of LEDs can be adjusted by varying
the refresh rate and/or the duration of 1s.

Time-multiplexed input: Keypad example

Similarly, a microcontroller with too few inputs may expand its effective
inputs via time-multiplexed reading of input registers (in conjunction
with an external multiplexor), or via rapid scanning, which is the input-
version of refresh. To illustrate rapid scanning, consider a keypad. A
keypad is a device consisting of several push buttons arranged in a two-
dimensional grid, as in the figure on the right with 16 buttons arranged
in a 4x4 grid. If each button had its own pin, 16 pins would be required
on the keypad as well as on a microcontroller that reads the keypad -- in
general, an NxM keypad would require N*M pins. Reducing that number
of pins is important, especially for larger keypads such as a PC's
keyboard.

Instead, keypads commonly have only N+M pins, or 8 pins for the above 4x4 keypad, arranged as
shown in the figure below. Each button (drawn as a circle) is a passive button that when pressed
connects one R terminal with one C terminal.

Copyright © Frank Vahid and Tony Givargis 2011 54
Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu


http://www.youtube.com/watch?v=Zhoos1oY404
http://www.youtube.com/watch?v=Zhoos1oY404

Programming Embedded Systems: An Introduction to Time-Oriented Programming

keypad

RO =00 Blf—

—R| > —

R 55, —

| pg——"A38 BI—>

1 : [

Fcol | %[

= C1 —_ I—
— (]
C3

A microcontroller can poll each button one at a time, a process known as scanning, to detect whether
that button is pressed. The scheme works as long as the keypad is scanned at a rate much faster
than button presses. The microcontroller connects outputs B3..B0 to the keypad's C3..CO terminals,
and inputs A3..A0 to the keypad's R3..R0 terminals. Those A3..A0 inputs must be configured as pull-
up, meaning each will be read as 1 (even when disconnected) unless a 0 is written.

With the hardware interfacing complete, an algorithm for scanning the keypad can be created. The
first step is to write a function to read whether a particular button (say the button at row 2 and
column 1) is pressed, assuming at most one button is pressed at a time.

// Returns 1 if the key at row/col is pressed. Returns 0 otherwise.
unsigned char GetSingleButton (unsigned char row, unsigned char col)
{
/* Set B3..B0 outputs to 1 except the bit at position 'col',
ensuring B7..B4 are not modified. */
B = (B | 0x0f) & ~(1 << col);

/* Now read the input pin at position 'row'. If the button at
row/col is pressed, it will go from pull-up state (1) to 0. */
return ((A & (1 << row)) == 0 2 1 : 0);

The function can now be used in a simple scanning function. This function, when called, will iterate
over the buttons, from left to right and top to bottom, and return an index of 1, 2, 3, 4 ... 16,
corresponding with the first button that is found to be pressed, or returning 0 if no button was
pressed.

/* Returns an index (1 through 16) corresponding to the button pressed,
or 0 if no button is pressed. Scanning order is left to right and
top to bottom, returning when finding the first pressed button. */

unsigned char ScanKeypad ()

{

unsigned char i, 7J;
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for (i=0; i<4; i++) {
for (3=0; j<4; j++) {
if (GetSingleButton (i, j)) {
return (i * 4) + j + 1;

return 0;

This scanning algorithm does not detect multiple button presses; instead, the algorithm returns the
pressed button that is closest to the top and left, giving such buttons higher priority. If multiple
button presses must be detected, the function needs to maintain a list of buttons that are discovered

to be pressed, and return that list to the caller at the end of a full scan.
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Chapter 6: Concurrency and Multiple SynchSMs

A task is a unique continuously-executing behavior, such as the task of toggling an LED whenever
a button is pressed, or the task of sounding an alarm when motion is sensed. Earlier chapters
described systems each implementing just one task, captured as sequential instructions in C, as an
SM, or as a synchSM. Concurrently means to carry out multiple tasks at the same time. Referring
to multiple tasks implies that the tasks are concurrent.

Multiple synchSMs

Many systems implement multiple tasks. For example, a system named LedShow may blink an LED
connected to BO on for 500 ms and off for 500 ms, repeatedly. That same system may also light
three LEDs connected to B7B6B5 in the sequence 001, 010, and 100, 500 ms each, repeatedly.
While one could try to capture the system's behavior with a single task, a simpler approach uses
two tasks, each a synchSM. The following block diagram illustrates. A block diagram shows each
task as a block (a rectangle), and uses a directed line to show that a block writes to an output (or
reads from an input).

LedsShow BO
BlinkLed  Perod 500 ms

B0=0; BO=1,

Y

ThreeLeds Period; 500 ms B5

"‘-"' =
B5=0; B5=0, | g7

BE=EI; B6=1; B6=0; >
B7=0; B7=0, B7=1,

Y

Y

RIBS allows capture of multiple tasks using multiple tabs. The left image below has the first tab
selected, and the right image has the second tab selected, for a system named LedShow.
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Try: Capture the LedShow system's two synchSMs using RIBS as above . Press "Generate C" and then "RIMS Simulation".
Click on each tab in RIBS to see each synchSM executing, and note how each corresponds to RIMS' LED outputs.

Shared variables

Sometimes a system's behavior is best captured as multiple tasks even though the tasks are not
entirely independent. In such cases, the tasks may share variables to communicate information
between the tasks. For example, consider a motion-triggered lamp system with a_motion se

connected to AO0. The system defines motion as A0O=1 for two consecutive 200
ms samples. When motion is detected, the system should illuminate a lamp (by
setting B1 to 1), keeping the lamp on for 10 seconds past the last detected
motion. The system should also blink a small LED (connected to B0O) for 200 ms
on and off while motion is detected. Trying to capture all that behavior with a
single synchSM would be challenging. A simpler capture approach uses three

tasks as shown below.
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The DetectMotion task detects motion and informs the other tasks of the detected motion by setting
a shared variable mtn. The other two tasks read mtn and respond accordingly: BlinkLed blinks the
LED, and IlluminateLamp turns on the lamp for the required time.

Note the clear "separation of concerns." DetectMotion is concerned only with conditioning the AQ
input. BlinkLed is concerned only with blinking the LED while motion is detected, and Illuminate lamp
only with keeping the lamp on for the appropriate time. These tasks were simple to capture, easy to
understand, and straightforward to independently modify -- e.g., motion could be redefined in the
DetectMotion task as A0O=1 for 3 samples, without requiring any changes to the other two tasks.

Note that a block diagram shows concurrent tasks and global variables. The directed lines of the
block diagram (from DetectMotion to mtn, and from mtn to IlluminateLamp) indicate whether the
global variable is written or read by a task. Those directed lines should not be confused with the
directed lines of an SM, which indicate flow of control from one state to another. A common mistake
is to draw directed lines in a block diagram with the intention of describing flow of control, which
makes no sense because all items in a block diagram execute concurrently.

Try: A portable electric heater system should turn on heat (BO=1) when the actual temperature (A3-A0) is less then the desired
temperature (A7-A4). To let users see that the heater is on, the system should blink B1 on for 500 ms and off for 500 ms.
Capture the system using multiple tasks and a shared variable.

Only one task should have actions that write to a shared variable. Otherwise, if two tasks write to
a shared variable, the resulting behavior may be indeterminate -- if both tasks simultaneously write

different values, the resulting value is not defined and may depend on arbitrary implementation
factors, such as which tick function is called first when the tasks are implemented in C.
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Converting multiple synchSMs to C

SynchSM tasks

Multiple tasks described as synchSMs can be converted to C using nearly the same technique as for
a single synchSM. Assume two synchSMs have the same period, such as the earlier BlinkLed (BL)
and ThreelLeds (TL) synchSMs having periods of 500 ms. Their main code looks as follows:

#include "RIMS.h"
//LedShow C code, having two tasks

enum BL States { BL LedOff, BL LedOn } BL State;
enum TL States { TL TO, TL T1l, TL T2 } TL State;

volatile unsigned char TimerFlag=0;

void TimerISR() {
TimerFlag = 1;
}

void BL Tick() {
// Standard switch statements for SM

}

void TL Tick() {
// Standard switch statements for SM
}

void main () {
B = 0; //init outputs
TimerSet (500) ;
TimerOn () ;

BL State -1;

TL State = -1;

while (1) {
BL Tick(); // Execute one tick of the BlinkLed synchSM
TL Tick(); // Execute one tick of the ThreeLeds synchSM
while (!TimerFlag) {} // Wait for timer period
TimerFlag = 0; // Lower flag raised by timer

}

The BL_Tick and TL_Tick functions would be defined indentically to synchSMs converted to C in the
earlier chapter. Every 500 ms, the BL_Tick and the TL_Tick functions will be called, and thus each
synchSM will proceed one tick every 500 ms. The order in which the two functions are called in the
main function is arbitrary.

Note that the implementation in C does not perfectly execute the two tasks concurrently, but instead
the ThreelLeds task executes slightly after the BlinkLed task. However, the two tasks execute each
tick quickly and thus appear to a user to execute concurrently. In fact, even when a microcontroller
executes just one task, that task is supposed to execute instantly after each timer tick but in
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reality involves some delay due to non-zero execution time of microcontroller instructions; for the
concurrent tasks, the second task just experiences a slightly longer delay. Such serialization of
concurrent tasks is standard in computing systems (desktop or embedded) and is called multi-
tasking. Executing each task for every period is a straightforward form of what is called round-
robin task execution.

Recall the earlier requirement that a synchSM's state actions should never include statements that
wait, but rather should run to completion. The need for this requirement is clearly evident in the
above C code; if any of the tasks included a wait, the other tasks might not get a chance to execute
before 500 ms passes.

Try: For the above LedShow example captured in RIBS, press "Generate C", then press "RIMS Simulation". On RIMS,
press "Break", and examine the C code, noticing the two tick function definitions, and their calls from main(). Press "Step"
repeatedly and observe how one tick function gets called, followed by the other tick function. Press "Continue" and notice that
the serialization of the two tasks is unnoticeable to the human eye.

The reader may be wondering how to convert C two synchSMs having different periods into C; the
next chapter deals with that issue.

Other task types

Some tasks may originally be captured as an SM or just sequential code rather than a synchSM.
For conversion to C along with synchSM tasks, each non-synchSM task can be first rewritten as a
synchSM. An SM merely needs to be given a period. Sequential code can be rewritten as a single-
state synchSM having that code as its actions, and having a single true-condition transition pointing
back to itself. For example, consider the following sequential code task:

unsigned char cnt;
unsigned char i;
while (1) { // Repeatedly look for four 1ls on A
cnt=0;
for (i=0; i<8; i++) {
if (GetBit(a, 1)) {
cnt++;

}
Bl = (cnt >= 4);
}

(Assume the GetBit function is defined). To execute that task in C along with the BlinkLed and
ThreelLeds tasks, the task can be rewritten as a single-state synchSM:
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CountFaur Period: 500 ms
unsigned char cnt;

. unsigned char cnt;

cnt = 0;
far{i=0;1=<8; i++) {
if (get_bit(A 1) {

CNt++;
1

}
B1 = (cnt >= 4);

The transition from SO back to SO implements the "while (1)" loop. Selecting the same period as the
BlinkLed and ThreelLeds tasks, namely 500 ms, enables straightforward round-robin execution of all
three tasks when converted to C. A CF_Tick() can be written for the CountFour synchSM, and the
main code's while loop will simply be extended with a third task:

while (1)

{
BL Tick(); // execute one tick of the BlinkLed synchSM
TL Tick(); // execute one tick of the ThreelLeds synchSM
CF Tick(); // execute one tick of the CountFour synchSM
while (!TimerFlag) {} // wait for timer period
TimerFlag = 0; // lower flag raised by timer

}

For the above to work, the original sequential instructions should have been run to completion
(within the infinite loop, of course). If they weren't run to completion, then the behavior should first
be re-captured as an SM instead such that each state's actions run to completion.

When translating any single-state synchSM to C where that state has a single true-conditioned no-
action transition pointing back to the state (as for CountFour above), a reasonable simplification
is to eliminate the state and transition code in the synchSM's tick function, just listing that state's
actions. For example, the CountFour synchSM may be converted to the following tick function:

unsigned char cnt;
void CF Tick() { // single-state synchSM
cnt=0;
for (i=0; 1i<8; i++) {
if (GetBit (A, 1)) |

cnt++;
}
}
Bl = (cnt >= 4);
}
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Global versus local variables

When converting to C, a variable global to multiple synchSMs can be declared as a C global variable.
Note that synchSM local variables were in an earlier chapter (for a single synchSM) converted to C
global variables, but that approach may not work for multiple synchSMs if multiple synchSMs have
variables with the same names, or if a synchSM has a variable with the same name as a global
variable. One solution is to convert a synchSM's local variables to C static local variables inside
the synchSM's tick function. Declaring the synchSM's variables within the tick function ensures the
variables won't conflict with other synchSM C variable names or C global variable names. However,
variables within a C function are normally temporary, existing only during the function call. To cause
those variables to be permanent and thus maintain their values across function calls, as required to
correctly execute a synchSM, the variables declarations have the keyword "static" prepended. For
the above motion lamp example, the variables would be declared as follows:

unsigned char mtn; // Global variable for synchSMs converted to C global

void DM Tick() { // DetectMotion synchSM tick function

}

void IL Tick() { // IlluminateLamp synchSM tick function
static unsigned char cnt; // Local synchSM variable converted to
// C static local

In RIBS, ideally the "Generate C" tool would automatically prepend the keyword static to any
synchSM local variables. However, RIBS just copies the C code in the variables text box into the
generated C program. Thus, when capturing multiple synchSMs using RIBS, the programmer must
declare synchSM variables as static, else the generated C may not behave correctly because the
variables will not retain their values across calls to the synchSM's tick function.

Keeping distinct behaviors distinct

An important skill is recognizing from a system's desired behavior description whether there are
naturally concurrent behaviors, and then creating a separate synchSM for each.

Some people try to merge concurrent behaviors into a single task to reduce code. Such merging
results in unnatural capture of desired behavior, ultimately resulting in programs that are harder to
understand, harder to maintain, and contain more bugs. For example, in the earlier motion triggered
lamp example, one might be tempted to merge the blinking LED behavior with the detect motion
behavior as follows:
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D etectMotion
Period: 200 ms

LAD

The functionality of the DetectMotion task may now be harder to understand. Furthermore, if we
later decided to modify the blinking pattern to be on for 400 ms and off for 200 ms, the task could
be difficult to modify. In contrast, modifying the original BlinkLed task would be easy. The lesson is:

Less code does not mean better code

Try: A store entry system has a person sensor connected to A0. When a person is detected, the system generates a tone by
setting B0 to 1 for 1000 ms. To indicate that the system is on, the system always blinks an LED by setting B1 to 0 for 500 ms
and to 1 for 500 ms, repeatedly.

The above system behavior is most easily captured as two distinct synchSMs. Using a 500 ms period
for each enables straightforward round-robin processing in C.

Obviously, not all system behavior is most naturally captured as concurrent tasks. Sometimes a
single task is best.

Try: A highway construction sign can inform drivers to move left, right, or both left and right. If A1A0=10, move left is
indicated by setting LEDs connected to BSB4B3 to 001, 010, and 100, repeatedly for 500 ms each. If A1A0=01, move right
is indicated by setting B2B1B0 to 100, 010, 001. A1A0=11 indicates both move left and right, with the sequences operated in
synch. A1A0=00 turns off all LEDs.

Because the various behaviors are actually synchronized with one another, capturing the behaviors
as a single synchSM turns out to be easiest for the above system.

Sometimes behaviors read the same input but are still independent. For example, a system may
have a button connected to A0O. When the button is pressed, a tone is generated by setting BO to
1 for 1 second, and an LED is blinked twice by setting B1 to 1, then 0, then 1, then 0, for 500
ms each. The system is most easily captured using two synchSMs, each reading A0 and responding
appropriately.

Two tasks writing to one global variable

We commonly desire to capture two tasks that write to one global variable (or to RIM's B output,
which is a global variable), but only one task should write to a global variable, as stated earlier. For
example, consider an LED (connected to BO) that should blink 500 ms on and 500 ms off, but that
can be forced to stay on by a switch connected to A0. We might try to capture this system as two
synchSMs as below. Task Pulse sets BO=!B0 every 500 ms, and task Force sets BO=1 if AO=1. But
two tasks should not write to a shared variable. The solution is to introduce another task, BO_Set,
to manage BO's value. Task Pulse writes to a new shared variable BO_pulse, and task Force writes
to a new shared variable BO_force. Task BO_Set defines what BO's value should actually be, based
on the two shared variables. For this system, BO_Set should repeatedly set BO to the OR of the two
variables, i.e., "BO = BO_pulse || BO_force".
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LED _Example LED_Example
Pulze Period: Pulss Period
S00ms 500 ms

BO_Set Period:

BO = IB0; < p B0_pulse = TS 500 ms
o P I IB0_pulse; BO_pulss
Bo | ‘LeD \n' Bo| LE
T e '
Force  Period: -U'r 1 Force Period; BO_force
S00ms | % _ 4 500 m= BO = B0_pulse
3tn| ag A Btn _JAQ ® || BO_force;
BO = AD; BO_force = AD;

A similar situation arises when one task writes to part of group output B and another task writes to
another part; even though each task writes to a unique subset of B, the two tasks are still writing
to the same shared variable B, which is not allowed. For example, suppose Taskl writes 1010 to B's
low nibble and Task2 writes 0101 to B's high nibble. Earlier examples would have Taskl write to B
using a mask, e.g., "B = (B & 0xF0) | Ox0A;", which preserves the high-nibble while zero'ing out
the low nibble and then writing 1010 ("A" in hex) to the low nibble. Task2 might have "B = (B &
O0x0F) | 0x50. However, both tasks should not write to shared variable B, even though we can see
that they don't interfere with one another -- allowing such writing could cause problems later if one
of the tasks is changed. A solution is to add a third task, B_Set, that manage's B's value. In this
case, we might make clear that Taskl writes to the low nibble and Task2 writes to the high nibble,
by having Taskl write to a new shared variable B_low and Task2 write to B_high. Then B_Set would
repeatedly set "B = (B_high << 4) | B_low;".

Two tasks may read an input or a shared variable; the restriction is against two tasks writing to a
shared variable.

Note that using an additional task to manage a share variable's value increases system latency. As
such, a faster period may be desired for that task (see next chapter for discussion of different-period
tasks). Note also that the task may be a single-state synchSM and thus, when converted to C, may
have a simplified tick function as described earlier.
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Chapter 7: A Simple C Task Scheduler

The previous chapter simplified task execution in C by using the same period for every task. On
the other hand, different periods are sometimes desired. For example, consider the earlier LedShow
system where the BlinkLed task should blink on and off not for 500 ms each but rather 1500 ms
each, whereas the ThreelLeds task still lights LEDs for 500 ms each. BlinkLed could be modified to
count three states of 500 ms each, but it is more intuitive to just change BlinkLed's period from
500 ms to 1500 ms. This change is easy to make on the block diagram; the challenge arises when
converting to C.

Converting different-period tasks to C

Different-period tasks can be converted to C via a method that uses new variables for counting timer
ticks. The timer period can be set to some small value, and then the appropriate humber of timer
ticks can be counted to determine whether to call a task's tick function on a particular pass through
the main code's "while(1)" loop. The following code illustrates for the LedShow example with the
BlinkLed (BL) task having a 1500 ms period and the ThreelLeds (TL) task having a 500 ms period.

//LedShow C code
#include "RIMS.h"

enum BL states { BL LedOff, BL LedOn } BL state;
enum TL states { TL TO, TL Tl, TL T2 } TL state;

volatile unsigned char TimerFlag=0;

void TimerISR() {
TimerFlag = 1;

void BL Tick() {
// standard switch statements for SM

}

void TL Tick() {
// standard switch statements for SM

}

void main() {
unsigned long BL elapsedTime=0;
unsigned long TL elapsedTime=0;
const unsigned long timerPeriod = 100;

B = 0; //init outputs
TimerSet (timerPeriod) ;
TimerOn () ;

BL state -1;
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TL state = -1;
while (1) {
if (BL elapsedTime == 1500) { // 1500 ms period
BL Tick(); // Execute one tick of the BlinkLed synchSM

BL elapsedTime = 0;

}

if (TL elapsedTime == 500) { // 500 ms period
TL Tick(); // Execute one tick of the ThreelLeds synchSM
TL elapsedTime = 0;

}

while (!TimerFlag) {} // Wait for timer period

TimerFlag = 0; // Lower flag raised by timer

BL elapsedTime += timerPeriod;

TL elapsedTime += timerPeriod;

}

The code sets the timer period to 100 ms. Each time through the "while(1)" loop, the elapsed
time variables are increased by 100. When BL_ElapsedTime is 1500, BL_Tick will be called. When
TL_ElapsedTime is 500, TL_Tick will be called. Note that the timer period MUST evenly divide all task
periods. Choosing the task period as the greatest common divisor (GCD) ensures this. The GCD of
1500 and 500 is 500, and thus the above example could have the timer period set to 500 instead of
100.

