
CS245 – Lecture 1 
Embedded Systems Review 

Tony Givargis 



A Little History 
 1947 – Shockley, Brattain, and Bardeen invented the 

transistor at Bell Labs 

 1961 – First commercial IC by Fairchild/TI 

 1963 – CMOS invented 

 1965 – Moore’s law 

 1968 – State of the art: 64 transistor chip 
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Moore’s Law 
 “Transistor capacity doubles every 18 months.” 

 Driving force behind 
 Research and industry 
 Embedded systems 
 EDA 
 PCs 
 Internet 
 PDAs 
 Aerospace, Automobiles, Defense, … 
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Embedded Systems 
 Devices other than desktop PCs, servers, and 

notebooks 
 Electricity running through 
 Perform something intelligent 

 Hardware/software which form a component of a 
larger system, but are concealed from user 

 Computers camouflaged as non-computers  

 The future of computing! 
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Processors 
 What is a processor? 
 Artifact that computes (runs algorithms) 
 Controller and data-path 

 General-purpose (GP) processors: 
 Variety of computation tasks 
 Functional flexibility 
 Slow and power hungry 

 Single-purpose (SP) processors: 
 One computation task 
 Functional inflexibility 
 Fast and power efficient 
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GP/SP Processor Architecture 
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GP vs. SP Processors 

 Programmable controller 
 Control logic is stored in 

memory 
 Fetch/decode overhead 

 Highly general data-path 
 Typical bit-width (8, 16, 32, 

64) 
 Complete set of 

arithmetic/logic units 
 Large set of registers 

 Hardwired controller 
 No need for program 

memory and cache 
 No fetch/decode overhead 

 Highly tuned data-path 
 Custom  bit-width 
 Custom arithmetic/logic units 
 Custom set of registers 
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Storage 
 What is a memory? 
 Artifact that stores bits 
 Storage fabric and access logic 

 Write-ability 
 Manner and speed a memory can be written 

 Storage-permanence 
 ability of memory to hold stored bits after they are written 

 Many different types of memories 
 Flash, SRAM, DRAM, etc. 

 Common to compose memories 

9 



Write-ability 
 Ranges of write-ability 
 High end 
 Processor writes to memory simply and quickly 
 E.g., RAM 

 Middle range 
 Processor writes to memory, but slower 
 E.g., FLASH, EEPROM 

 Lower range 
 Special equipment, “programmer”, must be used to write to memory 
 E.g., EPROM, OTP ROM 

 Low end 
 Bits stored only during fabrication 
 E.g., Mask-programmed ROM 
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Storage-permanence 
 Range of storage-permanence 
 High end 
 Essentially never loses bits 
 E.g., mask-programmed ROM 

 Middle range 
 Holds bits days/months/years after memory’s power source turned 

off 
 E.g., NVRAM 

 Lower range 
 Holds bits as long as power supplied to memory 
 E.g., SRAM 

 Low end 
 Begins to lose bits almost immediately after written 
 E.g., DRAM 
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Memory Types 
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Communication 
 What is a bus? 
 An artifact that transfers bits 
 Wires, air, or fiber and interface logic 

 Associated with a bus, we have: 
 Connectivity scheme 
 Serial Communication 
 Parallel Communication 
 Wireless Communication 

 Protocol 
 Ports 
 Timing Diagrams 
 Read and write cycles 

 Arbitration scheme, error detection/correction, DMA, etc. 
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Serial Communication 
 A single wire used for data transfer 

 One or more additional wires used for control 
(but, some protocols may not use additional 
control wires) 

 Higher throughput for long distance 
communication 
 Often across processing node 

 Lower cost in terms of wires (cable) 

 E.g., USB, Ethernet, PCIe, RS232, I2C, etc. 
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Parallel Communication 
 Multiple wires used for data transfer 

 One or more additional wires used for control 

 Higher throughput for short distance 
communication 
 Data misalignment problem 
 Often used within a processing node 

 Higher cost in terms of wires (cable) 

 E.g., ISA, AMBA, PCI, etc. 
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Wireless Communication 
 Infrared (IR) 
 Electronic wave frequencies just below visible light spectrum 
 Diode emits infrared light to generate signal 
 Infrared transistor detects signal, conducts when exposed to 

infrared light 
 Cheap to build 
 Need line of sight, limited range 

 Radio frequency (RF) 
 Electromagnetic wave frequencies in radio spectrum 
 Analog circuitry and antenna needed on both sides of transmission 
 Line of sight not needed, transmitter power determines range 
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Peripherals 
 Perform specific computation task 

 Custom single-purpose processors 
 Designed by us for a unique task 

 Standard single-purpose processors 
 “Off-the-shelf” 
 pre-designed for a common task 
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 Timers: measure 
time intervals 
 To generate timed 

output events 
 To measure input 

events 
 Top: max count 

reached 

 Range and 
resolution 
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Timers/Counters 

 Counters: like a timer, 
but count pulses on a 
general input signal 
rather than clock 
 e.g., count cars 

passing over a sensor 
 Can often configure 

physical device as 
either a timer or 
counter 



Watchdog Timers 
 Must reset timer every X time units, else timer 

generates a signal 

 Common use: detect failure, self-reset 
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Pulse Width Modulators 
 Generate pulses with specific high/low times 

 Duty cycle: % time high 
 Square wave: 50% duty cycle 

 Common use: control average voltage to 
electric device 
 Simpler than DC-DC converter or digital-analog 

converter 
 DC motor speed, dimmer lights 
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 N rows by M columns 

