
CS245 – Lecture 1
Embedded Systems Review

Tony Givargis

A Little History
 1947 – Shockley, Brattain, and Bardeen invented the

transistor at Bell Labs

 1961 – First commercial IC by Fairchild/TI

 1963 – CMOS invented

 1965 – Moore’s law

 1968 – State of the art: 64 transistor chip

2

Moore’s Law
 “Transistor capacity doubles every 18 months.”

 Driving force behind
 Research and industry
 Embedded systems
 EDA
 PCs
 Internet
 PDAs
 Aerospace, Automobiles, Defense, …

3

4

Embedded Systems
 Devices other than desktop PCs, servers, and

notebooks
 Electricity running through
 Perform something intelligent

 Hardware/software which form a component of a
larger system, but are concealed from user

 Computers camouflaged as non-computers

 The future of computing!

5

Processors
 What is a processor?
 Artifact that computes (runs algorithms)
 Controller and data-path

 General-purpose (GP) processors:
 Variety of computation tasks
 Functional flexibility
 Slow and power hungry

 Single-purpose (SP) processors:
 One computation task
 Functional inflexibility
 Fast and power efficient

6

GP/SP Processor Architecture

7

Data-Path

Data
Input

Data
Output

Control

Status

Controller

Control

GP vs. SP Processors

 Programmable controller
 Control logic is stored in

memory
 Fetch/decode overhead

 Highly general data-path
 Typical bit-width (8, 16, 32,

64)
 Complete set of

arithmetic/logic units
 Large set of registers

 Hardwired controller
 No need for program

memory and cache
 No fetch/decode overhead

 Highly tuned data-path
 Custom bit-width
 Custom arithmetic/logic units
 Custom set of registers

8

GP: SP:

Storage
 What is a memory?
 Artifact that stores bits
 Storage fabric and access logic

 Write-ability
 Manner and speed a memory can be written

 Storage-permanence
 ability of memory to hold stored bits after they are written

 Many different types of memories
 Flash, SRAM, DRAM, etc.

 Common to compose memories

9

Write-ability
 Ranges of write-ability
 High end
 Processor writes to memory simply and quickly
 E.g., RAM

 Middle range
 Processor writes to memory, but slower
 E.g., FLASH, EEPROM

 Lower range
 Special equipment, “programmer”, must be used to write to memory
 E.g., EPROM, OTP ROM

 Low end
 Bits stored only during fabrication
 E.g., Mask-programmed ROM

10

Storage-permanence
 Range of storage-permanence
 High end
 Essentially never loses bits
 E.g., mask-programmed ROM

 Middle range
 Holds bits days/months/years after memory’s power source turned

off
 E.g., NVRAM

 Lower range
 Holds bits as long as power supplied to memory
 E.g., SRAM

 Low end
 Begins to lose bits almost immediately after written
 E.g., DRAM

11

Memory Types

12

St
or

ag
e-

pe
rm

an
en

ce

Write-ability

Mask-programmed ROM

OTP ROM

EPROM EEPROM Flash
NVRAM

SRAM/DRAM

Ideal
In-system programmable

Nonvolatile

Communication
 What is a bus?
 An artifact that transfers bits
 Wires, air, or fiber and interface logic

 Associated with a bus, we have:
 Connectivity scheme
 Serial Communication
 Parallel Communication
 Wireless Communication

 Protocol
 Ports
 Timing Diagrams
 Read and write cycles

 Arbitration scheme, error detection/correction, DMA, etc.

13

Serial Communication
 A single wire used for data transfer

 One or more additional wires used for control
(but, some protocols may not use additional
control wires)

 Higher throughput for long distance
communication
 Often across processing node

 Lower cost in terms of wires (cable)

 E.g., USB, Ethernet, PCIe, RS232, I2C, etc.

14

Parallel Communication
 Multiple wires used for data transfer

 One or more additional wires used for control

 Higher throughput for short distance
communication
 Data misalignment problem
 Often used within a processing node

 Higher cost in terms of wires (cable)

 E.g., ISA, AMBA, PCI, etc.