Slightly better code might use constants for the task periods:

void main () {
const unsigned long BL period=1500; // 1500 ms
const unsigned long TL period=500; // 500 ms
if (BL_elapsedTime == BL period) {

Unfortunately, adding the elapsedTime variables for counting timer periods results in cluttered main
code, especially if there are tens of tasks. Furthermore, each task has several items declared in
different places (state variable, period, elapsed time counter, etc.) The code is becoming harder to
maintain. A more structured approach is needed.

Creating a task structure in C

Good programming involves keeping related items together. In the above example, we can see that
each task, such as BlinkLed (BL), has several related items:

A state variable: BL_state

An SM tick function: BL_Tick()

A period: BL_period (1500)

An elapsed time variable: BL_elapsedTime

But these items are spread around the C code. C provides a mechanism to collect related items in
one place. A struct (short for structure) is a C construct that allows several variables to be grouped
together under a single name. We define a new type for a task using the struct shown:
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typedef struct {

signed char state; // Task's current state
unsigned long period; // Task period
unsigned long elapsedTime; // Time elapsed since last task tick
int (*TickFct) (int); // Task tick function
} task t;

typedef is a C construct that defines a new data type, in contrast to the built-in C data types like
int and char. Variables can be defined as being of the new type. Our new type is called "task_t". In
C/C++, programmers commonly append an "_t" to newly created types, making it easy to recognize
these identifiers (names) as being data types. New variables of type "task_t" can be declared as
follows:

task t BL task;
task t TL task;

Each variable has several fields (declared in the struct) that can be written and read by using a

period "." (known as dot notation) as if each field had been declared as a separate variable. For
example:

BL task.state = -1; // Indicates initial state

BL task.period = 1500; // Tick function should be called every 1500 ms

BL task.elapsedTime = 1500; // Time since last tick; initial 1500 causes tick
// function to be called at program start

The last field in the above struct has a syntax that some readers may not be familiar with. That field
is for a function pointer, which can be set to point to an existing function, in the above case a
function having one parameter of type short int, and returning a value of short int type also. That
field can be set as follows:

BL task.TickFct = &BL Tick;

The "&" in front of BL_Tick obtains the memory address of the BL_Tick function, to which
BL_task.TickFct is set. Then, the BL_Tick function can be called as follows:

BL task.state = BL task.TickFct (BL_ task.state);
The above assumes BL_Tick has been redefined to take the current state as a parameter and to
return the next state. Redefining BL_Tick as such eliminates the need to declare state variables as
global variables. Thus, tick functions will take an int parameter and have a return type of int, as
follows:

int BL Tick(int state) {
switch (state)

state =

return state;

Although we strive to avoid use of integer type "int," int is used here because a C enum creates
constants of int type; short or long does not work for some compilers.
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All items related to the BlinkLed task are now grouped in a single variable, BL_task. Likewise, all
items related to ThreelLeds are grouped into TL_Task. However, the real usefulness of such grouping
becomes clear if we put all a system's tasks into an array:

task t *tasks[] = { &BL task, &TL task }; /* initialized array of
pointers to tasks */
const unsigned short numTasks = sizeof (tasks) / sizeof(task t*);
/* variable automatically set to number of tasks in array "tasks" */

The first line of code defines the variable "tasks" to be an array of pointers to "task_t". That
statement initializes the array to contain pointers to the two previously-defined tasks . Note that in
C, if the number of elements in an array is not specified (i.e., []), the C compiler will use the number
of items in the initialization list to automatically set the size. In our example, the C compiler will
make the array "tasks" large enough to accommodate two pointers.

The second line of code defines a constant "numTasks", which will be used by later code to know
how many tasks are in the array. We could have written that line as "const unsigned short
int numTasks = 2;", but such hard-coding of the size could lead to inconsistent code if we add
another task to the array but forget to change the 2 to a 3. Thus, we instead use a C construct
called sizeof to automatically initialize "numTasks". sizeof returns the size of its operand in bytes.
In our example, sizeof(tasks) will return a number, lets say N bytes, needed to store our 2 pointers.
However, depending on the microcontroller in use, the size of a pointer may be 2, 4, or even 8 bytes.
Therefore, we need to divide the size of the array by the size of a single pointer to determine the
number of elements in the array. We accomplish this by dividing N by sizeof(task_t*), i.e., the size of
a single pointer. This expression will thus return the number of elements in the array rather than the
number of bytes. The code is also portable, meaning regardless of the microcontroller, the result will
always be correct. To illustrate, assume that a pointer requires 4 bytes, so a call to sizeof(task_t*)
will return 4. The "tasks" array would occupy 8 bytes in memory, so the call to sizeof(tasks) will
return 8. Hence, the expression sizeof(tasks) / sizeof(task_t) will yield 2, as expected.

One last change is needed for the above code to work. Namely, the tasks must be defined as:

static task t BL task;
static task t TL task;

The C keyword "static" has been prepended to the task declarations. In C, a variable declared within
a function (including the "main" function) is allocated temporary memory in the program's memory
space, lasting only the duration of the call to a function. Prepending "static" to a variable declaration
caused allocation of permanent memory intead. We need the tasks to have a known (permanent)
memory address so that we can construct an array of them, namely the above-defined "tasks"
array.

Code for a Simple Task Scheduler

The benefit of the above efforts becomes evident in the main code. We can now simply use a for
loop that processes each task in a round-robin manner:

while (1) {
// For each task, call task tick function if task's period is up
for (i=0; 1 < numTasks; i++) {

if (tasks[i]->elapsedTime == tasks[i]->period ) {
// Task is ready to tick, so call its tick function
tasks[i]->state = tasks[i]->TickFct (tasks[i]->state);
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tasks[i]->elapsedTime = 0; // Reset the elapsed time
}
tasks[i]->elapsedTime += timerPeriod; // Account for below wait
}
while (!TimerFlag); // Wait for next timer tick
TimerFlag = 0;

Note that the above scales easily for more tasks, e.g., 5 tasks, 10 tasks, or even 100 tasks; the
for loop code stays exactly the same. The for loop code carries out what is known as a scheduler. A
scheduler determines when each task should be executed in a multiple-task system. A scheduler is
commonly found inside the code for an operating system (OS), but can instead be included directly
in user code as above, which is especially useful in the absence of an OS.

In the above C code, to access some data (such as BL_task) via a pointer (such as tasks[0]), we
use the pointer dereferencing operator of C "->".

The following shows the complete code for the LedShow system with different-period tasks, including
the definition of both tasks, and the scheduler code.

#include "RIMS.h"
volatile unsigned char TimerFlag=0;

void TimerISR(void) {

TimerFlag = 1;

typedef struct {
signed char state;
unsigned long period;
unsigned long elapsedTime;
int (*TickFct) (int) ;

} task _t;

enum BL States { BL_LEDOFF, BL LEDON };

int BL Tick(int state) {
switch(state) { // Transitions
case -1:
state = BL_ LEDOFF;
break;
case BL LEDOFF:
state = BL LEDON;
break;
case BL LEDON:
state = BL_ LEDOFF;

break;
default:
state = -1;
break;
}
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switch(state) { // State actions
case BL LEDOFF:
BO = 0;
break;
case BL LEDON:
BO = 1;
break;
default:
break;
}

return state;

enum TL States { TL ONE, TL TWO, TL THREE };

int TL Tick(int state) {
switch (state) { //Transitions

case -1:
state = TL_ONE;
break;

case TL ONE:
state = TL TWO;
break;

case TL TWO:
state = TL THREE;
break;

case TL THREE:
state = TL ONE;
break;

default:
state = -1;
break;

switch(state) { //State actions
case TL ONE:

B = 1;
B6 = 0;
B7 = 0;
break;
case TL TWO:
B5 = 0;
B = 1;
B7 = 0;
break;
case TL THREE:
B5 = 0;
B6 = 0;
B7 = 1;
break;
default:
Copyright © Frank Vahid and Tony Givargis 2011 71

Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu



Programming Embedded Systems: An Introduction to Time-Oriented Programming

break;

}

return state;

void main ()

{

const unsigned long BL period = 1500;
500;

const unsigned long TL period
const unsigned long GCD = 500;

unsigned char i; // Index for scheduler's for loop

static task t taskl, task2;

task t *tasks[] = { &taskl, &task2 };

const unsigned short numTasks = sizeof (tasks) / sizeof(task t*);
taskl.state = -1;

taskl.period = BL period;

taskl.elapsedTime = BL period;

taskl.TickFct = &BL_Tick;

task2.state = -1;

task2.period = TL period;

task2.elapsedTime = TL period;
task2.TickFct = &TL_Tick;

TimerSet (GCD) ;
TimerOn () ;

while (1) {
for (1 = 0; i < numTasks; ++i ) {

if ( tasks[i]->elapsedTime == tasks[i]->period )
// Task 1is ready to tick, so call its tick function
tasks[i]->state = tasks[1]->TickFct (tasks[i]->state);
tasks[i]->elapsedTime = 0; // Reset the elapsed time

}

tasks[i]->elapsedTime += GCD; // Account for below wait

}

while (!TimerFlag); // Wait for next timer tick
TimerFlag = 0;

The above code can serve as the basis for most systems having multiple synchSMs. It can be copied
and pasted into RIMS, and then the tick functions replaced by one's own synchSMs (commonly more

than just two).
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Example of concurrent multi-period synchSMs

An Introduction to Time-Oriented Programming

A common time-oriented behavior involves a varying-rate update. For example, holding a button
may cause a light to fade on, fading on slowly at first and then more rapidly after some seconds
until fully on. A clock may have a button to increment the current time, incrementing slowing at first
and then increasingly rapidly. A gas pump may initially pump gas fast until approaching a prepaid
amount, then pumping slower and slower until hitting that amount. And so on.

One elegant method for such varying-rate update uses two synchSMs as shown below.

State Machine
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SynchSM UpdateB has simple behavior of waiting until AO is 1, then updating B at the rate SepTime
(UpdateB's period should be selected to be a divisor of all possible SepTime values). Meanwhile,
synchSM ComputeSepTime computes SepTime, adjusting SepTime every 1 second, per the following

separation-time graph:
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When AO is initially 1, B should be updated every 1000 ms (the separation time is 1000 ms);
the longer AO is held at 1 (the more time passed), the faster the updates, until after AO is 1
for four seconds, after which the rate stays constant at 200 ms. The graph is represented in
ComputeSepTime as the array sepTimes with the shown values for each 1000 ms of time passed.
Separation times could be updated faster than every 1000 ms, yielding more array items and a
faster period for ComputeSepTime. Different separation-time graphs would be represented using
different values.

If we tried to capture the varying-rate functionality as a single synchSM, we would likely create a
confusing (and possibly incorrect) synchSM. Using concurrent synchSMs with different periods and
shared variables yielded an elegant easy-to-modify system.
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Chapter 8: Communication

Communication is the sharing of information by one task with another. Communication can be
carried out using a variety of methods.

Shared variable

The most basic communication method involves one task writing to a global variable and another
task (or multiple tasks) reading that variable -- the variable is shared. A global variable is accessible
by multiple tasks, in contrast to a local variable, which is only accessible to one task. We follow
the practice that only one task may write to a global variable, while any number of tasks may read
that variable. The shared variable method of communication is commonly used when one task (the
sharer task) needs to expose internal data or state to other tasks (the reader tasks). The sharer
task writes that data to a global variable read by the reader tasks.

Reader tash1
Sharer Global ife g!=0)..
task variakle _
X g Readertask 2
x_g= ..
- y=xg+1,

An example is the earlier motion-triggered lamp, wherein task DetectMotion writes to a global
variable mtn to let other tasks know when motion is currently being detected. Another task
IlluminateLamp reads that variable and illuminates a lamp when the variable is 1. Other tasks could
read the variable and respond by blinking an LED, sounding a tone, counting the number of times
motion was detected, etc.

Example: Consider a door-lock system with five input buttons numbered 5, 4, 3, 2, 1, connected
to A5, A4, A3, A2, Al. Task DetectButton detects which button is pressed. The task samples with
a period of 100 ms and writes the currently pressed button to global variable unsigned char btn_g,
writing 0 when no button is pressed or if multiple buttons are pressed, and writing either 5, 4, 3, 2,
or 1 when a single button is pressed. The task is captured as a one-state synchSM, and happens to
illustrate use of a synchSM that calls a function. Another task DetectSequence samples btn_g every
100 ms and toggles the door lock (BO=1 locks the door) whenever the task observes a particular
three-button sequence. The task is captured using a multiple-state synchSM, which happens to have
the correct button sequence stored in an array constant.

—| [etectButton htn_g DetectSequence —
A B1
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DetectButton Period 100 ms DetectSequence Period: 200 ms
const unsigned char seq(3] = {5,2,3},

. unsigned char i,

bn_g=
DB_GetBn();

(btn_g==0)&&(i==2)B1=1B1;

{f function declaration
unsigned char DB_GetBtn() {
unsigned char bin,
switch ((A&Ix3E ) == 1 -
caseiét{[][]: btn:|= 0: t:uge{alﬁ (btn_g == 0)
case k01 btn = 1; brealk
case 02 btn = 2; brealk
case k04 btn = 3; brealg
case k08 btn = 4; brealg
case 10 btn = 5; brealg
default: btn = 0; breal;

btn==seq[i]

} return bin; bt g == 0)

A good practice is to name global variables using a
local variables, as was done above for "btn_g".

_g" suffix, to distinguish them from a task's

Message passing via a queue

Message passing is the communication behavior of sending a data item from a sender task to a
receiver task such that the item is treated as a distinct message that is transferred. In contrast, a
task writing a value to a global shared variable has no assurance that a reader task was actually
able to read the value; perhaps the reader task was busy performing some other computation. For
example, careful analysis of the above door-lock system using a shared variable reveals the problem
that fast button presses could be missed by the DetectSequence task. Using a faster period for
DetectSequence could reduce problems, but eliminating such timing interdependencies among tasks
is preferable. Thus, a communication method is needed wherein a sender task can place a "message"
somewhere for a receiving task (e.g., "button 5 was pressed"), such that the message persists in
that place until the receiver task can read that message.

A queue is commonly used to support message passing communication. A queue can hold up to
N data items. Data is always written (called a queue push) to the rear of the queue, while data is
always read (called a queue pop) from the front of the queue. A pop also removes the data item
from the queue. A queue is like a "line" at a grocery store: New customers arrive at the line's rear,
and are processed from the line's front. The term FIFO is commonly used instead of queue, short
for "first-in first-out," which describes how data is inserted and read/removed. A queue with no data
items is said to be empty and cannot be popped (until after a push), while a size N queue with N
data items inserted is said to be full and cannot be pushed (until after a pop). A queue is sometimes
called a buffer. Iltems in a queue are said to be queued or buffered.
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rear front

L |

Sending task [——* 715

Receiving task

Afour-integer
queue

The earlier door-lock system could use a queue as in the following pseudo-coded tasks.

push pop
DetectButton DetectSequence —= B1

Detects utton FPeriod: 100 ms DetectSequence Period: 200 ms
unsigned char b,

const unsigned char seq[3] = {5,2,3};
unsigned chari;

(btn_g==0)&&(i==2)B1=1B1;

b = DB_GetBtn();

M function declaration
unsigned char DB_GetBtn() {
unsigned char btn;
switch ([A&Ox3E ) == 1) {
case 0x00: btn = 0; brealk;
case 0x01: btn = 1; brealk;
case 0x02: btn= 2 brealk;
case 004" btn = 3' break otner
case 0x08: btn = 4; breal;
case 0x10: btn = 5§, brealk;
default: bin = O break;

IQEmpty() /

c == seq[i]

retumn btn;

}

The queue leads to clearer communication of button presses between the tasks. For example, the
DetectSequence task no longer needs to detect changes of btn_g from 0 to non-zero or vice-versa.
Also, a queue of size N could buffer up to N button presses, accomodating fast button presses.
Button presses while the queue is full would be ignored by the above system.

A gueue can be implemented in C by defining a new structure type and some functions:

typedef struct Q4uc { New type defn Q4uc for queue of 4 unsigned char
unsigned char buf[4]; items.
unsigned char cnt; Sample declaration:

} Qduc; Q4uc btnQ; // new queue to hold buttons
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void Q4ucInit (Q4uc *Q) {
(*Q) .cnt=0;

Function to call before using a newly-declared queue.
Sample call:
QducInit (&btnQ) ;

unsigned char Q4ucFull (Q4uc Q) {
(Q.cnt

== 4);

return

Function that returns true if queue is full.
Sample call:

if (!Q4ucFull (btnQ))
push

{ // not full, OK to

unsigned char Q4ucEmpty (Q4uc Q)

{

return (Q.cnt

== 0);

Function that returns true if queue is empty
Sample call:
if (!Q4ucEmpty (btnQ))

{ // not empty, OK to

pop

void Q4ucPrint (Q4uc Q) {

int j;
puts ("Q4uc contents: \n");
for (3=0; j<4; j++) {
puts ("Item "); puti(3):;
puts (": ");
puti(Q.buf[j]);
puts ("\n");

}

Function to print contents of queue. Useful for
debugging.
Sample call:

Q4ucPrint (btnQ) ;

void Q4ucPush (Q4uc *Q,
unsigned char

4ucFull (*Q)) {
) .buf[ (*Q) .cnt] =
) .cnt++;

item;

) |
if (!

(

(

*
(ONS ORN©)

Function that pushes item onto rear of the queue.
Should never be called with a full queue.
Note that queue address is passed so that the function
can change the queue.
Sample call:

unsigned char btn;

btn = 3;

if (!'Q4ucFull (btnQ)) {

Q4ucPush (&btnQ, btn);

unsigned char Q4ucPop (Q4uc *Q)
{
int i;
unsigned char item=0;

if (!Q4ucEmpty (*Q)) {
item = (*Q) .buf[0];
(*Q) .cnt-—;
for (i=0; i<cnt; 1i++) {
// shift fwd
(*Q) .buf[i]=

(*Q) .buf[i+1];

Copyright © Frank Vahid and Tony Givargis 2011

Function that pops item from front of the queue and
returns that item.
Shifts the items forward so the second item moves to
the front.
Should never be called with an empty queue.
Note that queue address is passed so that the function
can change the queue.
Sample call:

unsigned char recBtn;
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}
} if (!Q4ucEmpty (btnQ)) {
return (item); recBtn = Q4ucPop (&btnQ) ;

(For large queues having hundreds or thousands of items, a faster queue implementation does not
shift items in the pop function, but instead treats the buf array as a circular buffer and maintains
head and tail variables, in addition to the cnt variable, to indicate the current front and rear of the
queue respectively.)

Try: A store's person-entry system sounds a single tone by setting BO=1 for 500 ms and B0=0 for 500 ms to alert a store clerk
every time a person enters (A0 rising) a store. A0 events (0 to 1, or 1 to 0) can occur as rapidly as every 200 ms. Because the
tone behavior lasts 1000 ms, and a person entering could be detected every 400 ms, person entering events should be queued.
Capture the system's behavior using a task DetectPerson, a global queue of size 4, and a task GenTone. Note that the queue
will only be storing 1s, each 1 corresponding to a unique person-entering event. First use psuedo-code for the queue-related
operations, and then replace the psuedo-code by code that uses the above C typedef and functions.

The queue struct together with the functions that operate on the struct are known collectively as an
abstract data type or ADT, also known as an object. An important ADT concept is that the struct's
internal variables should NEVER be accessed directly by a user's code; the user's code can only call
the pre-defined functions. A key advantage of C++ and other "object-oriented" languages over C is
better support for ADTs.

The above-defined queue supports what is known as non-blocking message passing, wherein the
sender task does not wait for the receiver task to receive the message. Blocking message passing
can be accomplished by the sender always following a push by a wait for an empty queue before
proceeding; in that case, a queue size of one is sufficient. Note that using a queue of size one is more
advanced than writing/reading one shared variable, due to the queue's push and pop functionality.