15

Wireless Communication
 Infrared (IR)
 Electronic wave frequencies just below visible light spectrum
 Diode emits infrared light to generate signal
 Infrared transistor detects signal, conducts when exposed to

infrared light
 Cheap to build
 Need line of sight, limited range

 Radio frequency (RF)
 Electromagnetic wave frequencies in radio spectrum
 Analog circuitry and antenna needed on both sides of transmission
 Line of sight not needed, transmitter power determines range

16

Peripherals
 Perform specific computation task

 Custom single-purpose processors
 Designed by us for a unique task

 Standard single-purpose processors
 “Off-the-shelf”
 pre-designed for a common task

17

 Timers: measure
time intervals
 To generate timed

output events
 To measure input

events
 Top: max count

reached

 Range and
resolution

18

Timers/Counters

 Counters: like a timer,
but count pulses on a
general input signal
rather than clock
 e.g., count cars

passing over a sensor
 Can often configure

physical device as
either a timer or
counter

Watchdog Timers
 Must reset timer every X time units, else timer

generates a signal

 Common use: detect failure, self-reset

19

Pulse Width Modulators
 Generate pulses with specific high/low times

 Duty cycle: % time high
 Square wave: 50% duty cycle

 Common use: control average voltage to
electric device
 Simpler than DC-DC converter or digital-analog

converter
 DC motor speed, dimmer lights

20

 N rows by M columns

 Controller may be build
into the LCD module or
managed in software

 Display: challenge is to
reverse polarity and
scan the pixels at a high
rate

 Keypad: challenge is to
scan at a high rate

21

Displays & Keypads

Stepper Motor Controller
 Stepper motor: rotates fixed number of degrees when

given a “step” signal
 In contrast, DC motor just rotates when power applied,

coasts to stop

 Rotation achieved by applying specific voltage
sequence to coils

 Controller greatly simplifies this

22

Analog-to-Digital Converter

23
proportionality

Vmax = 7.5V

0V

1111

1110

0000

0010

0100

0110

1000

1010

1100

0001

0011

0101

0111

1001

1011

1101

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

6.0V

6.5V

7.0V

analog to digital

4

3

2

1

t1 t2 t3 t4
0100 1000 0110 0101

time

an
al

og
 in

pu
t (

V
)

Digital output

digital to analog

4

3

2

1

0100 1000 0110 0101

t1 t2 t3 t4
time

an
al

og
 o

ut
pu

t (
V

)

Digital input

Real-time Systems
 A real-time system has to produce correct result at the

right time (deadline driven)

 A real-time system imposes stringent timing
requirements in addition to correctness
 Hard real-time
 Firm real-time
 Soft real-time

24

Hard Real-time
 System designed to meet all deadlines
 A missed deadline is a design flaw
 Examples:
 Shuttle navigation system
 Nuclear reactor monitoring system

 System hardware (over) designed for worst-case
performance

 System software vigorously tested
 Formal proofs used to guaranty timing correctness

25

Firm Real-time
 System designed to meet all deadlines, but
 “Occasional” missed deadline is allowed
 Sometimes statistically quantified (e.g., 5% misses)

 No need to compute further once a deadline is
missed

 Examples:
 Multimedia systems

 System hardware designed for average case
performance

 System software tested under average (ideal)
conditions

26

Soft Real-Time
 System designed to meet as many deadlines

as possible
 Best effort to complete within specified time, but may

be late

 Examples:
 Network switch or router

 System hardware designed for average case
performance

 System software tested under average (ideal)
conditions

27

Embedded Operating
Systems

 Must provide means for dynamic task creation
 Create, join, and cancel

 Must provide means for task synchronization
and communication
 Shared memory vs. message passing
 Semaphore and condition variables vs. monitors

 Posix threads a common standard provides
thread creation and synchronization

28

Fixed Point Arithmetic
 Using integer math to emulate floating point numbers

and operations

 Determine range and precision (i.e., m.n)

 Define +, -, ×, and /

 Analyze for overflow

 Use tables for common math functions, e.g., sine,
cosine, etc.