The designer selects the size of the queue. A larger queue prevents messages from being "lost" due
to a sender task being unable to push a full queue, which can occur if the sender task pushes at a
faster rate than the receiver task pops. In the person-entering example above, because a queue of
size 4 is used, if 5 or more people quickly enter consecutively, some person-entering events may not
be queued and hence lost. However, a larger queue uses more memory, and thus the designer must
make a tradeoff between using memory and losing messages. To guide that tradeoff, the designer
commonly performs some simple estimations of the rates of the sending and receiving tasks. In the
person-entering example, a designer may estimate that people typically enter in groups of up to 4
people with larger groups being less uncommon and hence OK for losing messages. Furthermore,
sometimes a designer does not want more than X messages being queued; in the person-entering
example, the designer may limit the queue to size 4 to prevent the generated tones from lagging
too many seconds behind when a person actually enters the store.

Other communication concepts

Handshake control: Shared variables are sometimes used to carry out handshake control between
two tasks. A handshake is a method for task X to cause task Y to carry out some behavior. A
handshake involves two single-bit global variables, which we'll call reg (for request) and ack (for
acknowledge), as follows: Task X raises req, task Y responds by raising ack, task X responds by
lowering req, and task Y responds by lowering ack. Task X is known as the master and task Y as
the servant. For example, task X may monitor input buttons and upon detecting a particular button
sequence may request task Y to open a door, which may take several seconds. Task X raises a global
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variable open_req. Task Y responds by opening the door, which may take many seconds. Once the
door is opened, task Y informs task X that the behavior has been completed by raising open_ack.
Task X lowers open_req, after which task Y lowers open_ack, thus completing the handshake. The
earlier door-lock system may be extended by having DetectSequence open or close a door, using
tasks OpenDoor and CloseDoor and handshakes; while waiting for the door to open or close, the
task might ignore button presses.

Master red Servant reg
task o [ ack ] " task I
ack 4

1
I Servant

I carresout |
I requested -+
behavior

Sometimes a handshake is used when the master task needs to read data from the servant. For
example, task Y may maintain the past 100 samples of an input sensor, and have the ability to
output their average when requested. Task X may request the average by raising avg_req, after
which task Y computes the average, writes the result to a shared variable avg_data, and then raises
avg_ack. Task X can then read avg_data, after which it lowers avg_req, causing task Y to then lower
avg_ack. Note that avg_data is only guaranteed to be correct when avg_ack is high; the handshake
enables two tasks to correctly transfer data even if those tasks execute at different rates. A similar
handshake procedure can be used if task X needs to write data to the servant.

Note that handshake control combined with a global data variable can implement blocking message
passing.

UARTs

A microcontroller task may need to communicate data with another physical device such as a liquid
crystal display or another microcontroller. Data can be communicated using the microcontroller's
output pins. However, to conserve limited output pins, microcontrollers typically include hardware,
called a UART, that automatically transmits eights bits of data serially, meaning one bit at a time,
over a single pin. UART stands for universal asynchronous receiver/transmitter. When dealing with
UARTS, receive is typically written as rx, and transmit as tx. RIMS has a UART that can send data
over an additional tx pin, and receive data over an additional rx pin. The UART must first be activated
by the RIMS built-in function UARTON().

To transmit data, a program writes to a special global variable T of type unsigned char. Upon
being written, the contents of T will be shifted out serially over the tx pin; however, rather than
showing the UART tx pin, for viewing convenience, RIMS instead displays the transmitted data
by its equivalent ASCII character in the "UART/Debug Output" text box. Such transmission takes
time (being one bit at a time), during which time the program should not modify T. Thus, before
writing to T, the program must ensure the UART is ready for transmitting by checking that a global
flag variable, TxReady, is 1. TxReady is automatically set to 1 by the UART hardware while busy
transmitting, and to 0 when done transmitting and thus ready for T to be written again. Writing
without checking may corrupt a transmission in progress. The following program repeatedly sends
01100001 (Ox61) serially over the UART output pin, thus displaying multiple "a" characters (the
ASCII character for 0x61) in the UART output text box:

#include "RIMS.h"

{

void main ()
UARTOR ()
1

; // activate UART
while (1) {
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while (!TxReady); // wait for UART transmit ready
T = 0x61; // transmit 01100001 serially over UART output pin

}

For receiving, instead of showing the rx pin, RIMS has a "UART input" text box in which a user may
type characters, whose 8 bits (per ASCII) are received serially into a special global variable R. The
UART informs the program when new data has been received into R by automatically calling an ISR
function "void RxISR()" that the programmer must define. Our convention is to have that ISR set a
flag that the program may then read to determine that new data was received by the UART.

The following program repeatedly waits until the UART receives new data ("while (!rxFlag);") and
writes that data to output B ("B = R;").

#include "RIMS.h"

volatile unsigned char RxFlag = 0;
void RxXISR() { // Called automatically when UART receives new data
RxFlag = 1;

void main ()
{
UARTOnN () ;
while (1) {
while (!RxFlag);//wait until UART receives new data
RxFlag = 0;
B = R; // write received data to B output

Try: Run the above program, type characters into the UART text box, and note that the character's ASCII value appears on B
until the next character is typed.

The UART hardware automatically detects when R is read by the program, after which the UART
hardware may overwrite R when new data is received. Until R is read by the program, the UART
hardware will not overwrite R. Such built-in microcontroller functionality may be hard for new
programmers to remember.

Try: In the above program, replace "B = R;" by "putc(R);" and run the program, noting that multiple characters typed in the
UART input box are printed in the Debug Output box. Next, replace "putc(R);" by "putc('x");" and run the program. Note that
typing a character into the UART input box causes 'x' to be printed once, but typing more characters does not cause further
printing of 'x'. The reason is that the UART will not write to R a second time because the program did not read R, so the RXISR
does not get called a second time, and thus the program gets stuck at the "while (IrxFlag);" statement. Verify this by breaking
and stepping the program.

Common UART-related bugs include forgetting to turn on the UART (via the UARTOnN function call), or
failing to read R when data is there, thus preventing the hardware from calling the RxISR function.
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Chapter 9: Utilization and Scheduling

Earlier chapters assumed actions completed in a short non-zero time that was less than the synchSM
period. For systems with extensive actions in a state, or with numerous tasks sharing the same
microcontroller, the assumption may not hold. An embedded systems programmer may have to
pay attention to the actual execution duration of actions relative to synchSM periods to ensure the
system utilizes a microcontroller appropriately.

Timer overrun

In our approach to converting a synchSM to C, the main function calls the synchSM's tick function,
waits for timerFlag to be set to 1 by TimerISR, sets timerFlag to 0, and repeats:

volid TimerISR (void) {
timerFlag = 1;
}

void main () |
while (1) {
if (<synchSM should execute>) {
synchSM Tick() ;
}
while (!timerFlag) ;
timerFlag = 0;

}

Thus, if TimerISR ever gets called with timerFlag still being 1, this means that the microcontroller
was still executing the synchSM's tick function when the next timer tick occurred. The situation on
the microcontroller is illustrated by the following timing diagram:

synch S _
Tick O 0 E:::ékﬂ -

I I I ' I Time {ms)
0 100 200 300 400 500

The synchSM has a period of 100 ms. Every 100 ms, the tick function executes some actions, whose
duration varies depending on the current synchSM state. At time 200 ms, the tick function's actions
required 120 ms, and thus the tick at 300 ms will not have an effect based on the way our C code is
written. The next tick that will be noticed will be at 400 ms.

A simple check added to the TimerISR function detects this incorrect execution situation:

void TimerISR(void) {
if( timerFlag ) {
// Timer-overrun exception has occurred; possibly add code to handle it

}
timerFlag = 1;
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Automatically-detected incorrect execution is known as an exception. We call the above a timer-
overrun exception. The programmer decides how to handle the exception depending on the
application. The programmer may output an error message or turn on an output "error" LED. The
programmer may modify the system by lengthening SM periods, decreasing SM actions, decreasing
the number of SMs, etc. In some systems, the programmer may have the system automatically
restart itself. In other systems, the programmer may choose to ignore the exception, meaning
certain ticks would be skipped.

Analyzing code for timer overrun

A programmer can manually analyze code to estimate whether a timer-overrun exception might
occur on a microcontroller. Consider the following single-state synchSM task named CountThree,
with a period of 500 ms, that sets B1 to 1 if AO-A3 have three or more 1s:

CountThree Feriod: 500 ms

unsigned char cnt;

a Estimated assembly
instructions

cnt =0, 3
if (A { cnt++ 1} 2+3
|f (A1) cnt++ ] 243
if (A2) { cnt++1; 2+3
( )| ent++ 1 243
=(cnt == 3); 342

Ticks are separated by 500 ms. The question is whether state S0's actions execute in less than 500
ms on a particular microcontroller. Suppose a (very slow) microcontroller M executes 800 assembly-
level instructions per second, meaning 1 sec / 800 instr = 0.00125 sec/instr. We must estimate
the number of assembly instructions to which S0's actions translate. Very roughly, we estimate
that each assignment statement ("cnt=0", "cnt++", "B1=") translates to 3 assembly instructions,
each jf statement translates to 2 instructions, and each comparison ("cnt >=3") translates to 2
instructions, as shown in the figure above. Then SQ's actions translate to 28 instructions. On
microcontroller M, 28 instructions will require 28 instr * 0.00125 sec/instr = 0.035 sec = 35 ms.
Because 35 ms is much less than 500 ms, we can estimate that timer overrun will not occur.

The utilization of a microcontroller is the percentage of time that the microcontroller is actively
executing tasks:

Utilization = (time executing / total time) * 100%

For the above, the utilization during a 500 ms time window is the measure of interest, because every
500 ms window is identical. During a 500 ms window, microcontroller M executes S0's actions in 35
ms, so its utilization is computed as 35 ms / 500 ms = 0.07, or 7%. The microcontroller is said to
be idle for the remaining 93% of the time.

Utilization analysis usually ignores the additional C instructions required to implement a task in C,
such as the switch statement instructions in a tick function, or the instructions involved in calling
a tick function itself. For typical-sized tasks and typical-speed microcontrollers, the number of such
"overhead" instructions is negligibly small. The analysis does not consider the C instructions that
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simply wait for the next tick ("while (!timerFlag));"); the processor is considered to be "idle" during
that time.

A state's actions may include loops, function calls, branch statements, and more, as below:

Countl hree Feriod: k00 ms
unsigned char cnt, i;

. Estimated assembly
@ instructions

3
cnt =0; .
for (i=0;i<4; i+4 { +3+472+3 )
i (GetBit(A, i)) { +2 *
cnt++ +
} } |
. B1=(ent>=3); *3+2

For a for loop, the analysis should include the loop initialization ("i=0": 3 instrs), plus the loop control
instructions ("i<4", and "i++", or 2 + 3), and should also multiply the instructions-per-loop-iteration
by the number of iterations. The above loop iterates 4 times. If the number of loop iterations is data
dependent, an upper bound on the number of iterations should be used.

For a function call, the analysis should determine the instructions executed within the function.
Above, the number of instructions for the call to function GetBit (defined in Chapter 2) is listed as
"?". Examining the statements within the GetBit function itself, we might estimate 10 instructions

For the if statement, we must consider the worst case, which for this statement would mean the
branch is taken and thus "cnt++" is executed. In general, in the presence of branches (if-else
statements), we must consider the maximum number of instructions that might be executed for any
values of the branch conditions.

Thus, the total worst-case number of assembly instructions that execute for SO's actions are
34+34+4*(2+3+2+10+3) +3+42 = 51 instrs. On a microcontroller M that requires 0.00125 sec/instr,
the worst case execution time for those instructions is 51 instr * 0.00125 sec/instr = 63.75 ms.
Again considering a 500 ms window, the utilization is 63.75 ms / 500 ms = 12.75%.

As should be clear from above, the worst-case execution time (or WCET) of a synchSM task is
determined as the time to execute the worst-case number of instructions for any possible tick of the
synchSM. (Wikipedia: WCET) WCET is the value of concern regarding timer overrun.

For a task consisting of a multi-state synchSM, the analysis requires determining the worst-case
number of instructions among all states, and then using the state having the largest possible humber
of instructions as the WCET. For example, consider the CountThree synchSM written using two
states:
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CountThree Feriod: 500 ms
unsigned char cnt, i

cnt =0; _ B1 = (cnt >= 3);
for(i=0;1=4;i++){
if (get_bit(A, 1)) {
cnt++
}
}

S0's actions translate to 3+3+4*(24+34+2+10+4+3) = 46 instrs, while S1's actions translate to 3+2 =
5 instrs. 46 instrs is larger than 5 instrs. On microcontroller M, the WCET is 46 instr * 0.00125 sec/
instr = 57.5 ms. For a time window of 500 ms, the worst-case utilization of M is 57.5 ms / 500 ms
= 11.5%.

Any conditions and actions appearing on transitions should also be considered during analysis. One
approach determines the worst-case number of instructions (due to conditions and actions) among
all of a state's incoming transitions, and then adds that number to the state's actions. This approach
makes sense when considering how a tick function, when translated to C, first executes a switch
statement for transitions, and then executes a switch statement for the determined next state.

Analysis leading to utilization over 100% indicates that timer overrun will occur. For example,
suppose the single-state for-loop version of CountThree is to run on an (extremely slow)
microcontroller that executes 100 instructions per second, meaning 0.010 sec/instr. Because SO's
actions require 51 instructions, its WCET is 51 instr * 0.010 sec/instr = 510 ms. The microcontroller
utilization would be 510 ms / 500 ms = 102%.

Several remedies can be considered:

e Use a slower synchSM period. For example, we could change the synchSM period from 500
ms to 1000 ms. Utilization thus becomes 510 ms / 1000 ms = 51%.

o Rewrite the actions to be more efficient. Converting to the original single-state CountThree
version that did not use a for-loop or a function call results in worst-case instructions of 28,
so WCET = 28 instr * 0.010 sec/instr = 280 ms, and thus utilization of 280 ms / 500 ms =
56%.

e Split the actions among two or more states. Converting to the two-state CountThree version
yields WCET of 46 instr * 0.010 sec/instr = 460 ms, and a worst-case utilization of 460 ms
/ 500 ms = 92%.

Reduce system functionality, thus eliminating some actions

Use a faster microcontroller. Using a microcontroller that requires 0.00125 sec/instr leads to
a WCET of 51 instr * 0.00125 sec/instr = 63.75 ms, and thus a utilization of 63.75 ms / 500
ms = 12.75%.

e Or, a programmer may determine that the missed synchSM ticks do not pose a serious
problem, and could leave the system as is.

For the purpose of introduction, the above discussion uses very slow microcontrollers executing
only 100 or 800 instructions per second. Typical microcontrollers will execute 10,000 to 10,000,000
instructions per second. Microcontroller utilizations for the above example tasks would thus be well
below 0.1%, as expected for such trivially simple tasks.

Note that the above approach to estimating assembly instructions is approximate. A more accurate
method may involve examining the actual assembly instructions generated by a compiler. Some
tools exist to automatically estimate WCET of C or assembly code, but they are not yet commonly
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used. Due to the approximate nature of WCET estimation, programmers might strive to keep
utilization well below 100%, e.g., perhaps below 80%.

Utilization for multiple tasks

Microcontroller utilization analysis is even more commonly done when multiple tasks are
implemented on a single microcontroller. Consider the LedShow system (Chapter 6), which has two
tasks, BlinkLed and ThreeLeds, each with a 500 ms period. Suppose microcontroller M executes 100
instr/sec, or 0.010 sec/instr. Suppose we determine BlinkLed's worst-case instructions per tick to
be 3 instr, meaning a WCET on microcontroller M of 3 instr * 0.010 sec/instr = 30 ms, and we
determine ThreelLeds worst-case instructions per tick to be 9 instr, for a WCET of 9 instr * 0.010 sec/
instr = 90 ms. The time window of interest is 500 ms, because the two tasks tick once every 500 ms.
Thus, the microcontroller utilization will be (30 ms + 90 ms) / 500 ms = 24%. The timing diagram
below illustrates the microcontroller's utilization for the two tasks executing on microcontroller M. In
the timing diagram, a dotted block represents a ready task that isn't executing, and a solid block
represents a task that is executing. At time 0, both tasks are ready to execute, per the convention
that tasks should tick at system startup. Our earlier-introduced simple task scheduler may execute
BL first, which takes 30 ms, followed by TL, which takes 90 ms. At time 120 ms, the microcontroller
becomes idle (it is executing no task), until time 500 ms when the pattern of execution repeats.

100 200 300 400 500 600 Time
(ms)

Utilization above 100% would mean that the microcontroller cannot execute the tasks within the
given period. For example, suppose that BL's WCET was instead 200 ms, and TL's WCET was 350
ms. Then utilization would be (200 ms + 350 ms) / 500 ms = 550 ms / 500 ms = 110%. The timing
diagram below illustrates. BL executes for 200 ms, then TL for 350 ms. The microcontroller timer
ticks every 500 ms. At time 500 ms, a timer tick occurs, but the scheduler code misses it, so neither
BL nor TL will tick at 500 ms. At 550 ms, the scheduler code clears timerFlag and waits for a timer
tick. The next tick that will be detected will be at 1000 ms.

1

;

d 100 200 300 400 500 600 Time
(ms)

Possible remedies are the same remedies as for a single synchSM. Additionally, the remedy of
"reducing functionality" may also include eliminating an entire synchSM from the system.

When two or more tasks have different periods, the time window of interest is the hyperperiod of
the tasks, which is the least-common-multiple (LCM) of the tasks' periods. For example, suppose
BL's period is 300 ms and TL's period is 200 ms. LCM(300 ms, 200 ms) = 600 ms. Thus, every 600
ms, the pattern of execution will repeat, as shown in the timing diagram below (with BL's WCET
being 30 ms, and TL's being 90 ms).
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During the hyperperiod of 600 ms, BL will execute 600 ms / 300 ms = 2 times, while TL will execute
600 ms / 200 ms = 3 times, as shown above. The utilization during the hyperperiod is (2*30ms +
3*90ms) / 600 ms = 330 ms / 600 ms = 55%.

Summarizing, utilization for tasks T1...Th executing on a microcontroller M is determined as follows:

Determine M's sec/instr rate -- call this R

e Analyze each task Ti to determine its worst case number of instructions per tick, then
multiply that number by R to determine Ti.WCET
Determine the hyperperiod H as LCM(T1.period, T2.period, ..., Tn.period)
Utilization = ( (H/T1l.period)*T1.WCET + (H/T2.period)*T2.WCET + ... + (H/
Tn.period)*Tn.WCET ) / H (*100%). Note that H/Ti.period is the humber of times that
Ti executes during hyperperiod H.

Utilization and timer overruns

The relationship of utilization and timer overruns for our scheduler code is as follows.

e Utilization > 100%: Timer overrun will occur
o Utilization < 100%
o Single task: Timer overrun won't occur
o Multiple tasks: Timer overrun may still occur

For utilization > 100%, timer overrun will occur (assuming the worst-case execution times actually
occur).

For utilization < 100%, in a system with just a single task, timer overruns won't occur. In a system
with multiple tasks, timer overruns may still occur, however. For example, suppose BL's period and
WCET are (100, 30) respectively (in ms), and TL's are (200, 90). The timing diagram below shows
that the tick at 100 ms is missed because of TL's execution, even though utilization is well below
100%.

BLi:| X
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Time
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Such timer overrun can be detected through further analysis, namely by noting that at every
hyperperiod (starting with 0), all tasks will be ready and thus all will execute one after the other,
representing the worst-case execution situation within a hyperperiod. Thus, checking if the sum of
WCETs for all tasks exceeds the smallest period of any task will indicate whether a timer overrun
will occur in that worst-case situation.
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Jitter

A task's jitter is the delay between the time that a task was ready to start executing and the time
that it actually starts executing on the microcontroller. Jitter can be determined by drawing a timing
diagram that shows ready and executing tasks for the tasks' hyperperiod, as earlier. Jitter is caused
by two or more tasks being ready; the scheduler executes one of those tasks, causing jitter in
the other tasks. In an earlier timing diagram, TL experiences 30 ms of jitter every third time it
executes, due to the scheduler choosing to execute BL first. TL's worst-case jitter is thus 30 ms, and
TL's average jitter is 10 ms. BL experiences no jitter. Different scheduling decisions may result in
different jitter. If our scheduler code had chosen to execute TL first rather than BL when both tasks
were ready at time 0 ms (and every 600 ms after then), then TL would experience no jitter, but BL
would experience 90 ms of jitter every second time it executes due to interference from TL, for a
worst-case jitter of 90 ms and an average jitter of 45 ms. If minimizing worst-case or average jitter
is the goal, then giving BL priority when scheduling would be a better choice.

Avoiding timer overruns is thus not the only goal when scheduling tasks to execute on a

microcontroller. Other goals, such as reducing jitter, and meeting deadlines (to be discussed), are
also important. Attention should thus be paid to creating good scheduling approaches.

Scheduling

Note that a task implemented on a microcontroller can have one of three statuses at a given time:

Waiting: The task should not execute because it is waiting for its period to elapse.

e Ready: The task's period has elapsed and the task is ready to execute, but the
microcontroller hasn't yet started executing the task.

e Executing: The microcontroller is executing the task; for a synchSM, the microcontroller is
executing the synchSM's tick function.

[ Waiting ]4—[ ExecutingJ

All tasks are initially considered ready when the system is started (namely, at time 0). Thus, each
task should execute once at startup, and then wait until its period elapses to execute again.

Scheduling is the job of choosing which of several ready tasks to execute. Scheduling is necessary
because a microcontroller can only execute one task at a time. A scheduler is the code responsible
for scheduling tasks. We designed a simple scheduler in an earlier chapter. In the earlier timing
diagram of BL and TL tasks, when both tasks were ready at time 0 ms (and 600 ms), the scheduler
chose to execute BL first, but it could have chosen TL instead. Scheduling does not impact
utilization, but does impact features of task execution, such as jitter, and meeting deadlines. Jitter
was discussed earlier. We now discuss deadlines.

A task's deadline is the time by which a task must complete after becoming ready. Else, the system
has "missed a deadline" and is considered to have not executed correctly. For example, in the earlier
example with tasks BL (period 300 ms, WCET 30 ms) and TL (period 200 ms, WCET 90 ms), suppose
TL has a deadline of 100 ms. The period means that TL will be ready at time 0 ms, 200 ms, 400 ms,
etc. The deadline means that when TL becomes ready at each of those times, TL should execute and
complete by 100 ms, 300 ms, 500 ms, etc. We can include the deadline on a timing diagram by
drawing a line from the ready time to the deadline time, as shown below. If a programmer does not
specify a deadline for a task, then by default the deadline is set equal to the period (and is usually
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not drawn), meaning the task should at least complete before the next time the task becomes ready.
We see that TL misses a deadline during its first execution of each hyperperiod, due to jitter caused
by the scheduler executing BL before TL.

s 7] [ 0
e = = e

! |
I f
0 100 200 300 400 500 00 Time

Jitter in the second schedule is larger than in the first schedule, but no deadlines are missed. The
example demonstrates the impact of scheduling on jitter and meeting deadlines.

Several scheduling approaches exist, and can be divided into static-priority and dynamic-priority
approaches. Priority is an ordering of tasks indicating which ready task should execute first. When
multiple tasks are ready, a scheduler executes the highest-priority task first.

A static-priority scheduler assigns a priority to each task before the tasks begin executing, and
those priorities don't change during runtime.

e A common approach assigns highest priority to tasks with shortest deadlines. The intuition
is that such tasks may miss deadlines if not executed first, as in the above BL/TL example.

o If all tasks have their deadlines equal to their periods (as is often the case), then the above
approach translates to assigning highest-priority to shortest-period tasks. This scheduling
approach is called rate-monotonic scheduling (RMS), named because priorities are
based on the task's period or rate, with priorities assigned in a monotonically-increasing
manner according to those rates.

e Another approach assigns highest priority to shortest-WCET tasks. This approach may be
better at reducing jitter, since first executing short tasks reduces jitter of other ready
tasks. The approach requires knowledge of task WCETs, which aren't commonly known. The
approach is useful if the microcontroller speed is such that missed deadlines are rare.

e Some schedulers allow a programmer to manually assign priorities to tasks. This approach
is useful if the programmer knows that reducing jitter or meeting deadlines for certain tasks
is more important than for other tasks. For example, a task controlling a car's speed may
be more important than a task controlling a car's passenger-compartment air temperature,
regardless of the periods, deadlines, or WCETs of those tasks.

Our earlier simple task scheduler code, replicated below, processes tasks in the order they appear
in an array, and thus gives priority to tasks that appear earlier in the array.

for (i = 0; 1 < numTasks; ++i ) {
if ( tasks[i]->elapsedTime == tasks[i]->period ) { // task is ready
tasks[i]->state = tasks[i]->TickFct (tasks[i]->state);
tasks[i]->elapsedTime = 0;
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}
tasks[i]->elapsedTime += GCD;

}

A programmer can thus insert tasks into the array in order of priority. A more general approach may
introduce new fields to the task structure to store a deadline value, a WCET value, or a programmer-
assigned priority number, and then a function can be called that sorts the tasks array by a particular
field before the main code's "while (1)" loop.

The simple task scheduler code will experience timer overrun if a task is executing when the
next timer tick occurs and another task should become ready, in which case the other task's
execution may be missed entirely rather than just delayed. A more sophisticated scheduler moves
the scheduler code from the main function to inside the timerISR function. In addition to the tasks
array, the scheduler maintains another list of ready tasks, where the list implements a priority queue
(Wikipedia: Priority queue). When the timer ticks and timerISR is called, rather than just setting a
flag, the scheduler code checks all tasks and adds any newly ready tasks to the priority queue, where
the queue keeps tasks ordered by their priority. Such a scheduler has the advantage of avoiding
timer overruns; rather than missing task ticks, the scheduler adds those tasks to the list and will
execute them later. The disadvantage is that such a scheduler requires more code and has more
instruction overhead for each timer tick. The reader is encouraged to try implementing this more
sophisticated scheduler.

Consider a system with three tasks A, B, and C, with "period, WCET" values as shown in the figure
below, and deadlines equal to periods. Assume a priority-queue-based scheduler. RMS scheduling
will give A highest priority, then B, then C. The figure shows that B experiences average jitter of 25
ms and C of (50+25)/2 = 37.5 ms, but no deadlines are missed.

A 100,25 B: 20025 C: 300,75

O 0O 0O 0O O

=
_I:I__
_D__

| |
B!'[ O O 0
| |
I |
clir] —] SRS S—
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Note that at time 100 ms, the microcontroller was busy executing C when A became ready. The
priority-queue-based scheduler does not miss that tick, but rather adds A to the priority-queue, and
then executes A when C completes.

Try: Schedule the above tasks A, B, and C assuming the priority order C, B, A (C has highest priority,
A lowest). Indicate whether any deadlines are missed, and list average jitter per task.

A dynamic-priority scheduler determines task priorities as the program runs, meaning those
priorities may change. A common dynamic approach assigns ready tasks with the earliest deadlines
the highest priority. The intuition is that ready tasks with the nearest deadline are more likely to
miss the deadline if not execute first. The approach is known as earliest deadline first (EDF).
Dynamic-priority schedulers may reduce jitter and missed deadlines, at the expense of more
complex scheduler code. EDF scheduling is commonly considered when some tasks are triggered by
events (to be discussed) rather than all tasks being periodic.
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Scheduling approaches can also be divided into preemptive and non-preemptive schedulers. A
preemptive scheduler may temporarily stop (preempt) an executing task if a higher-priority task
becomes ready. A non-preemptive scheduler does not stop an executing task; the task must
run to completion before the scheduler considers executing another task. Our earlier simple task
scheduler is non-preemptive. A preemptive scheduler is hard to write entirely in C code, and is
instead commonly written using at least some assembly code to carry out the low-level saving of
registers and program counter values necessary to later resume the preempted task. In the above
figure with A, B, and C tasks, a preemptive scheduler at time 100 ms would preempt lower-priority
task C, execute A for its 25 ms, and then resume task C at time 125 ms. Preemptive schedulers are
commonly used when tasks are written as functions each with an infinite loop (e.g., "while(1)"). In
contrast, the approach in this book has been to capture tasks as synchSMs, which naturally divides
tasks into distinct "ticks" that each runs to completion. synchSMs represent a form of what is known
as "cooperative tasks," which willingly relinquish the microcontroller to allow other tasks to execute,
greatly reducing the need for preemption. The synchSM approach in fact makes possible the writing
of one's own task scheduler directly in C code; such is not readily possible using infinite-loop tasks.
The drawback of synchSMs is that sometimes behavior is easier to capture as an algorithm rather
than as a synchSM.

Triggered synchSMs

Sometimes a synchSM tick just samples an input (such as input AO) to detect a change, a process
known as polling. To reduce the microcontroller being used for polling, some microcontrollers come
with special hardware that detects a change on an input and calls a special ISR in response such
as inputChangelSR(). Reducing polling reduces microcontroller utilization, decreases jitter, reduces
missed deadlines, and/or enables more tasks to be implemented on the microcontroller.

Availability of such hardware inspires a variation of a synchSM that can make itself inactive by
transitioning to a special "Inactive" state. While inactive, a synchSM does not tick and thus when
implemented will not utilize the microcontroller. The synchSM becomes active again when a specified
event occurs, such as an event on AQ, after which the synchSM ticks repeatedly at its normal period,
until transitioning to the inactive state again. The event triggers the synchSM to become active, and
thus such a synchSM is called a triggered synchSM.

Consider a system that toggles BO whenever a button connected to AO is pressed. One way to
capture this behavior uses a synchSM that polls A0 every 100 ms, as shown on the left below.

TG Period: 100 ms
Trigger: Event on A0

TG Period: 100 ms

An alternative using a triggered synchSM is shown on the right. After initializing BO, the synchSM
becomes inactive. While inactive, the synchSM does not tick. When an event occurs on AO, the
synchSM becomes active again and checks transitions leaving the Inactive state. A0 being 1 means
the event was a change from 0 to 1, so the synchSM goes to state S1, which toggles BO, after
which the synchSM transitions back to the Inactive state. Instead, A0 being 0 means the event was
a change from 1 to 0, which should not change B0, and thus the transition goes back to the Inactive
state. Detecting the event on A0 is not the responsibility of the synchSM; the detection occurs by
some other means outside the synchSM.

In scheduling terminology, a task triggered by an event is known as an aperiodic task, in contrast to

a periodic task that ticks at a known rate.
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A benefit of a triggered synchSM becomes apparent when examining the utilization of a
microcontroller implementing the synchSM, where that microcontroller has special hardware to
detect the triggering event.

e 0000000001 16 [ 00 [
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TG's state Init S0 S0 S1 S2 S2 S0 S0 S0 TGE's state  Init imactive 51 Inactive fnactive
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The timing diagram on the left shows TG with polling, executing every 100 ms. The ticks for state
SO0 poll the input A0 looking for a change from 0 to 1, and the ticks for state S2 for a change from
1 to 0. The timing diagram on the right shows a triggered TG. TG goes inactive while waiting for an
event on A0, and does not execute during that time, reducing microcontroller utilization.

Using existing special hardware that detects events on pins can yield the additional benefit of
sampling the pin faster than sampling achieved by polling done by a task on a microprocessor.

A triggered synchSM can be implemented in C on a microcontroller with some extensions to
the earlier scheduler. (Note: RIBS does not currently have support for triggered SMs). RIMS
does not currently have built-in support for detecting events on pins, but RIMS does have built-in
support for detecting a UART character receive, and thus a UART receive can be used to trigger
a synchSM. Thus we shall introduce an example having a synchSM triggered by a Uart receive.
Consider a modification of an earlier example (that was used to demonstrate scheduler code) where
one task blinks BO repeatedly, and another task lights three LEDs B5, B6, B7 in sequence once
whenever the letter 'g' is received by the UART:

®ANALISE G| WL

Mame: | BlinkLed Mame: |ThreeledsTriggered AMOTE: synchSk should be triggered by a UART receive
. AT Prefi:  |TLT Inputs: A7-40

e DISELS?S%?AB% Outputs: B7-BO

Period: 1500 ms Period: |500 ms

Canwag

Canvas

other
1

:
1 ! R=="g L 1

B0 =0: BO=1: B5 =D, Ba =0 Ba =1, B5 =0, B5 =0,
BE =0 B5=0: BR = 0; B5=1: BB =0
B7 =0 B7 =0; B7 =0 B7 =0; B7 =1,

The following code modifies the earlier scheduler code to support the triggered synchSM. Key
changes are bolded and described in the comments.

#include "RIMS.h"

volatile unsigned char TimerFlag=0;
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void TimerISR (void) {

TimerFlag = 1;

typedef struct {
signed char state;
unsigned long period;
unsigned long elapsedTime;
unsigned char active; // 1: active, 0: inactive
int (*TickFct) (int);
} task _t;

An Introduction to Time-Oriented Programming

task_t task_BL, task_TLT; // Global so visible to tick fct and ISR

task t *tasks[] = { &task BL, &task TLT };

const unsigned short numTasks = sizeof (tasks) / sizeof (task t*);

volatile unsigned char RxFlag=0;
volatile unsigned char RxData=0;

void RxISR(void) {

task TLT.active = 1; // TLT task triggered by UART rx, so make active
task TLT.elapsedTime = task TLT.period; // Make ready to tick
RxData = R; // Read to global var to avoid problems if chars come too fast

RxFlag = 1;

// Task tick functions
enum BL States { BL_LEDOFF, BL LEDON };

int BL Tick(int state) {
puts ("BL_Tick()\n");
switch(state) { // Transitions
case -1:
state = BL_ LEDOFF;
break;
case BL LEDOFF:
state = BL LEDON;
break;
case BL LEDON:
state = BL_ LEDOFF;
break;
default:
state = -1;
break;

switch (state) { // State actions
case BL LEDOFF:
BO = 0;
break;
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case BL LEDON:
BO = 1;
break;
default:
break;
}

return state;
enum TLT States { TLT TO, TLT T1, TLT T2, TLT Init, TLT Inactive };
int TLT Tick(int state) {

puts ("TLT Tick()\n");
switch(state) { // Transitions

case -1:
state = TLT Init;
break;
case TLT TO:
if (1) |

state = TLT T1;
}
break;
case TLT T1:
if (1) |
state

TLT T2;
}
break;
case TLT T2:
if (1) |
state = TLT Inactive;
}
break;
case TLT Init:
if (1) |
state = TLT Inactive;
}
break;
case TLT Inactive: // Note: special "Inactive" state's
// transitions are same as any other state

if (RxData == 'g') {
state = TLT TO;

}

else {
state = TLT Inactive;

}

break;

default:

state = TLT Init;
} // Transitions

switch (state) { // State actions
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case TLT TO:
B5 = 1; B6 = 0
break;

case TLT T1:

BS5 = 0; B6 = 1;

break;
case TLT T2:

B5 = 0; B6 = 0;

break;

case TLT Init:
B5 = 0; B6 =0
break;

case TLT Inactive
B5 = 0; B6 =0

Programming Embedded Systems: An Introduction to Time-Oriented Programming

; B7 = 0;
; B7 = 0;
; B7 = 1;
; B7 = 0;
; B7 = 0;

task TLT.active = 0; // Special "Inactive" state

break;
default:
break;
} // State actions
return state;

void main ()

{
const unsigned long
const unsigned long

const unsigned long
unsigned char i; //

task BL.state

task BL.period

task BL.elapsedTime
task BL.active

task BL.TickFct

task TLT.state

task TLT.period

task TLT.elapsedTime
task TLT.active

task TLT.TickFct

TimerSet (GCD) ;
TimerOn () ;

UARTOn () ;
while (1) {
for (1 = 0; 1 <

// makes task inactive

BL period = 1500;
TLT period = 500;

GCD = 500;
Index for scheduler's for loop

= -1;
= BL period;
= BL period;
= 1; // Task starts as active
= &BL Tick;

= —1;
TLT period;

= TLT period;
= 1; // Task starts as active
= &TLT Tick;

numTasks; ++i ) {

if (tasks[i]->active) { // Task can only tick if active

if ( tasks][

i]->elapsedTime == tasks[i]->period ) {
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// Task is ready to tick, so call its tick function
tasks[i]->state =tasks[i]->TickFct (tasks[i]->state);
tasks[i]->elapsedTime = 0; // Reset the elapsed time

}

tasks[i]->elapsedTime += GCD; // Account for below wait

}
while (!TimerFlag && 'RxFlag); // Wait for next timer tick or UART receive
TimerFlag = 0; RxFlag = 0;

}

The main change is the addition of the "active" field to the task structure, 1 meaning active. The
initialization in main sets each task initially active. Transitioning to the special "Inactive" state in
task TLT's tick function sets the task to inactive. The scheduler in main skips any inactive tasks
when checking if tasks are ready to tick. The UART's ISR "RxISR" re-activates the TLT task, and also
sets the task's elapsedTime such that the task is ready to tick. Note that the code moved the task
declarations to be global, so that the RxISR and TLT_Tick functions could set the task's active field.
Note also at the end of the scheduler code in main that the scheduler's wait can be completed not
just by the next timer tick, but also by a UART receive.

Try: Run the above code in RIMS. Each tick function prints its name when it ticks; note that the TLT task stops ticking, and
only the BL task ticks. Now enter an 'a' into RIMS' "UART input" text box. Note that the TLT task ticks once, but because the
input was not 'g', transitions back to the Inactive state and thus doesn't tick. Now type 'g' and note that TLT ticks several times
(and LEDS BS5, B6, B7 blink in sequence), and then again stops ticking .

A triggered synchSM can be implemented on a microcontroller that doesn't have special hardware to
detect the triggering event. In that case, when translating to C, we introduce a helper synchSM that
polls the appropriate input for the triggering event, and communicates with the triggered synchSM
by setting a global flag variable to 1, holding the 1 long enough for the original synchSM to detect
it. The original synchSM's inactive state needs a new transition that goes back to the inactive state
when the flag is 0, while the existing transitions need to check that the flag is 1. Note that such an
implementation does not achieve the benefits of reduced polling or faster sampling, but may lead to
more intuitive initial synchSMs. Capturing behavior using triggered synchSMs may also lead to more
efficient implementations if the synchSMs are ported to another microcontroller that does have the
special hardware.

Reducing power consumption using a sleep function

Microcontrollers consume power while running a program, for example one milliwatt. Commonly a
microcontroller is executing a while loop waiting for some event to occur, such as "while (ITimerFlag)
{}". Executing that loop (or more specifically, the assembly instructions for that loop) is somewhat
wasteful because the programmer knows the loop cannot be exited until the TimerISR is called
by the hardware. Thus, microcontrollers typically have a special low-power mode, known as a
"sleep" mode, in which the microcontrollers stops executing the program but continues to operate
other hardware like the timer and the UART. When in sleep mode, the microcontroller consumes
substantially less power, for example one microwatt. When such hardware experiences a particular
event, like the timer ticking or the UART receiving data, the microcontroller "wakes up", typically
executes an ISR in response to the event, and resumes executing the instruction that put the
processor to sleep. RIM can be put to sleep by calling a function "Sleep". In general, knowing when
to call the sleep function can be challenging to a programmer. Fortunately, the disciplined synchSM
approach greatly simplifies the challenge. One can simply call the sleep function just before waiting
on the TimerFlag and/or RxFlag (or any other flag set by an ISR). For the above example, we could
add the following code:
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puts ("Going to sleep...");

Sleep(); // Put processor in low-power mode waiting for wakeup event
// Below instructions won't execute until hw event wakes processor and
// calls appropriate ISR

puts ("Waking up.\n");

while (!TimerFlag && !RxFlagqg);

Try: Modify the above program by adding the above lines as shown. Note from the printed text that the processor repeatedly
goes to sleep and wakes up.

The amount of time spent asleep could be further improved by dynamically adjusting the Timer's
tick rate to be the GCD of the periods for all active tasks, rather than for all tasks.

Because microcontrollers are commonly powered by batteries, sleep modes are extensively used; a
microcontroller may be asleep 99% of the time or more, waking up for brief periods, performing a
burst of processing, and going back to sleep again.

Disciplined programming

This book described a disciplined approach to time-oriented programming in C. We recommend
that programmers think in terms of communicating synchSMs, translating to C using the defined
translation methods. After translating to C, some programmers are tempted to introduce statements
in places not adhering to the translation methods. Doing so may save time at first, but ultimately
may lead to bugs and to code that is harder to maintain. For example, the translation methods
use ISRs only to set specific flags, and nothing more. Programmers should never add additional
statements into the ISR, no matter how tempting; doing so is a common source of tricky bugs.
Likewise, adding functionality in main's task scheduler should be avoided. Instead, if functionality is
needed, it should almost always be added by expanding the behavior of a synchSM, updating the
synchSM's tick function accordingly. An analogy can be made with a car. The driver's interface with
the car's hardware is well-defined: Steering wheel, gas pedal, and brakes. A driver who uses engine
knowledge to connect extra cables to the engine for some minor acceleration or handling benefit
is not considered clever, but more likely dangerous. The disciplined driver, and the disciplined
programmer, ultimately understands that respecting the well-defined interface to the lower-level
machine yields the best long-term benefit.