29

Digital Signal Processing
 Any interesting embedded system has to process some

input signals and generate some output signals
 We use the term signal in a general way

 Digital devices process signals in digital form
 A uniformly sampled stream of data spread in time (e.g.,

audio) or space (e.g., image)

30

General DSP Architecture

31

Sensors
f(t)

A/D
fn

µP

D/A un Actuators
u(t)

Memory

Environment Embedded System

Sensors and Actuators
 Sensors:

 Capture physical stimulus
(e.g., heat, light, sound,
pressure, magnetism, or other
mechanical motion)

 Typical generate a
proportional electrical current

 May require analog interface

 Actuators
 Convert a command to a

physical stimulus (e.g., heat,
light, sound, pressure,
magnetism, or other
mechanical motion)

 May require analog interface

32

solenoid mic

laser diode/transistor

speaker

dc motor

compass

accelerometer

Analog / Digital Domain
Conversion

 Sampling: how often is the signal converted?
 Twice as high as the highest frequency signal present in the input
 As much as 10 to 20 times for even better results

 Quantization: how many bits used to represent a sample?
 Sufficient to provide required dynamic range (measured as dB)

 E.g., 16-bit A/D  20×log10(216) = 96 dB (human ear limit)
 Under-loading: dynamic range not used properly
 AC coupling: a DC offset renders some of dynamic range unusable
 Clipping: input signal beyond the dynamic range

 Aliasing: erroneous signals, not present in analog domain, but
present in digital domain
 Use anti-aliasing filters
 Sample at higher than necessary rate
 Remember the spinning bicycle wheel

33

Signal Processing
 Digital signal S0, S1, S2 … Sn-1

 What can we do with it?
 Transpose: e.g., Zi = Si + K
 Amplify: e.g., Zi = Si × α
 Compose: e.g., Zi = (S1

i × α1 + K1) + (S2
i × α2 + K2)

 Filter: e.g, Zi = (Si+ Si+1) / 2
 Compress: e.g., using Huffman codes
 Archive, match against database, etc.

 Or, process after converting to frequency domain
 Spectral analysis

34

Frequency Domain
 Any continues time

varying signal can be
represented as the sum of
cosine functions of
different amplitude and
frequency
 E.g., input signal captured

as the sum of 4 cosine
functions

 Once in frequency
domain, certain
manipulations become
trivial (e.g., filtering)

35

Control Systems
 Control systems are a common class of

embedded systems

 Goal is to make a system’s output track a
desired reference value
 Cruise control, thermostat, VCR tape speed, etc.

 We’ll take a look at open-loop and closed-loop
control systems

 We’ll take a look at PID control

36

Open-Loop Control Example

37

Controller
every 10ms do {
 uk = (rk / 1000.0) × 5.0
 uk = c(uk × (28 – 1) / 5.0)
}

0-5V
8-bit
D/A

uk

u(t)

v(t)

∆T = .01 sec
rk = [0..1000]
What if a load is placed on the motor?

rk

DC Motor
Open load response:
0V = 0 RPM
5V = 1000 RPM

c(x) bound x to [0-28]

Closed-Loop Control

38

rk

uk

D/A
Actuator Plant

u(t)

v(t)
A/D

Sensor

+
vk

ek

–
+

rk is the reference (to be controlled) value
k is a discrete time variable
t = k × ∆T is a continues time variable
ek = rk – vk is plant error

Controller
uk = F(ek)

Proportional Integral Derivative
(PID) Controllers

 Proportional control: A controller that multiplies the
error by a constant
 uk = ek × P

 Integral control: A controller that considers the
integral of error over time (using history)
 uk = (e0 + e1 + … + ek) × I

 Derivative control: A controller that considers the
differential of error over time (predict future)
 uk = (ek – ek–1) × D

39

Conclusion
 Introduction to embedded systems

 Hardware
 Processors
 Memories
 Communication
 Peripherals

 Software
 Real-time operating systems
 Application domains (DSP, control)

40

	CS245 – Lecture 1
	A Little History
	Moore’s Law
	Slide Number 4
	Embedded Systems
	Processors
	GP/SP Processor Architecture
	GP vs. SP Processors
	Storage
	Write-ability
	Storage-permanence
	Memory Types
	Communication
	Serial Communication
	Parallel Communication
	Wireless Communication
	Peripherals
	Slide Number 18
	Watchdog Timers
	Pulse Width Modulators
	Displays & Keypads
	Stepper Motor Controller
	Analog-to-Digital Converter
	Real-time Systems
	Hard Real-time
	Firm Real-time
	Soft Real-Time
	Embedded Operating Systems
	Fixed Point Arithmetic
	Digital Signal Processing
	General DSP Architecture
	Sensors and Actuators
	Analog / Digital Domain Conversion
	Signal Processing
	Frequency Domain
	Control Systems
	Open-Loop Control Example
	Closed-Loop Control
	Proportional Integral Derivative (PID) Controllers
	Conclusion