Towards an RTOS

An operating system is a program that runs on a microprocessor to provide an interface between
the user's program and hardware. Microsoft Windows and Unix are well-known and complex
operating systems intended for desktop computers. Embedded systems sometimes use a real-time
operating system (RTOS) (Wikipedia: RTOS). A key part of an RTOS is a mechanism to allow
users to define tasks (sometimes called threads or processes), including their periods and priorities.
Another key part is a task scheduler, such as the scheduler we created above. RTOSes typically
support preemptive scheduling, as well as non-preemptive. Numerous microcontroller RTOSes are
available, several of them free. (Wikipedia: FreeRTQOS).
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Chapter 10: Programming Issues

Rounding and overflow

Expressions involving division should be treated with extra care due to error that is introduced from
rounding. Consider the formula for converting Celsius to Fahreneit: F = (9/5)*C + 32. Suppose a
RIMS program is coded as follows:

#include "RIMS.h"

unsigned char F2C uc (unsigned char C) {
unsigned char F;
F = (9/5)*C + 32;
return F;

void main () {
while (1) {
B = F2C uc(d);

The table below shows the actual Fahrenheit values for Celsius values from 0 to 9, followed by those
values when rounded to integers, followed by values obtained from the above program:

F (after

Celsius Fahrenheit F_ahrenheit Eb(g:/c;m tc)re]:?onvee

(actual) (integer) program) El?v(ij;ion

later)

0 32 32 32 32

1 33.8 34 33 33

2 35.6 36 34 35

3 37.4 37 35 37

4 39.2 39 36 39

5 41.0 41 37 41

6 42.8 43 38 42

7 44.8 45 39 44

8 46.4 46 40 46

9 48.2 48 41 48
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The values obtained from the above program are wrong due to rounding. Because all values in the
F2C_uc function's expression are integers, the term "9/5" is computed as an integer; the value is 1.8
but it is rounded to 1 because C rounds by truncating the fraction. Thus, the computation actually
being carried out is: F = 1*C + 32.

The rounding problem can be reduced by doing the division as late as possible. For the above
program, the line that computes F can be changed to:

F = (9*C)/5 + 32;

The values obtained after that change are shown in the last column of the above table. Those values
are much closer to the desired values; the differences are due to the C language truncating any
fractional part, rather than rounding up if the fractional part is 0.5 or greater.

When computing expressions, care must also be taken to avoid overflow. Embedded systems
programs commonly use the smallest possible data types to conserve limited memory and to obtain
faster computation on a narrow bitwidth microcontroller (e.g., on an 8-bit microcontroller). For
example, if an integer representing a temperature in Celsius has a range of 0 to 255, the integer
may be declared as a char rather than as a short or a long (see next section's F2C_uc_array for
a clear example of savings obtained by using char). However, use of the smallest possible data
types increases overflow situations, where a value is too large for its variable size (e.g., a value of
270 is too large for a char). To be safe, a function might first cast smaller numbers to larger ones,
compute, and then explicitly check for overflow before returning a result. For example, the above
conversion function might be rewritten as:

unsigned char F2C uc (unsigned char C) {
unsigned char F;
unsigned short Csi, Fsi;
Csi = C;
Fsi = (9*Csi)/5 + 32;
if (Fsi<=255) {
F = (char)Fsi;

F = 0; // overflow error

}

A further improvement might set Csi = 10*C, compute Fsi as above, round Fsi to the 10s place (if
the 1s column is 5 or greater, increment the 10s column), and then divide Fsi by 10, before checking
for overflow.

C functions versus lookup tables

A function maps possible input values to an output value. A typical C function uses an expression or
even an algorithm to perform the mapping, as in the above conversion function that maps an input
Celsius value to an output Fahreneit value. However, a faster approach uses a precomputed output
value for every possible input value. The values can be precomputed using another C program with
a loop that calls a function with every possible input value and prints the output, or by using a
spreadsheet, or by other methods. For the above conversion program, good pre-computed values
for the first 10 of the possible 255 input values, computed using a spreadsheet, are shown in the
third column. The remaining values could be computed similarly, with any output value greater than
255 forced to 0. Then an array could be declared and initialized with 256 constants as follows:
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unsigned char F2C uc_array([256] = {32, 34, 36, 37, 39, 41, ..., 0, O, 0};
// middle values are omitted (...)

Such an array of precomputed function output values is called a lookup table. The earlier F2C
function could then be rewritten as:

inline unsigned char F2C uc (unsigned char C) {
return F2C uc array|[C];

}

Whereas the original F2C_uc function may have required dozens of assembly instructions to execute,
the lookup-table-based function requires only a few assembly instructions. Declaring the function
as inline may even result in the function call and hence the call's associated assembly instructions
being eliminated.

The tradeoff present with a lookup table is the larger code size. A function with a single char input
parameter would require a 256-item lookup table. A function with a single short int input parameter
would require a 65536-item lookup table, which may be tolerable in some cases but in many
cases may be too large. A function with two char inputs would use a two-dimensional array (e.g.,
table_array[256][256]) which also has 65536 items. A function with a single long int parameter
would require a lookup table with over 4 billion items. Clearly, use of the lookup table approach is
severely limited by the number of possible input values, which determines the table size.

Fixed-point programming

C has built-in support for floating-point arithmetic, wherein variables are declared as real
numbers and arithmetic/comparison operators (+, -, *, /, <, <=, >, >=, ==, !=) operate on real
numbers. (Wikipedia: Floating Point Arithmetic). Examples of real numbers are 25.61 and 1.428. A
real number can be declared in C using the float type:

float x;
x = 25.61;

The float type uses 4 bytes. C also provides a double type that uses 8 bytes (hence the name
"double™).

Floating-point refers to the fact that the same number of bytes can represent real numbers with
the decimal point in different places, e.g., 25.61 and 1.428 both have four significant digits but
have the decimal point in different places. The decimal point can thus move or float. The advantage
of floating-point implementation is that a real number can be represented over a wide range of
magnitudes while maintaining a constant number of significant digits. This advantage becomes

especially obvious for very large and very small numbers, e.g., x = 6.02x10%> * 1.50686x1074. A
float type supports about 7 significant digits, double about 15 significant digits.

Note: RIMS does not currently support floating-point.
An example of floating-point arithmetic is a Fahrenheit to Celsius converter using float types:

float F2C fl(float C) {
float F;
F = (9.0/5.0)*C + 32;
return F;
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}

Note that the earlier-mentioned rounding issue with integers is eliminated due to the use of real
numbers.

Another example of floating-point arithmetic is the following C function that calculates the distance
between two points on a surface:

#include <math.h>

typedef struct {
double x, vy;
} point t;

double compute distance(point t pl, point t p2) {
double tl = p2.x - pl.x;
double t2 = p2.y - pl.y;
tl = tl1 * t1;
t2 = t2 * t2;
return sqgrt(tl + t2);
}

The C standard library math.h provides functions for performing common math operations on real
numbers such as square root (sqrt) or trigonometric sine (sin).

Unfortunately, floating-point operations typically run much slower than integer operations. Details
of the reasons are beyond our scope, but briefly, floating-point involves representing the significand

and the exponent separately (a real number is composed as: significand x 10°XP°"®"Yy g4 arithmetic
operations internally may require shifting to obtain the same exponent, performing separate
operations on the significand and the exponents, rounding, and normalizing. Desktop and laptop
computers typically have special floating-point hardware to speed up floating-point operations,
but such hardware may be large, and floating-point operations may still be slower than integer
operations. For example, we ran two simple for-loop examples with repeated floating-point and
integer operations, respectively, on an Intel Core Duo laptop machine; the floating-point version
ran 3x slower. Embedded processors typically don't have special floating-point hardware and thus,
if they support floating-point at all, then they perform floating-point operations using software
functions, resulting in slowdowns of 100x or more compared to integer operations.

Fortunately, in many embedded system applications, real numbers may be limited to a narrow range
of magnitudes and the number of significant digits required may be far fewer than provided by
the built-in floating-point types. In such circumstances, a fixed-point implementation can speed up
the computation and reduce the memory required to store the intermediate results. In a fixed-
point implementation, integer variables are used to represent real numbers (with limited range
and precision). Likewise, integer operations are used in place of floating-point operations, whenever
possible. (Wikipedia: Fixed Point Arithmetic).

Consider a very simple fixed-point representation where numbers may range from 0.0 to 20.0. For
example, consider a performance rating system where two judges can enter scores between 0.0 and
10.0, and the two scores (x and vy, respectively) are added to create a total score (z) which thus can
range from 0.0 to 20.0. So a sample computation would be x=9.1, y=9.8, z = x+y (which is 18.9).
Using floating-point representation is overkill in this system. Instead, we can declare x, y, and z as
small integers (unsigned chars in this case), set x=91 and y=98, and z=x+y (which is 189). In other
words, we multiply the real nhumbers by 10 to obtain an integer representation, and then conduct
the necessary integer operations. We know that the answer needs to be divided by 10 to obtain the
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actual result. (Baseball fans may note that batting averages are always listed as an integer like 352
rather than the actual fraction like 0.352).

The above simple fixed-point representation is intuitive due to being in base 10, but more efficient
representations use base 2 to match the computer's underlying representation of numbers. In a
fixed-point representation, we need to decide on the number of bits necessary to represent the
whole part of the real number (w) and the number of bits necessary to represent the fractional part
of the real number (f). Ideally, when using the C language, the sum of the bits used to represent
the whole and fractional parts (w.f) should add up to the number of bits of one of the built-in C
integer types. For example, if using the short int type, we may chose w=12 and f=4. Under this
representation, written using the notation "(12.4)", we can represent a real number in the range of
(-2048.0000 to 2047.9375). We can convert a floating point number (within the proper range) to
the fixed-point representation and the other way around as shown in the pair of functions below.

#include <assert.h>

const double MIN REAL = (short)0x8000 / 16.0;
const double MAX REAL (short)Ox7£fff / 16.0;

short conv _to fixed point (double x) {
if( x < MIN REAL ) {
assert( 0 /* underflow */ );
}
else if( x > MAX REAL ) {
assert( 0 /* overflow */ );
}
else {
return (short) (x * 16.0);

}

double conv_to floating point (short x) {
return x / 16.0;

}

For example, 2047.9375 would be converted to (12.4) fixed point representation as (short)
(2047.9375 * 16.0) = (short)(32767.00000) = 32767. As another example, 3.14 would be
converted as (short)(3.14*16.0) = (short)(50.24) = 50. Note that 50 looks nothing like 3.14, but it
indeed is the (12.4) fixed point representation of 3.14.

In the above functions, a fixed-point version of a real number is obtained by multiplying it with of.

Likewise, a floating-point version of a fixed point number is obtained by dividing by of Asa result,
the precision of the real number (i.e., the fractional portion) is determined by f while the range is
determined by the choice of w. In the above example, we can represent the following fractions:

0/ 16.0 = 0.000000
1/16.0 = 0.062500
2/16.0 = 0.125000
3/16.0 = 0.187500
4 /16.0 = 0.250000
5/16.0 = 0.312500
6/ 16.0 = 0.375000
7/ 16.0 = 0.437500
8/ 16.0 = 0.500000
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9/1 0.562500
.625000
.687500

0
0
0.750000
0
0
0

.812500
.875000
.937500

6.0 =
/ 16.0
/ 16.0
2/16.0
/ 16.0
/ 16.0
/ 16.0

Once a real number is converted to its fixed-point representation, we can perform the basic
add/subtract operations as shown below. Note that all fixed-point numbers must use the same
representation, in this case (12.4).

inline short fixed point add(short x, short y) {
return x + y;

}

inline short fixed point sub(short x, short y) {
return x - y;

}
The above functions do not check for over-/under-flow, but can be modified to do so as shown.
#include <assert.h>

const short MIN FP = 0x8000;
const short MAX FP = Ox7fff;

inline short fixed point check(long x) {
if( x < MIN FP ) {
assert( 0 /* underflow */ );
}
else if( x > MAX FP ) {
assert( 0 /* overflow */ );
}
else {
return (short)x

inline short fixed point add(short x, short y) {
return fixed point check( (long)x + (long)y );

}

inline short fixed point sub(short x, short y) {
return fixed point check( (long)x - (long)y );
}

Note that, as expected, checking for error requires additional C statements (and execution time
overhead). Also, note that we perform the computations using larger integers (type long) initially,
check against the bounds, then cast to the shorter return type (short). Certainly, the additional
overhead is a small penalty paid for a more robust fixed-point implementation.

Now we consider multiplication and division, as shown.
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inline short fixed point mul (short x, short y) {
long r = (long)x * (long)y;
return fixed point check( r >> 4 );

}

inline short fixed point div(short x, short y) {
long r = ((long)x << 4) / (long)y;
return fixed point check( r );

}

When multiplying two fixed-point integers, the decimal point shifts left by some number of bits (f
in this example). To illustrate, consider multiplication of the decimal numbers 3.1 and 2.7. In the
first step, we multiply the two integers 31 and 27 to obtain the integer 837. Then, we place the
decimal point two places from the right to obtain 8.37. To maintain our fixed-point format, we need
to re-adjust the decimal point by shifting right exactly f bits. Likewise, when dividing, we need to
shift the result left exactly f bits. However, we do so prior to the integer division, so as to not lose
any precision.

Try: Rewrite the above add, sub, mul, and div functions for a (10.6) implementation.

The integer comparison operations work on fixed-point number as well, hence we will not cover
those further. In general, you may chose to use a different fixed-point representation for different
real-valued variables. In such instances, you need to implement more versatile routines that can
perform mixed format operations. For example, you may have to add the variable a (12.4) with the
variable b (10.6) and write the result into variable ¢ (11.5). The following segment of code illustrates
the necessary computation.

inline short mixed fixed point add(short a, short b) {
short templ = a << 2; // convert from (12.4) to (10.6)
short temp2 = templ + b; // result is now (10.6)
short result = temp2 >> 1; // convert from (10.6) to (11.5)
return result;

}

To convert a fixed-point number from (12.4) format to (10.6), we shift left. In other words, shifting
left allow us to gain higher precision. To convert a number from (10.6) format to (11.5), we shift
right. In other words, shifting right allow us to gain a wider range. The amount to shift is given by
the difference between f1 and f2.

Try: Write a fixed-point multiplication function that multiplies a (12.4) format with a (10.6) format

to obtain an (24.8) format.
Try: Write a program that calls and checks the above function.

Lookup tables again

In the fixed-point implementation section, we looked at the basic representation and operations on
real numbers using integers. Imagine if we are to revisit the first floating-point example given in the
earlier section, and shown again below.

#include <math.h>

typedef struct {
double x, y;
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} point t;

double compute distance(point t pl, point t p2) {
double tl = p2.x - pl.x;
double t2 p2.y - pl.y;
tl = tl1 * t1;
t2 = t2 * t2;
return sqgrt(tl + t2);

}

If we were asked to convert the above code to a fixed-point implementation using the (12.4) format,
we could do something like the following:

#include <math.h>

typedef struct {
short x, y; // fixed point format (12.4)
} point t;

short compute distance(point t pl, point t p2) {
short tl = fixed point sub(p2.x, pl.x);
short t2 = fixed point sub(p2.y, pl.y);
short t3;
double t4;
tl = fixed point mul(tl, tl1);

t2 = fixed point mul(t2, t2);
t3 = fixed point add(tl, t2);
t4 = conv_to floating point (t3);

return conv_to fixed point(td);

The above code is actually a good first attempt at tackling the problem. However, we got stuck
when we got to the sgrt function, and had to make conversion to and back from the double type in
order to be able to use the C standard sgrt function. This is an acceptable strategy, but what if we
wanted to perform all computations strictly in fixed-point format? One option would be to rewrite the
sgrt function using fixed-point operations. First, you have to recall how square root functions work

(Wikipedia: Square Root and Wikipedia: Methods of Computing Square Roots). Your code would look
like this.

short fixed point sqgrt(short x) {
// an algorithm for computing square root goes here

}

If you take your time (a lot of it) and implement the above function, the result would be very
rewarding -- You would really learn a lot about square roots. However, there is another way --
one that might actually be fast (performance wise). First, recognize that the possible real numbers
representable by a (12.4) implementation is limited to 65536. Of these, 1/2 are negative, and the
sqgrt function can bypass those. For the remaining 32678, we can pre-compute a table of square root
values and store them in an array of (12.4) fixed-point numbers. How do we pre-compute a table?
Easy, we write a C program to do the work for us, such as the one shown below.

#include <stdio.h>
#include <math.h>
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#include <assert.h>

const double MIN REAL (short)0x8000 / 16.0;
const double MAX REAL = (short)Ox7fff / 16.0;

short conv_to fixed point (double x) {
1if( x < MIN REAL ) {
assert( 0 /* underflow */ );
}
else if( x > MAX REAL ) {
assert( 0 /* overflow */ );
}
else {
return (short) (x * 16.0);

double conv_to floating point (short x) {
return x / 16.0;

void main () {
short i;
printf ("short sgrt loopkup table[] = {\n");
for (1i=0; i<32678; i++) {
printf (" %i,\n", conv_to fixed point (sgrt(conv_to floating point(i))));
}
printf ("}\n");
return 0;

If you compile and run the above C program, you'll end up with a C array, in particular, this fixed-
point square root lookup table.

short sqgrt loopkup table[] = {
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16,
16,
17,
17,
18,
18,
19,
19,
20,

}i

Notice that the earlier program was written to generate the C code necessary to initialize our desired
lookup table. Programs that generate other programs are common, and are particularly useful when
creating large lookup tables.

Now, we revisit the sgrt function.

short fixed point sqgrt(short x) {
if(x < 0 ) {
assert( 0 /* can't take sqgrt of a negative number */ );
}
else {
return sqrt loopkup table[x];

We can re-write our distance function as follows.

typedef struct {
short x, y; // fixed point format (12.4)
} point t;

short compute distance(point t pl, point t p2) {
short tl = fixed point sub(p2.x, pl.x);

short t2 = fixed point sub(p2.y, pl.y):
short t3;
tl = fixed point mul(tl, tl1);

t2 = fixed point mul(t2, t2);
t3 fixed point add(tl, t2);
return fixed point sqrt(t3);

Generally, lookup tables are values that are pre-computed statically (i.e., during design time) and
looked up dynamically (i.e., as the application is running). They are frequently used in fixed-point
implementations to compute math functions. However, their use can be applied beyond fixed-
point systems. When using lookup tables, a programmer must take into consideration the memory
requirements for the table vs. the overhead to compute the values at run-time. In our example, we
had to use 64K bytes of memory to store the square root results. This is probably far more than the
amount of code necessary to implement the square root function using an algorithm. However, our
lookup approach will be much faster than the algorithmic version.
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The fixed-point implementation of the distance function, combined with the lookup approach for
calculating square roots will be a much more efficient (time wise) implementation than one that is
based on floating point arithmetic and the built-in sgrt function.

Do: Implement both a floating-point and a fixed-point version of the distance example. For your
fixed-point version, implement one based on lookup-table computation of sqrt and one based on the
standard C function. Now write a test program that calls the distance function with 100 different
point sets. Measure the time required to run each of these 3 versions. Summarize your results.
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Chapter 11: Implementing SynchSMs on an FPGA

An FPGA is a type of programmable chip that is growing in popularity in embedded systems,
commonly found alongside or even instead of a microcontroller. While a microcontroller is
programmed with instructions that execute sequentially, an FPGA is programmed with circuits that
execute concurrently. A task implemented as a circuit on an FPGA may be able to execute with a
smaller period than on a microcontroller, such as with a period of 1 microsecond, versus a period
typically no smaller than 1 millisecond on a microcontroller. Furthermore, multiple tasks can be
implemented as distinct concurrently-executing circuits on an FPGA, eliminating the need for task
scheduling, and eliminating jitter and missed deadlines. The drawback is that FPGAs compared to
microcontrollers typically are bigger, consume more power, cost more, and are harder to program.

Figure: An FPGA chip

Implementing tasks on FPGAs usually requires extensive learning of languages, tools, and
techniques for FPGAs . However, synchSMs can be straightforwardly implemented on an FPGA
using a technique similar to implementing synchSMs on a microcontroller. For a microcontroller, we
translated to a standard microcontroller language (C), and then we let a tool (a compiler) convert
that language description into the machine instructions to be programmed into the microcontroller.
Similarly, for an FPGA, we will translate to a standard FPGA language (VHDL), and the we will let a
tool (a synthesis tool) convert that language description into the circuits to be programmed into the
FPGA.

VHDL is currently one of two common languages for programming FPGAs. The other common
language is Verilog. The techniques described can be straightforwardly adapted to Verilog. C is
slowly becoming supported by some tools for programming FPGAs, and may become standard
enough in coming years that synchSMs can be translated to a form of C, rather than VHDL, for
implementation on FPGAs.

Translating a synchSM to VHDL

VHDL is a hardware description language (HDL) intended to describe circuits. This section provides
a brief review of parts of VHDL relevant to our goal of implementing synchSMs on FPGAs.

A new system is declared as an entity that names the system and that lists the system's inputs and
outputs. As before for our RIM microcontroller system, we'll assume the system has eight inputs A
and eight outputs B. The system on an FPGA also has a system clock input and a system reset input.

LIBRARY ieee;
USE ieee.std logic 1164.ALL;

ENTITY MainSystem IS
PORT (
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A i: IN std logic_vector (7 DOWNTO O0);
B o: OUT std logic vector (7 DOWNTO O0);
clk i: IN std logic;
rst i: IN std logic
);
END MainSystem;

We named the system "MainSystem." We capitalized VHDL keywords to make them clear, though
VHDL is not case sensitive. A "PORT" is an input or output of the entity. We follow the convention
of adding "_i" to input names and "_o" to output names. "std_logic" is a single-bit data type defined
in the ieee library. "std_logic_vector" is a multi-bit data type. We use "7 DOWNTO 0" rather than "0
TO 7" so that the most significant bit is on the left. The above entity describes a system with the
inputs and outputs shown below.

MainSystem
a ) a
— e A B o=
— I8 _j
—= clk_i

The new entity's internal circuits are described as an architecture. VHDL supports various
architecture description approaches, but we'll focus on an architecture described as one or more
processes. We'll use a process to describe a synchSM that is to be implemented as a circuit on the
FPGA. The process consists of sequential statements. Below is an architecture having one process
describing the given BlinkLed synchSM, serving as a model for translating synchSMs to VHDL.

BlinkLed
Period: 500 ms;

LedOff LedOn

BO =0, BO =1,

ARCHITECTURE beh OF MainSystem IS
BEGIN

BlinkLed: PROCESS(clk i)
TYPE states IS (LedOff, LedOn);

VARIABLE state : states := LedOff;
VARIABLE BO v : std logic := '0';
BEGIN

IF (clk i='l'"' AND clk i'EVENT) THEN
IF (rst_i='l") THEN

state := LedOff;
BO v :='0";
ELSE -- SM case stmts go here
CASE state IS -- Transitions
WHEN LedOff =>
state := LedOn;
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WHEN LedOn =>

state := LedOff;
WHEN OTHERS =>
state := LedOff;
END CASE;
CASE state IS -- Actions
WHEN LedOff =>
BO v := '0";
WHEN LedOn =>
BO v := '1";
END CASE;
END IF;
B 0(0) <= BO v; -- update port signal
END IF;

END PROCESS;
END beh;

The process is named "BlinkLed." The process declaration "PROCESS(clk_i)" makes the
process sensitive to clk_i, which means that the process executes whenever an event occurs on
clk_i. Next come three declarations. The "TYPE" declaration defines possible synchSM states "LedOff"
and "LedOn." The "VARIABLE state" declaration creates a variable "state" to maintain the current
state, initialized to "LedOff". The "VARIABLE BO_v" declaration will be described shortly.

After "BEGIN" come the process' main statements. Because we only want the process to execute
when the clk_i input changes from 0 to 1 (corresponding to a synchSM tick), and not from 1 to O,
the first "IF" statement's condition checks that "clk_i='1"", meaning the event on clk_i that caused
the process to execute must have been a change to 1. (The "clk'EVENT" part of that condition isn't
strictly needed, but is included as good programming practice for cases when processes are sensitive
to more than one input). The next "IF" statement checks if the rst_i input is 1, meaning the system
is being reset, in which case the state is set back to its initial state LedOff and BO_v is set to
0. Otherwise ("ELSE"), the statements that describe the synchSM are executed. Those statements
consist of a "CASE" statement for transitions, and another "CASE" statement for actions, just as
when translating to C.

The need for variable BO_v is as follows. In synchSMs, actions can write variables as well as read
variables, and system inputs A and outputs B were treated as variables. In VHDL, output ports can
only be written, and cannot be read. Thus, the VHDL has a declaration for variable "BO_v" and
writes to that variable in the CASE statement, for consistency with the synchSM model. Then, at the
end of the process, we updated the output port with the variable's value. We also note that VHDL
distinguishes between variables and signals, and ports are signals. The distinction is beyond our
scope, but is manifested by the different notations for writing a variable (":=") and for writing a
signal ("<=").

-" starts a comment in VHDL; any text appearing on the rest of the line is ignored.

The above VHDL code describes the following architecture for the FPGA system. The BlinkLed process
writes to just B_o(0) of the eight-bit port B_o.
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MainSystem
8 |A BlinkLed Bolg,
— . B_ni0)
. rst_j _
clk_d .

The VHDL description can be provided to a synthesis tool, which will convert the BlinkLed process
into a custom processor circuit. For the interested reader, the custom processor might have the
following circuit structure.

Blink_ed
combina | BO_V E'__E(U}
ret i i nn_al
. logic B_o(0)
_req
clk_j
J L1

The state variable becomes a register, because its value must be stored to be read by the next
process execution. Combinational logic converts the current state register value (and the rst_i input)
into a next state value, and a value for B_o(0). BO_v is not read across process executions, so
becomes a wire rather than a register, but the B_o(0) signal is only written on rising clock edges
and thus must retain its value at other times, necessitating a register.

Achieving the proper synchSM tick rate

The above VHDL assumes that clk_i ticks at 500 ms, as required by the BlinkLed synchSM. However,
an FPGA's system clock input typically ticks at a much faster rate like 1 MHz or 100 MHz. Thus,
another process is needed to convert the faster FPGA system clock to the desired 500 ms clock for
the synchSM.

ARCHITECTURE beh OF MainSystem IS
SIGNAL BLclk_s: std logic;
BEGIN

BlinkLed: PROCESS (BLclk_s)

IF (BLclk_s='l' AND BLclk_s'EVENT) THEN

END PROCESS;

BlinkLedClk: PROCESS(clk i) -- Suppose 1 MHz
VARIABLE cnt: INTEGER := 0;
BEGIN

-- 1 MHz means 1 microsecond(us) per tick
-- 500 ms * 1000us/ms = 500,000us
IF (Clk_i='l' AND Clk_i'EVENT) THEN
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IF (rst_i='l") THEN

cnt := 0;
ELSE
cnt := cnt + 1;

IF (ent = 500000) THEN
BLclk s <= '1’';

cnt = 0;
ELSE
BLclk s <= '0';
END IF;
END TIF;

END IF;
END PROCESS;
-- Note: above process is shorthand for l-state synchSM

END beh;

The processes work together as follows. Suppose the system clock clk_i runs at 1 MHz, meaning
1 microsecond per tick, so 500,000 such ticks would equal the desired 500 ms. The BlinkLedClk
process is sensitive clk_i, and each time clk_i ticks (i.e., changes from 0 to 1), the process
increments a counter variable "cnt". When cnt reaches 500,000, the process sets a signal BlLclk_s
to 1 and resets variable cnt to 0, else the process sets BLclk_s to 0. BlLclk_s is declared as a
global signal in the architecture (shown in bold above), so both processes can access that signal.
The BlinkLed process is changed to be sensitive to BLclk_s (shown in bold above), so the BlinkLed
process will now tick once every 500 ms, as desired.

The above VHDL code describes the following architecture for the FPGA system.

MainSystem
8 Al BlinkLedClk Blink_ed Bolg,
_ B_o(0)
Sl BLclk_s
rst_i rst_|
> L R  —

A synthesis tool would convert the two processes into two concurrently-executing custom processor
circuits, connected as above. For the interested reader, the custom processor for BlinkLedClk will
have a register for cnt, and combinational logic that can add 1 to cnt, store 0 into cnt, and compare
cnt with 500,000, setting BLclk_s to 1 in that case.

Below is a synchSM that reads input A_i, has transition conditions, and has a local variable.

BlinkingLed2
Period: 250 mg
unsigned char x;

X=3 X=4

I < 3)/
¥=0

11X < 4/
¥=0; :E o )
BO=0: -
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The synchSM would again be described with two processes. One process would generate the 250 ms
clock. The other process would look as follows.

ARCHITECTURE beh OF MainSystem IS
SIGNAL BL2clk s: std logic;
BEGIN

BlinkingLed2: PROCESS (BL2clk s)
TYPE states IS (Init, LedOn, LedOff);
VARIABLE state : states := Init;
VARIABLE X v : std logic vector (7 DOWNTO O0);
VARIABLE BO v : std logic;

BEGIN
IF (BL2clk s='l' AND BL2clk s'EVENT) THEN

IF (rst_i:'l') THEN

state := Init;
ELSE
CASE state IS -- Transitions
WHEN Init=>
state := LedOn;

WHEN LedOn =>
IF (X v < "00000011™) THEN

state := LedOn;

ELSIF (NOT(X v < "00000011")) THEN
state := LedOff;

END IF;

WHEN LedOff =>
WHEN OTHERS =>

state := Init;
END CASE;
CASE state IS -- Actions
WHEN Init =>
X v := "00000000";
BO v :='0"';

WHEN LedOn =>
X v :=X v + "00000001";
BO v := '1"';
END CASE;
END TIF;
B o(0) <= BO v;
END IF;
END PROCESS;

Multiple synchSMs

A system containing multiple synchSMs is described as above with two processes per synchSM, one
describing the states, the other to convert the system clock to a clock for the synchSM. Consider the
LedShow system from an earlier chapter:
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LedShow
. _— B0
BlinkLed Period: 500 ms >
Bl =0; BO =1,
ThreeLeds Period: 500 ms B5
-
o> =
BE=1; Bs =10, BS =0 B
B =0, BE=1; BE =0; -
Br =0 Bf =0; Bf =1

The system would be captured with two processes per synchSM, as shown:

ARCHITECTURE beh OF MainSystem IS
SIGNAL BLclk s, TLclk s: std logic;
BEGIN

BlinkLed: PROCESS (BLclk_s)

END . ];’I;{OCESS;

BlinkLedClk: PROCESS(clk i) -- gen 300 ms BLclk s
END - ];E-{OCESS;

ThreeLeds: PROCESS (TLclk s)

END . E.’P.<OCESS;

ThreeLedsClk: PROCESS(clk i) -- gen 200 ms TLclk s
END . ]::’1;<OCESS;

END beh;

The above code describes the following architecture for the FPGA:
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MainSystem
BlinkL edClk BlinkLed
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- - -
) Blclk _s
ret i
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clh_i P Y —
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TLdk_s

B o(7)
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-

Suppose instead that the BlinkLed and ThreeLeds synchSMs had the same period and thus could
share a clock signal. Good practice still uses distinct clock signal processes, so that later
modifications (e.g., changing BlinkLed's period to 300 ms) are straightforward.

Some synchSMs communicate using a shared variable. VHDL supports shared variables, so
translating from such synchSMs to VHDL is straightforward. Recall the MotionTriggeredLamp system
from an earlier chapter, in which synchSM DetectMotion writes to a shared variable "mtn," which is
read by a synchSM IlluminateLamp. The VHDL architecture would be as follows.

ARCHITECTURE beh OF MainSystem IS

SIGNAL DMclk s, ILclk s: std logic;

SHARED VARIABLE mtn_sv: std_logic;

BEGIN

DetectMotion: PROCESS (DMclk s)
mtn_sv := '1l';

END PROCESS;

DetectMotionClk: PROCESS(clk 1)

END PROCESS;

IlluminateLamp: PROCESS (TLclk s)

IF (mtn_sv = 'l') THEN

END PROCESS;

IlluminateLampClk: PROCESS (clk i)

END PROCESS;

END beh;

--gen 200 ms DMclk s

--gen 200 ms ILclk s

Note that the shared variable is declared global to the architecture, in contrast to other variables
that are declared within a process. The shared variable synthesizes to a register component that
exists in addition to the four custom processors for the four processes.
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Chapter 12: Basic Control Systems

A control system is a common type of embedded system that regulates the behavior of a physical
device. A common example is a car's cruise control system, which regulates a car's speed. Another
common example is a water heater, which regulates the temperature of water in a tank. The device
being controlled is called the plant (such as the car or the water tank). In a simple control system,
the plant has an output whose actual value is to be regulated (such as the car's speed or the water's
temperature), and has an actuator input that affects the plant's output behavior (such as the car's
accelerator or the water tank's flame). A desired output value is an input to the system (such as
the desired car speed or the desired water temperature). The difference between the desired output
value and the actual output value (desired - actual) is known as the error. A controller strives
to reduce the error to zero by changing the value of the actuator input in response to positive or
negative error values.

Desired
output Controller [ACUator] pignt outoLt
value '”E‘Ut - u pLIJ
"I r 1 i —‘ 1
1 1 L] [
! Actual output : 1 rl
| value : ‘I :
! ] 1 |
]
Desired ! ! Abtual
water Flame Water water
tank
temperature temperature

—n

Consider designing a controller for a water heater. The controller will be implemented on the RIM
microcontroller. Suppose the flame (the actuator, which is actually a gas valve) input value can
range from 0 (meaning no flame) to 200 (meaning maximum flame), and is output from RIM as an
8-bit unsigned number on B. Suppose that the desired water temperature can range from 0 to 100,
but due to limited number of input pins, is divided by 10 and then input to RIM as a 4-bit humber
(ranging from 0 to 10) on A3A2A1A0. The output water temperature similarly ranges from 0 to 10
and is input to RIM on A7A6A5A4. The controller should sample the actual output value and compute
a new actuator input value at least once every 5 seconds.

Try: Complete the following synchSM describing a controller that sets the flame value maximally
(i.e., to 200) whenever the desired temperature is greater than the output temperature.
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Feriod: 5 seconds;

#Fdefine Actuator B

unsigned char Desired(y
return (A & Ox0F3;

1

unsigned char Actual( {
return { (A & 0x0F) == 4);

char Error; .
Actuator= 0; Error = Desired() - Actual();

FIMISH...
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The above controller approach, called on-off control, is simple but will likely have the undesirable
feature of overshooting the desired water temperature. Turning on the flame maximally may provide
too much heat to the water; when the flame is then is turned off, the latency of the rising water
temperature causes the temperature to rise above the desired temperature, a problem known
as overshoot. Furthermore, a second problem is the oscillation that may occur as the actual
temperature rises above and falls below the desired temperature. Trying to solve these problems by
decreasing the "on" value from 7 to a smaller value like 3 will decrease overshoot and oscillation, but
with the problem of a slower rise time, which is the time required to bring a lower actual value up
to the desired value. For a water heater used for a shower, the problem of overshoot may result in a
scalding hot shower, oscillation may result in a shower that annoyingly keeps changing temperature,
and slow rise time may result in a shower that is too cold for a long time after someone else has

taken a shower.

Flame off
Water . -
temperature A "
Y A . Actual
Overshoot** P =" '= = g ="' = = Desired
Tt Max flame
=
Time

Oscillation whose amplitude decreases over time is a problem; even worse is oscillation in which the
amplitude increases over time. A system with such oscillation is said to be unstable, resulting in
the system going "out of control." Instability should be avoided entirely.

Proportional control

A partial solution to the above problems is to set the flame amount proportional to the error. When
the error is very large, the flame amount should be large. When the error is smaller, the flame
should be smaller. Thus, if the water is very cold, the flame will be maximum, decreasing rise
time. As the actual temperature approaches the desired temperature, the flame is reduced, resulting
in less overshoot when the flame is turned off upon the actual temperature reaching the desired

temperature. Oscillation may also be reduced.
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Flame reduced
1=
Time

A proportional controller sets the actuator input value equal to the error times a constant:
Actuator = Kp*Error

Kp is a constant. The best value of Kp may be determined through experimentation with a
prototype water heater. Alternatively, the value of Kp may be determined by first creating a water
tank simulator (perhaps written in C and running on a PC), which includes modeling the tank of
water using mathematical equations based on the physics of water and heat transfer, and then
experimenting to find the best Kp. Engineers trained in control systems may instead determine Kp
via analysis of the mathematical equations.

P_Ctrl
Period: & seconds;
Il Actuator, Desired, and Actual defined as earlier

char Error;
const char Kp = &, if Assume foundto be the hest

m-m.-

Actuator=0; Error = Desired() - Actual);
Actuator= Kp *Error;

Proportional-derivative (PD) control

The problems of overshoot, oscillation, and slow rise time can be further reduced by having the
controller consider the rate of change of the actual output value as it approaches the desired value.
Consider the given point in time T for two different situations A and B of the actual output value:

Copyright © Frank Vahid and Tony Givargis 2011 120
Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu



Programming Embedded Systems: An Introduction to Time-Oriented Programming

Water &
tem perature

_____________________ Desired

el Actual

/ B AdualPrev

Both situation A and situation B have the same error at time T. However, situation A has a slow
rate of change just before time T, whereas situation B has a fast rate of change. Situation B clearly
requires a reduction of the actuator input value, lest the desired value be overshot. On the other
hand, situation A could continue with the same actuator input value. In a water heater, scenario A
might occur in the winter when the air around a poorly-insulated water heater (located in a a garage
perhaps) is very cold; scenario B may correspond to a hot summer day. In a car cruise controller,
scenario A may occur when a car is driving into the wind, uphill, and/or is carrying a heavy load;
scenario B when going with the wind, downhill, and/or when carrying a light load.

The rate of change of the actual output plot can be determined by computing the slope of the plot
at point T. Recall from calculus that the derivative of a function yields the slope. A simple way to
approximate the derivative at a given point is to compute the difference between the current actual
output value and the previously-sampled actual output value: Deriv = Actual - ActualPrev. This
derivative can be multiplied by a constant Kd, and the resulting derivative term can then be added
to the proportional term:

Actuator = Kp*Error - Kd*Deriv

Kd is typically larger than Kp. The derivative term is subtracted from the proportional term rather
than added, because if the error is positive and the slope is very large (as in situation B above), we
want to reduce the actuator value.

A synchSM can then be defined as follows:

PD_Ctrl

Period: & seconds;

I Actuator, Desired, and
Actual defined as earlier

char Errar;

char Deriv;

unsigned char ActualPrey;
const charkKp=15;

onst char Kd =10,

Actuator=0; Error = Desired - Actual,
ActualPrev = 0, Deriv = Actual - ActualPrev;

Actuator = Kp*Emor - Kd*Deriv;

ActualPrev = Actual;
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Proportional-integral (PI) control

An undesirable feature in a control system is steady-state error, wherein the actual output value
never actually reaches the desired output value:

Water
temperature

____________________ Desired
Actual

=
Time

In a water heater, steady-state error could occur for example if the proportional constant Kp was
determined with the surrounding air at a normal room temperature, but then the water heater is
installed into a very cold garage, such that the constant Kp does not create a flame strong enough
to overcome the loss of heat from the water tank to the surrounding air of the garage.

Steady state error can be approximated by summing the error values computed for each sample.
Recall from calculus that the sum of the points of a plot can be computed as the area under the
curve, which is the plot's integral, so this term is called an integral term. To prevent this term from
growing too much, the term is typically constrained to be within a max and min value, as follows:

Integ = Integ + Error;

if (Integ > IntegMax) { Integ = IntegMax; }

else if (Integ < IntegMin) { Integ = IntegMin; }

This integral can be multiplied by a constant Ki, and added to the proportional and derivative terms:
Actuator = Kp*Error + Ki*Integ - Kd*Deriv
Ki is typically much smaller than Kp.

A controller using the above equation is known as a PID controller (each letter indicating inclusion
of the proportional, integral, and derivative term, respectively).

Additional issues

The Actuator calculation could result in a value outside the allowed Actuator value range. For the
water heater example, only values between 0 and 200 are allowed. A controller may therefore
introduce a temporary variable, compute the actuator value as above, and then set that value to
200 if it is greater, or set it to 0 if it is less, before finally setting Actuator to that temporary value.

Sampling rate impacts the calculation of the derivative. If a very fast sampling rate is being used,
the derivative might be computed as the average of the past several computed slopes, to avoid very
rapid changes.

PID control is commonly done using floating point numbers rather than integers.
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PID tuning

The best values of constants Kp, Kd, and Ki depends on the plant being controlled. Example constant
values for a water heater might be Kp=5, Kd=10, and Ki=1, but these values can vary. Several
trial-and-error methods have been defined to select good constant values, assuming the plant can
be experimented with or a simulation system exists. A popular method is called the Ziegler-Nichols
method:

Set Ki=0 and Kd=0 initially, and set Kp to some small value initially (e.g., 1).
Change the desired output value and observe the actual output value. Increase Kp until
the actual output value oscillates with a constant amplitude (the oscillation amplitude is not
increasing over time, nor is it decreasing over time -- it's a steady oscillation).

e Record the value of Kp, calling it Ku. Also record the oscillation period (in seconds), calling
it Pu.

e SetKp=Ku/1.7, Ki=(Kp*2)/Pu, Kd=(Kp*Pu)/8,

The above is suitable for a rough tuning. More sophisticated methods and tools exist. Control system
design is a thoroughly developed field with entire textbooks devoted to its study. For any safety-
critical or other system where excellent response is required and/or instability is dangerous, qualified
control engineers should be sought.

Online simulators can be found to simulate PID controllers and plants, such as the simulator at:
http://www.chem.mtu.edu/~tbco/cm416/newpida.html (To use, press Pause, change Manual
to PID, select Kc (same as our Kp), and resume. Reload page and repeat until oscillation found,
then related/pause and set Kc, Ti, and Td values and resume.
http://controlcan.homestead.com/files/Controller/controlcontroller3 id.htm

In using such simulators, be aware that many PID introductions and simulators use a different

convention for constants in the PID equation:

Actuator = Kp * ( Error + (1/Ti)*Integ - Td*Deriv)

Ti and Td are constants that adjust the Kp constant. Using that convention for the constants, the

Ziegler-Nichols method's first step sets Ti=a large number and Td=0, and the last step sets the

constants as follows: Kp = Ku/ 1.7, Ti = Pu/2, Td = Pu/8.

Sources for the above information include:
e PID Tuning -- Classical: http://controls.engin.umich.edu/wiki/index.ph

PIDTuningClassical#Ziegler-Nichols_Method
e PID Without a PhD -- http://www.embedded.com/2000/0010/0010feat3.htm
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Chapter 13: Basic Digital Signal Processing

A signal is a value that is continuously changing over time. Often, signals represent some physical
phenomena, for instance temperature, sound, light, pressure, or force. Signals may also represent
things other than physical phenomena, for example, the value of a company stock, or the number of
hits on a web site per second. It is often necessary to process signals in a humber of ways to obtain
usable results for a variety of applications. Some of these applications are very simple in nature, for
example, a thermostat continuously monitoring the temperature in a room and enabling/disabling
the heating/cooling system when certain high/low thresholds are exceeded. Other applications
may be more complicated, for example, a radio continuously receiving electromagnetic waves and
extracting an audio broadcast that is played back through the radio's speaker. With the increased
use of digital components in system design (in particular the microprocessor) signal processing is
frequently referred to as digital signal processing (DSP). Regardless of the application, DSP is an
essential engineering domain that follows well established design principles. This chapter is a light
introduction to the field of DSP. We attempt to introduce the basic concepts in an informal manner.
Interested students are encouraged to seek a dedicated text book or course on the topic of digital
signal processing.

Throughout this chapter, we will present concepts and implementations as two separate entities,
with an emphasis on concepts. Concepts help us gain a strong understanding of things in an abstract
way. Implementations help us understand design considerations and tradeoffs in a tangible way.
Remember that a good engineer must be able to distinguish between the two and be ready to reason
and conduct work in one, the other, or combined fashion.

Sensors

We begin by considering a sensor. Conceptually, a sensor is a component with a single output
as shown below. A sensor outputs a signal that varies over time. When dealing with signals that
represent physical phenomena, we can think of a sensor as a device that converts energy from one
form (heat, light, pressure, etc.) to another form (typically an electrical voltage).

Sensor -

adh

>

Most sensors output an analog signal. An analog signal is one that is defined for all instances of
time, in other words, an analog signal is uninterrupted. For example, a temperature sensor that
outputs an analog voltage in the range of 2V to 3V, corresponding to a temperature in the range
of 0 to 100 degree Celsius. We can just as easily imagine a sensor that outputs a digital signal. A
digital signal is one that is defined for discrete instances of time. For example, a digital temperature
sensor might output an 8-bit binary value, in the range of 0 to 100 degree Celsius, every 0.1 second.
Viewed from the outside, such a sensor would be generating a stream of samples (say TempO,
Templ, Temp2, ...) that represent the temperature at time 0 second, 0.1 seconds, 0.2 seconds and
so on. To be more precise, a sensor with a digital output should be shown as follows.
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Sensor T

However, we will draw a signal as a continuous curve, with the understanding that if referring to a
digital signal, it should be interpreted as a sequence of samples and if referring to an analog signal
it should be interpreted as a continuous value.

When selecting a sensor for an application, we must be aware of the following characteristics:

e Sensors are limited in their sensing capabilities. Our analog temperature sensor is able to
sense temperatures in the range of 0-100 degree Celsius.

e Sensors have accuracy limitations. Our digital temperature sensor can tell us that the
temperature is 15 or 16 degrees, but not 15.3 degrees. In technical terms, our temperature
sensor has a +/- 1 degree resolution.

e Sensors output values that are raw and would require further processing to be of much use.
Our analog temperature sensor outputs a voltage in the range of 2V to 3V that would require
conversion before it can be displayed in Celsius.

As expected, the implementation of a sensor varies depending on what it is designed to sense, how
accurate it needs to be, and what conditions it must operate under. We can, for instance, design a
simple analog temperature sensor as shown below. Such a temperature sensor will surely not win
any kind of a design award, but it might help with demystifying the art of sensor design.

1
— 7 20-30V
NV — L (Output)
R2
AN
§ Exposed to
S Heat

Using Ohm's law and basic circuit analysis, we can see how such a sensor might work. First, note
that the output is the voltage drop across R2. The voltage drop across R2 is the current through
R2 multiplied by R2's resistance. The current through R2 is the supply voltage (5V) divided by the
total resistance in the system, or, I = 5/ (R1 + R2). Combining these, we obtain the voltage at the
output of the sensor as V = R2 * (5 / (R1 + R2)).

Assume that R1 is a very accurate resistor that is shielded against heat and manufactured using
materials that have excellent tolerance to temperature. In other words, R1's resistance, say 100
Ohms, is not expected to change by much as the temperature around the sensor rises or falls. R2,
on the other hand, is fully exposed to ambient temperature and is manufactured using material
that are very sensitive to temperature. In other words, R2's resistance will increase or decrease as
the temperature around it rises and falls. At an ambient temperature of 50 degree Celsius, R2's
resistance is expected to be equal to that of R1, i.e., R1 = R2 = 100 Ohms. Thus the output will
beV =100 * (5/ (100 + 100)) = 2.5V, as expected. As the temperature rises, R2's resistance will
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increase and, at 100 degree Celsius, R2's resistance might be 150 Ohms. Thus, the output will be V
= 150 * (5 / (100 + 150)) = 3V, as expected. At a temperature of 0 degree Celsius, R2 might be 67
Ohms. Thus, the output willbe V = 67 * (5 / (100 + 67)) = 2V.

Actuators

We now consider an actuator. Much like a sensor, conceptually, an actuator is a component with a
single input as shown below. Often times, an actuator will convert its analog or digital input signal to
some form of energy. Examples of actuators are speakers (mechanical energy), LEDs (light energy),
heaters (heat energy), and so on.

| Actuator

ad

_

As is the case with sensors, we must be aware of the range and accuracy limitations of actuators
and carefully consider their input signal specification. As expected, the implementation of actuators
is highly application specific. Luckily, an embedded system designer can easily obtain sensors and
actuators of all kinds from various vendors that specialize in the design of these devices. The real
challenge is selecting appropriate devices that best fit the application requirements.

With what we have learned, we can attempt to build our first system, a so called "Hello World"
example of signal processing. Let us do so as shown below.

Temp. LED

Sensor

_

In the above example, we attempt to build a system where the LED's brightness increases or
decreases as the room temperature rises and falls. For now, we assume that the output/input of
these components are compatible. Provided that this is the case, we might have a system that is
functioning as expected. However, our "Hello World" example is too limited and utterly boring!

What we need is to add "processing" to the mix so that our "Hello World" example can become an
authentic signal processing application. For that to happen, we introduce a very important building
block, namely a transform component, as shown below.
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1 Transform -
T - -

A transform component is one that takes its input signal, does some transformation or processing,
and generates a corresponding output signal. Some transform components are very simple, others
are very intricate. We'll introduce a number of these transforms with the aim to eventually establish
a generic DSP architecture.

Analog to Digital Converter

An important transform component is the analog to digital converter (ADC). An ADC is a mixed-
signal transform. A mixed-signal device is one that has a mix of both analog and digital I/Os. An
ADC, for example, has an analog input and a digital output.

Analo Digital
9 5| ADC 9

i~~~

-

ADCs have the following key characteristics:

e Input range, measured in Volts, is the range of voltages that can be applied at the input of
the ADC.

e Output range, or quantization, measured in bits, is the number of bits in each output
sample (typical values are 8, 12, 16, 24, and 32). It is common to say an "8-bit ADC",
meaning an ADC with output samples that are 8-bit wide.

e Sampling rate, measured in Hz, is the rate at which the ADC generates its output samples.

Let us consider a 16-bit ADC with an input range of -1V to +1V and sampling rate of 40 KHz. We will
connect this ADC to the output of a microphone in a naive attempt at converting sound to a stream
of samples for further processing.

: 16-bit ADC
Mic. —» 40 KHz L
-
Amplifier

In our attempt above, we will be faced with a number of issues. First, the microphone's output is
likely to be in the range of +/- 1mV. The ADC's input is in the range of +/- 1V or 1000mV. We can
be sure that under this arrangement we are unlikely to make a good use of our ADC capabilities,
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essentially under utilizing our ADC. An electrical engineer might use the term signal under-loading
to describe this design flaw. We solve this problem by adding an amplifier trasform. An amplifier is
an analog device that takes its input signal and multiplies it by a number, called gain, to obtain its
output. Most commonly, the gain of an amplifier is larger than 1, for instance 1000. However, it is
possible to design an amplifier with a gain of less than 1. Such a device is often referred to as an
attenuator. An amplifier with a gain of 1 is referred to as a buffer. Continuing with our design, we
obtain the following system.

. Amplifier 16-bit ADC
Mic. =% cain=1000 [™] 40 KHz >
>

The microphone's output, after amplification, is expected to be in the range of +/- 1V. Our attempt
at fixing the problem of under-loading may introduce a new problem, commonly known as signal
overloading. Signal overloading occurs when the input range of a transform is exceeded. The result
of such a condition is clipping, namely the loss of signal values that are beyond the input range, as
shown below. Consider the case that our microphone, in the presence of a loud sound, will output
a voltage that is within +/- 1.2mV. After amplification, the resulting signal, at +/- 1.2V, will exceed
the ADC's input specification. Clearly, there is an inherent tradeoff between maximizing conversion
accuracy by amplifying the signal to fit the input of the ADC while not exceeding the limits and cause
clipping.

This portion of

- the signal is
;o w——  dipped away.

ADC irput

Bias Correction

Another problem that needs attention is that of bias correction. Many signals (including audio,
video, and electromagnetic waves) are centered around 0. Specifically, a signal is centered around
0 if it can be viewed as a curve that fluctuates (or alternates) above and below the horizontal axis
(e.g., the figure above). Mathematically, the integral (sum of values) of such a signal yields O.
Sometimes, a sensor might generate a signal that fluctuates above and below a non-zero value. Put
another way, it has a bias built into its output. (This is often due to manufacturing flaws.) Engineers
sometimes refer to a signal that has an alternating nature to it as an AC signal (alternating current).
Likewise, a bias is referred to as a DC (direct current) signal. Thus, it is common to speak of the
bias correction problem in terms of "eliminating the DC component." Regardless of what it is called,
a bias will lead to a waste in the ADC conversion precision. Can you see how? The answer is give in
the following figure.

Copyright © Frank Vahid and Tony Givargis 2011 128
Licensed to: Tony Givargis - 24 Murasaki Irvine, CA 92617 - 949-232-7909 - givargis@uci.edu



Programming Embedded Systems: An Introduction to Time-Oriented Programming

ADC input
. . ———="—*  |mits
Signal This portion of
fluctuates the ADC range ~
wround this line. is not used.

Y

Note that amplification can not eliminate the waste. In fact, bias correction must be performed first
to allow for effective amplification. To eliminate the bias, we introduce a new transform component
and revise our on going example.

: Bias Amplifier 16-bit ADC
Mic. ™ Correction | | Gain = 1000 [ ™ 40 KHz T >
=

A bias correction device is one that maintains the integral of its input signal at all times (i.e.,
the bias) and outputs a value that is equivalent to the input signal minus this bias. A simple
implementation of a bias correction device uses a capacitor as a way to block the DC (bias) but let
the AC (signal) through.

Sampling Rate & Quantization

So far, we have made an effort to fully utilize our ADC input range by performing signal
conditioning activities along the path from the sensor to the ADC. An important question that one
should be asking is just how precise does the analog to digital conversion need to be? As with most
answers, we take a look at this question in terms of space and time. The conversion process from
analog to digital breaks our signal value into little chunks (space). The conversion also breaks our
signal value into samples (time). Both of these processes remove information from the original signal
as shown below.

Loss of value
in space

4 ihel
\

Loss ofvalue
in time

L

What governs the amount of loss of signal along the time axis has to do with the sampling rate of
the ADC. In other words, the higher the sampling rate, the smaller the loss of value along the time
axis. What governs the amount of loss of signal in the space axis has to do with the quantization
or bit-width of the ADC (sometimes referred to as the resolution of the ADC). In other words, the
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higher the number of bits in each sample, the smaller the loss of value along the space axis. We'll
take a look at how to determine these two parameters in a bit more detail.

We begin by introducing the concept of dynamic range. The dynamic range of a device (e.g., an
ADC) is a measure of the precision of a device with respect to the range of values that it can convert.
The ADC we've used in our example can convert an input voltage in the range of -1V to +1V, thus
we might reason that the conversion range of the ADC is 2 Volts. But, do not confuse the conversion
range with dynamic range. The conversion range ignores the voltage gap between two consecutive
samples. For example, a 16-bit ADC designed to convert an input signal in the range of -10V to
+10V will have a range that is 20 Volts (better than the ADC from our example). But, it would be
unfair to say that this ADC has a better accuracy than the one from our example. Can you see why?
The answer is in the fact that both ADCs are bound to use the same 2716 distinct binary values to
represent their inputs. One has a wider input range, but it has a bigger gap between two consecutive
voltages. A better method for computing the dynamic range, thus, would be to combine the range
and gap in a single formula, as follows:

range = V_max - V_min

gap = range / 2N

dynamic range = range / gap = (V_max - V_min) / ((V_max - V_min) / 2~N) = (V_max - V_min) /
(V_max - V_min) * 2N = 2”~N

Interestingly, all N-bit ADCs have the same dynamic range regardless of their input voltage
specification. Engineers often express dynamic range using the decibel logarithmic scale as shown
below:

dynamic range (dB) = 10 * log( range”~2 / gap”2 ) = 10 * log( range/gap )2 = 20 * log( range/
gap ) =20*log( 2 )N =N*20*log(2)=6.02*N

You may wonder why range and gap are squared. This has to do with the fact that range and gap
are measured in Volts. However, dynamic range is often used in the context of signals that represent
physical phenomenas, i.e., energies. You may recall, from your physics courses, that energy is
proportional to VA 2. Per the above discussion, the ADC used in our example has a dynamic range of
about 96 dB.

In the context of DSP, dynamic range sums up, as a single number, the range and precision of a
system. Clearly, the desired dynamic range is an application specific parameter. Let us imagine the
human ear as a sensor (a reasonable assumption). As such, it has a precision or sensitivity to the
loudness of sound that is present in its surroundings. For example, it might tell that sound A is
louder than sound B as long as the difference between A's and B's loudness level is greater than
gap -- it is certainly the case that the human ear does not have infinite precision. The human ear is
also limited to how loud of a sound it can hear. It might, for instance be able to hear anything from
a complete silence (loudness 0) to a really loud sound (loudness range) -- beyond this level, the
human ear would suffer permanent damage. Just like our ADC, we can compute the dynamic range
of the human ear using gap and range. Scientists, through experimentation have established that,
on the average, the human ear has a dynamic range of 130 dB. If we were to design an audio system
that fully engage our human subject, we would consider using an ADC that could deliver about 130
dB. Similar dynamic range measurements have been performed on human eye, sensitivity to heat
through our skins, etc.

Try: What kind ADC resolution is necessary to achieve 130 dB?

We now turn our attention to sampling rate, or the rate at which our input signal is converted to a
stream of samples. We'll need to come up with a framework for determining an appropriate sampling
rate. To do so, we'll consider a couple of different scenarios. First, we'll look at a very boring signal,
one that changes very slowly. One such signal might be the temperature of a room, as shown below.
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21 7\

¥ 1 day

The temperature of the room, per the above plot, changes very slowly. For instance, during an entire
day, it might slowly fluctuate between 20 and 24 degree Celsius. Would it make sense to sample the
temperature of the room at a rate of 40 KHz, or 40,000 samples per second? Clearly, this would be
a major waste of resources. If the stream of samples is examined, one would notice that most are
identical to each other. There is very little "interesting" information captured. Now, let us go to the
other extreme. Consider our running example. Our sound system, at some point in time, might be
exposed to a short music clip that is 1 msec in duration, as shown below.

f ]

1 msec

Would it make sense to sample this sound clip at the rate of 2 KHz? At this rate, we would obtain
exactly 2 samples, as shown below.

f ]

1 msec

Would it be possible to reconstruct, or determine the nature of the original signal, if all we had were
the two samples? The answer is a clear no. We would be much better off sampling at a higher rate
to be able to obtain a sequence of samples that resemble the shape of the original signal. You must
start to see that the sampling rate must have something to do with how busy our input signal is.
Put another way, the sampling rate is related to the rate of change of the input signal. According
to the sampling theorem, an analog signal can be reconstructed from its samples if the sampling
rate is at least twice the highest frequency present in the signal. This means, if the signal contains
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the highest frequency component of f Hz, the sampling rate must be at least 2 * f Hz. This sampling
rate is also known as the Nyquist rate.

The highest frequency present in a signal is very application dependent. Our microphone, for
instance, will sense sound, which is known to be less than 20 KHz. Thus, our ADC, with a sampling
rate of 40 KHz is sufficient to faithfully convert the sound to a digital stream. It should not come as
a surprise to you that the audio CD format has a sampling rate of 44.1 KHz.

Aliasing

All systems are subject to noise. Noise is any unwanted signal, present in the surroundings of a
DSP system, that makes its way into the signal path. As illustrated below, a microwave owen might
be radiating small amounts of electromagnetic energies that somehow penetrate our system and
combine with our sound signal. Engineers always talk about signal to noise ratio. Obviously, it is
desirable to have a very small noise relative to the signal, thus the signal-to-noise ratio (SNR).
Higher SNR is better.

: Bias Amplifier 16-bit ADC
Mic Correction Zain = 1000 40 KHz [M
Moise from a

microwave oven

Noise reduction is often an implementation concern. Each of the components described earlier can
be designed with sufficient shielding to eliminate noise. If you take your cell phone apart, you'll see
that some of the electronic components are enclosed in metal cases. Likewise, if you take a look
at the coax cable that connects your DVD player to your TV, you'll notice that the cable is heavily
shielded. If you look for them, you'll see noise reduction shields everywhere.

Despite all implementation efforts to shield a DSP system, some noise will find its way into the signal
path. The question is if we need to be concerned with all noise? Consider our example. Since we are
interested in sound, we might decide that noise from the microwave owen, being in the GHz range,
can be tolerated. In other words, such high frequencies will not be audible to a human and, even if
they are present in our signal path. They'll make their way through our DSP system and come out
the other end (say a speaker) without being noticeable. This is a reasonable conjecture. But, as it
turns out, due to aliasing, it is flawed. Aliasing is the presence of a false or unexpected signal in
our signal path. Let us illustrate the concept with a simple example. Imagine a bicycle wheel that is
stationary. Now, imagine a person staring at one of the spokes of the wheel, shown in red below.
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Now, let us turn the wheel very slowly. In fact, let us turn it so that in exactly 1/30th of a second
the wheel appears as follows.

0 -45 ..

1130
SEC

Let us assume that the human eye is capable of sampling at a rate of 30 Hz (this is probably an
over estimate, the real number is closer to 25 Hz -- coincidently, birds have a much higher
sampling rate, therefore, if you make your bird watch TV with you, your are making it watch a slide
show). Our human subject will take 2 samples, one when the wheel was stationary (0 degrees) and
the other when the wheel is at the new location after 1/30th of a second (-45 degrees). The two
samples from the eye will be transmitted to the human's brain. The human brain, being logical
(most of the time), will conclude that the wheel must be turning clockwise. This is a "true"
interpretation of the signal (the two samples). Now, imagine that the wheel is turning a bit faster.
In fact, in exactly 1/30th of a second, the wheel would go from the resting position (0 degrees) to
a new position at (90 degrees), as shown below.

0,90, ...
A | .

Our human subject will generate two samples 0 and 90 and transmit those to the brain. The
brain, applying logic, will make the determination that the wheel is turning counter clockwise --
the most logical way to go from point A to point B, is the shortest distance. Clearly, our brain's
interpretation of the data is false. What has occurred is aliasing. Our sampled data at 0 and 90
contains misinformation because of the slow sampling rate of the eye. The only way to solve this
problem is to reengineer the eye to take more frequent samples. You must have experienced
something like our example many times when staring at a turning wheel. This example should
also give you some insight into the sampling theorem and why one must sample at 2x the highest
frequency.

1430
sEC

Try: What would the human subject conclude if the wheel was turning such that in exactly 1/30th of
a second, it completed a single revolution?

Try: What would the human subject conclude if the wheel was turning such that in exactly 1/30th of
a second, it completed one revolution + an additional 46 degrees?

It seems like we can avoid aliasing if we sample fast enough (i.e., 2x the highest frequency).
However, recall that we are trying to avoid unwanted noise in the high frequency range. We had
reasoned that frequencies that are beyond those of interest can be ignored. However, due to
aliasing, this noise (e.g, the wheel turning really fast) would present itself as a valid signal (e.g., the
wheel perceived to be turning really slow). This is illustrated in the figure below.
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In our running example, we are sampling fast enough to capture all the valid sound information.
However, due to aliasing of the noise from the microwave owen (in the GHz range), we will be faced
with an unwanted signal that is in the audible range. Our recording, for instance, would produce
an ugly sound that is directly from the microwave own, even though the microwave own is not
generating any sounds.

The solution, you might say, is to sample at a very high rate, say 10 GHz, so that we can capture
the high frequency data from the microwave own and digitally eliminate it (a topic that we'll discuss
shortly). This is a valid solution. In fact, one way to avoid aliasing is by over sampling. However,
it comes at a big cost. The higher the sampling rate, the more expensive it becomes to transmit,
store, and process signals.

Try: Assuming a CD can hold 700 MB of data, at 16 bits per sample, 2 channels, and 44.1 KHz
sampling rate, how many minutes of music can we store?

Try: Same assumptions as above, but sampling at 10 GHz, how many minutes of music can we
store?

Low Pass Filter

A better solution is to eliminate the higher frequencies from our signal path using more dedicated
analog components. This can be accomplished using a low pass filter. A low pass filter will
eliminate the higher (unwanted) frequencies prior to the conversion process, eliminating the
problem of aliasing. In fact, a low pass filter is sometimes referred to as an anti-aliasing filter. Low
pass filters are design to let all frequencies below a specific value, called the center frequency,
through while eliminating all frequencies above the center frequency. Conceptually, a perfect low
pass filter would be like an amplifier that has 2 gain settings, gain=1.0 or gain=0.0, determined by
the input frequency.

¢ 1.0

Gain

0.0

>
f_center Frequency

In reality, it is impossible to design such a perfect low pass filter. A more realistic design might have
the following characteristics.
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Let us revise our DSP example to include a low pass filter.

Bias Low Pass Amplifiar 16-bit ADC

ic. Correction Filter . Gain = 1000 40 KHz 1 ‘/—\J—\-\

Our example is now complete. We have managed to convert the raw sound, picked up by the
microphone (sensor), and convert it to a stream of 16-bit samples at 40KHz. Along the way, we
have addressed a number of problems, namely, under-loading, overloading, bias correction, anti-
aliasing, quantization, and sampling. In essence, we have composed a single component made of
a number of sub components. In fact, we can view our example, thus far, as a digital microphone,
i.e., a sensor that outputs a digital signal. Most sensors that have a digital output are designed in a
similar manner.

Playback Path

We can consider what we have studied so far as being along the receiving path. In other words,
we have been concerned with the signal traveling from the source (sensor) to the point where it is
digitized. We can, use the same design principles in reverse to build the playback path, or the path
from the digitized stream to an actuator. This is illustrated in the following figure.

Speaker | . B3 L ) ampifier || LoWPass [ | 16-bit ADC

Correction Filter 40 KHz - l/“\f\\

Most of the components should be familiar and their function clear to you. The speaker is the
actuator. The amplifier must have a gain that is sufficiently high to drive, or operate, the speaker.
To determine the gain, one must study the electrical requirements of the speaker. The bias
correction is placed to eliminate any unwanted bias that has been introduced along the return path.
The low pass filter is placed ahead of the amplifier so that unecessary noise, that has entered the
system, is eliminated prior to amplification.

Digital to Analog Converter

Another important transform component is the digital to analog converter (DAC). Similar to an
ADC, a DAC is a mixed-signal transform with a digital input and an analog output. A DAC converts
the digital value on its input to a proportional analog value on its output. DACs have the following
key characteristics:
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e Input range, or quantization, measured in bits, is the number of bits in each input sample
(typical values are 8, 12, 16, 24, and 32).

e Output range, measured in Volts, is the range of voltages that are generated at the output
of the DAC.

e Sampling rate, measured in Hz, is the rate at which the DAC consumes its input samples.

As you can see, a DAC is simply an ADC in reverse. It has the same specifications and, in most DSP
applications, the DAC parameters must be matched to those of the ADC parameters. Specifically,
DAC parameters must be selected according to the familiar concepts of dynamic range, sampling
theorem, and anti aliasing requirements.

A Complete Example

We can construct a complete DSP system by combining our receive and playback components, as
shown below.

. . Bias _| Low Pass . » | 16-bit ADC |:
A Carrectian Filter " AmMPINEr = “40KHz [
Bias B Low Pass | | 16-bit DAC |:

Speaker Comection [* | AMPIfer |< Filter | A0KHZ [*

Any sound picked up by the microphone will playback through the speaker. Along the way, the
signal will be digitized. Our design will ensure that the signal quality is high, noise is low, and all
sound frequencies of interest are present in the speaker's output. This is already a significant design
achievement. However, the system is still limited. For example, we are unable to do even the basic
task of controlling the sound volume. To do so, we need to introduce a final transform component,
namely the microprocessor. A microprocessor will allow us to process the digitized signal in a number
of ways. For instance, we can store it and play back later. We can stream it over the Internet to
our friends. We can compress it, and so on. But for now, we'll be looking at the microprocessor
to do activities that manipulate the signal itself, i.e., perform digital signal processing. The new
architecture might look as follows.

. [ Bias [ LowPass | _ . [ 16-hit aDC |
L *| corredion Filter a | il "l 40 KHz
MICROPROCESSOR
_ Bias _ n _ Low Pass | 16-hit DAC [©
SPeaker = Cormedion [T | AMPIEr | Fiter || 40kHz [T

The advantage of using a microprocessor is that we can implement concepts using software. Unlike
the previous components, which were analog or mixed-signal in nature, our microprocessor is
a familiar device. In many DSP designs, the choice of this microprocessor is very critical. The
microprocessor must perform all necessary computations in real time. Often times, engineers
select specially designed microprocessors, called digital signal processors (DSPs) to ensure
that all processing can be done quickly and with little power consumption. However, without loss
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of generality, we'll maintain a programming perspective that is independent from the choice of
microprocessor.

Digital Processing

At this stage, our microprocessor receives a stream of digital samples, Si[0], Si[1], Si[2], ...., and
so on. If playback in real-time is desired, the microprocessor generates a stream of corresponding
digital samples So[0], So[1], So[2], ..., and so on. The simplest transform is one that sends the
input to the output, verbatim.

Feriod: 1/ Sampling Rate;

i=0; So[i] = Sii],

I++:

Let us make things more interesting by introducing a transform called scaling.

=0 Soli] = Si[i] * G

I+ +:

Feriod: 1 /Sampling Kate;

G is the scaling factor. The output can now be attenuated or amplified. For example, this transform
will allow us to add volume control to our sound system. We would have a slider in our GUI that
allows the user to set G to a range of 0.0 to 1.0. This is what happens when you change the volume
control on your iPod.

Another transform might be one that mixes the two signals Sil and Si2.

Feriod: 1/ 5ampling H ate;

i=0. Sofi] = Sil[i]* G1 +Si2[i] * G2,
i++

For example, we might add a second sound signal to our example and use the microprocessor to
perform digital mixing of the two audio streams. The two gains G1 and G2 will allow us to determine
how loud one sound source is relative to the other. A sound mixing equipment that is used in
music studios has many sound channels and associated sliders (i.e., gain), but its core processing
functionality is similar to the mixing example above.
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Another transform might be one that adds an echo to the stream.

Periad: 1/ Sampling Rate;

()
Clit >—>CDSP_ouT

=K So[i]=Si[i- K] * A +Si[i]* B
i+

Here, K, A, and B are scalar constants. The idea is that the sound being generated now is a mix
of sound from the past (S at K samples ago) and the sound from present (S_i). One would expect
that A < B. In sound, for example, an echo is sound that reflects off of far away objects. This sound
is delayed (molded by K) and is weaker relative to the sound from present. Of course, one can
experiments with all sorts of settings for K, A, and B to obtain interesting sound manipulations. Also,
one can apply this transform to any kind of signal, not just sound. For instance, applied to video, an
echo would appear as a shadow effect.

In the above examples, we have assumed that the input and output samples are stored in arrays
that appear to be unbounded. Clearly, this scheme is not practically. No processor has infinite
memory. Depending on the application, these arrays may be implemented as bounded buffers. In
the case of bounded buffers, the arrays have to be large enough to accommodate the needs of the
application. For instance, in the echo example, the buffers can be bounded to K samples long.

Our last transformation is a digital low pass filter.

Period: 1 / Sampling Rate;

=1 Soli] =(Si[i- 1] +Si[ip/ 2
i++

The above transform generates an output sample by taking the average of two consecutive input
samples. In essence, we are performing signal smoothing, or eliminating sudden fluctuations (i.e.,
higher frequencies) in the input stream. We can control the filtering effect by increasing the number
of samples that are averaged. For instance, the following example is a low pass filter with a slightly
lower center frequency.

Period: 1/ Sampling Rate;

i=2 Solll = (Sili - 21 + Si[i- 11+ Si[i/ 3;

i++

Taking the example to an extreme, we can design software that allows the user to move a slider,
which in turn will increase/decrease the averaging window size. Such a slider would allow the user to
adjust the low pass filter setting. In sound, this is the function performed by an audio equalizer. An
audio equalizer has many sliders that allow us to adjust the level of a number of different frequencies
for very fine tuning of the sound quality. To see how such a device might be implemented
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we'll need to make a distinction between time-domain transformations vs. frequency-domain
transformations.

This is a good time to remind ourselves that sound is not the only signal. All the concepts we
have discussed thus far, including the transformations, are equally applicable to signals of different
nature. We like to use sound because it is familiar and can be detected by our ear.

Time-domain transformations are transformations, such as those just introduced, where the
processing is done along the time axis and directly on the samples as they arrive. In contrast,
frequency-domain transformations are those that first convert a K-sample long stretch of the
input to a frequency representation, perform the transform on this frequency representation, and
regenerate, from the frequency representation, a K-sample long stretch of output. In essence,
frequency-domain transformations follow the following schematic.
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The french mathematician Joseph Fourier discovered that certain signals (such as those we've been
looking at) can be decomposed into sine and cosine functions and, if needed, these sine and cosine
functions can be algebraically summed to obtain the original signal. These transformations, known
as the Fourier transform (FT) and inverse Fourier transform (IFT), are the cornerstone of most
signal processing activities. Before becoming consumed by the details, let us gain some insight into
how these transforms work. Consider the following input signal, it happens to be a sine function with
frequency of 1 Hz.
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The FT process is one of a guessing game. We guess that some frequency, say 1 Hz, is present in the
input signal. Then, we do some math, and the result will validate our guess. The math is a sample
by sample multiplication of the input by the guess. These products are then summed and the final
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sum is a measure of correctness of our guess. In other words, if our guess is correct, the sum will be
maximum. If our guess is wrong, the sum will be 0. The following figure demonstrates this process.
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Rather than do all the math, we can observe that the first 8 samples are positive (+) in our input
signal as well as the test signal. Therefore, we can conclude that the running sum, thus far, will
be some positive (nonzero) number. The remaining 8 samples are negative (-) in our input signal
as well as the test signal. The product of two negative values yields a positive value. Thus, the
running sum of the second half will also be some positive (nonzero) number. In fact, the total sum
of our multiply-accumulate exercise will be a positive number, hinting that the input signal has a
component of 1 Hz in it.

Try: Use anExcel spreadsheet to generate the two sine functions (1 Hz and 1 Hz) and then program
your Excel spreadsheet to perform the addition. What is the sum? Hint, to generate a sine function,
you can use the following excel strategy:

Sample Time (x axis) Signal (y axis)

0 =0/16 =sin(2*3.14*Frequency*Time)=sin(0)
o ox . - -

1 =1/16 I6s;n(z 3.14*Frequency*Time)=sin(6.28/

We can continue our test by checking the input signal against a different frequency. Let us now try
a test signal of 2 Hz.
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Input Signal:
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The result, in this case, will be 0. Can you see why? Hint, use the +/- annotations.

Try: Use an Excel spreadsheet to generate the two sine functions (1 Hz and 2 Hz) and then program
your Excel spreadsheet to perform the addition. What is the sum?

Of course, we are far from decomposing an arbitrary signal to its frequency domain representation.
For starters, you might be wondering just how many frequencies to test? The answer is simple when
dealing with digitized signals. The number of frequencies to test should be equal to the sampling
rate of the DSP system multiplied by the window of time being converted. The frequencies should
be equally spread between the lowest and the highest frequencies know to be present in the input
signal. For instance, in our sound example, we know that the input frequency is in the range of
0-20 KHz. We also know that the sampling rate is 40 KHz. Assuming that our system continuously
converts a 0.1 second window of sound to frequency domain, does some processing, and then
outputs the result, we would need to test 0.1 seconds * 40,000 samples/second = 4000 frequencies
in the range of 0 to 20,000 Hz. As you can see, there are a number of tradeoffs here. If we like our
frequency domain conversion to be very detailed, i.e, have the ability to decompose the input into
many frequencies, we need to processes a larger window of samples at a time. This would add some
latency in our signal flow. The decision, as usual is very application dependent.

A second issue that might come up is that, if the input signal is slightly shifted (for instance, it has
a phase shift of 45 degrees), our test fails to work. The solution is to simultaneously test the input
signal against two test signals of 1 Hz, one being a sine and the other a cosine function. As you
know sine and cosine are phase shifted by 90 degrees, but otherwise identical. If the test frequency
matches that of the input frequency, one or the other of the sine or cosine tests will yield a big
positive number. Therefore, when combined, the two tests can tell us if (and to what degree) the
test signal is present in the input sqrt(sun_sin™2 + sun_cos”2), and by how much it is phase shifted
atan(sum_sin / sum_cos).
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Try: Use an Excel spreadsheet to generate an input signal with a particular frequency and phase.
Then, generate the sine and cosine functions test frequencies. Perform the transform computations
and try to determine the phase shift of the input signal according to the above.

As you see, the conversion to frequency domain would require a large number of computations,
in particular multiplication and addition. Many digital signal processors have special multiply-
accumulate instructions to perform these computations a little more efficiently. Computer scientists
have studied the FT procedure from an algorithmic point of view and have developed a version that
is highly optimized, the so called fast Fourier transform (FFT). The inverse FT is a bit simpler to
implement. To recreate the signal in time domain, one needs to generate each and every one of
the individual sine functions (with the appropriate amplitude and phase) and algebraically add these
together.

We now return to our sound example. Once our sound stream is converted to a set of frequencies
(amplitude/phase pairs), we can manipulate the sound by increasing or decreasing a particular
frequency as desired.

Final Remarks

As you can see, digital signal processing is a very interesting field of study. It covers issues from a
number of domains, such as mathematics, physics, electrical engineering, computer science, logic
design, computer architecture, embedded systems and real time software engineering. Our intent
so far has been to introduce a number of concepts that are key. We have, for the most part, left the
implementation details out of the discussion. Interested students are encouraged to seek a dedicated
text book or course on the topic of digital signal processing.
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Book and Author Info

This book, Programming Embedded Systems (PES), introduces a disciplined approach to
programming embedded systems. The approach involves definition of a computation model
(synchronous state machines, or synchSMs) appropriate for capturing behavior of time-oriented
systems, with time-orientation being perhaps the most unique and important distinguishing feature
of embedded systems. SynchSMs can be easily converted to structured and maintainable C code
running on a microcontroller. PES shows how to capture behavior with multiple synchSMs, and
convert those to a single C program. It shows how to write a simple task scheduler, thus providing a
solid understanding of a key part of what is "under-the-hood" of real-time operating systems, useful
not only for programming without an RTOS, but also for making better use of an RTOS. PES also
covers various important embedded programming issues, such as bit-level manipulation in C, coding
issues like rounding and fixed-point programming, basic control systems, and basic digital signal
processing systems. PES also shows how to convert synchSMs for implementation on FPGAs, which
is also straightforward.

PES is intended to elevate embedded systems programming to a discipline. Current university
courses commonly introduce details of a microcontroller and its peripherals, with little guidance

on how to write programs, leading to a huge variety of ad hoc programming styles that lead to
programs that suffer from timing problems, that are hard to maintain, and that do not scale. In
contrast, PES introduces concepts that are independent of any particular microcontroller, where
those concepts lead to highly-structured, readable, maintainable, scalable, and analyzable code.

PES represents a modern approach to creating learning content. Its conciseness enables a complete
read of key concepts, with reference information today available online. PES is intended for
electronic publication, being read on various devices, or being printed by the end user without
excessive paper use. As such, PES passes on highly polished formatting and figures, in favor of
content that is viewable on various devices, and is amenable to update and revision on a faster cycle
than traditional book "editions," leading to a book that is more modern, and has a far lower purchase

price.

PES also uses a modern approach by stressing active learning, coming with tools that enable a
reader to put learned concepts into practice. The Riverside-Irvine Microcontroller Simulator (RIMS)
includes complete C capture, compilation, simulation, and debug for microcontroller programming,
all in a single extremely easy-to-use graphical interface. RIMS alone is sufficient to support the
learning of embedded programming. In addition, the Riverside-Irvine Builder of State machines
(RIBS) supports graphical capture of synchSMs and automatic conversion to C, along with
visualization during RIMS simulation. The Riverside-Irvine Timing-diagram Solution (RITS) is useful
for display and printing of the simulation output of RIMS. A course based on PES may have a lab that
uses a particular microcontroller or embedded processor, but because setting up and maintaining
such labs can be difficult, and because such labs are not available for online courses, PES and its
tools can be used to learn a majority of the key concepts and skills necessary to write time-oriented
embedded systems programs. PES is thus well-suited for traditional in-person course as well as for
online courses. PES tools presently run on Microsoft Windows platforms.

Chapters 1-10 form the core of PES. They can typically be covered in 9-10 weeks of a university
course meeting 3 hours per week. After that, a course may teach programming with an RTOS,
programming of FPGAs, control systems, digital signal processing, microcontroller peripherals,
or any of various other directions. PES can be used to revise the lecture content of existing
microcontroller courses, while keeping labs intact (sometimes involving moving some lab training
content from lecture into lab time).
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