 Controller may be build 
into the LCD module or 
managed in software 

 Display: challenge is to 
reverse polarity and 
scan the pixels at a high 
rate 

 Keypad: challenge is to 
scan at a high rate 
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Stepper Motor Controller 
 Stepper motor: rotates fixed number of degrees when 

given a “step” signal 
 In contrast, DC motor just rotates when power applied, 

coasts to stop 

 Rotation achieved by applying specific voltage 
sequence to coils 

 Controller greatly simplifies this 
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Analog-to-Digital Converter 
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Real-time Systems 
 A real-time system has to produce correct result at the 

right time (deadline driven) 

 A real-time system imposes stringent timing 
requirements in addition to correctness  
 Hard real-time 
 Firm real-time 
 Soft real-time 
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Hard Real-time 
 System designed to meet all deadlines 
 A missed deadline is a design flaw 
 Examples: 
 Shuttle navigation system 
 Nuclear reactor monitoring system 

 System hardware (over) designed for worst-case 
performance 

 System software vigorously tested 
 Formal proofs used to guaranty timing correctness  

25 



Firm Real-time 
 System designed to meet all deadlines, but 
 “Occasional” missed deadline is allowed 
 Sometimes statistically quantified (e.g., 5% misses) 

 No need to compute further once a deadline is 
missed 

 Examples: 
 Multimedia systems 

 System hardware designed for average case 
performance 

 System software tested under average (ideal) 
conditions 
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Soft Real-Time 
 System designed to meet as many deadlines 

as possible 
 Best effort to complete within specified time, but may 

be late 

 Examples: 
 Network switch or router 

 System hardware designed for average case 
performance 

 System software tested under average (ideal) 
conditions 
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Embedded Operating 
Systems 

 Must provide means for dynamic task creation 
 Create, join, and cancel 

 Must provide means for task synchronization 
and communication 
 Shared memory vs. message passing 
 Semaphore and condition variables vs. monitors 

 Posix threads a common standard provides 
thread creation and synchronization 
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Fixed Point Arithmetic 
 Using integer math to emulate floating point numbers 

and operations 

 Determine range and precision (i.e., m.n) 

 Define +, -, ×, and / 

 Analyze for overflow 

 Use tables for common math functions, e.g., sine, 
cosine, etc. 
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Digital Signal Processing 
 Any interesting embedded system has to process some 

input signals and generate some output signals 
 We use the term signal in a general way 

 Digital devices process signals in digital form 
 A uniformly sampled stream of data spread in time (e.g., 

audio) or space (e.g., image) 
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General DSP Architecture 
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Sensors and Actuators 
 Sensors: 

 Capture physical stimulus 
(e.g., heat, light, sound, 
pressure, magnetism, or other 
mechanical motion) 

 Typical generate a 
proportional electrical current 

 May require analog interface 

 Actuators 
 Convert a command to a 

physical stimulus (e.g., heat, 
light, sound, pressure, 
magnetism, or other 
mechanical motion) 

 May require analog interface 
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Analog / Digital Domain 
Conversion 

 Sampling: how often is the signal converted? 
 Twice as high as the highest frequency signal present in the input 
 As much as 10 to 20 times for even better results 

 Quantization: how many bits used to represent a sample? 
 Sufficient to provide required dynamic range (measured as dB) 

 E.g., 16-bit A/D  20×log10(216) = 96 dB (human ear limit) 
 Under-loading: dynamic range not used properly 
 AC coupling: a DC offset renders some of dynamic range unusable 
 Clipping: input signal beyond the dynamic range 

 Aliasing: erroneous signals, not present in analog domain, but 
present in digital domain 
 Use anti-aliasing filters 
 Sample at higher than necessary rate 
 Remember the spinning bicycle wheel 
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Signal Processing 
 Digital signal S0, S1, S2 … Sn-1 

 What can we do with it? 
 Transpose: e.g., Zi = Si + K 
 Amplify: e.g., Zi = Si × α 
 Compose: e.g., Zi = (S1

i × α1 + K1) + (S2
i × α2 + K2)  

 Filter: e.g, Zi = (Si+ Si+1) / 2 
 Compress: e.g., using Huffman codes 
 Archive, match against database, etc. 

 Or, process after converting to frequency domain 
 Spectral analysis 
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Frequency Domain 
 Any continues time 

varying signal can be 
represented as the sum of 
cosine functions of 
different amplitude and 
frequency 
 E.g., input signal captured 

as the sum of 4 cosine 
functions 

 Once in frequency 
domain, certain 
manipulations become 
trivial (e.g., filtering) 
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Control Systems 
 Control systems are a common class of 

embedded systems 

 Goal is to make a system’s output track a 
desired reference value 
 Cruise control, thermostat, VCR tape speed, etc. 

 We’ll take a look at open-loop and closed-loop 
control systems 

 We’ll take a look at PID control 
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Open-Loop Control Example 
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Controller 
every 10ms do { 
   uk = (rk / 1000.0) × 5.0 
   uk = c(uk × (28 – 1) / 5.0) 
} 

0-5V 
8-bit 
D/A 

uk 

u(t) 

v(t) 

∆T = .01 sec 
rk = [0..1000] 
What if a load is placed on the motor? 

rk 

 
DC Motor 
Open load response: 
0V = 0 RPM 
5V = 1000 RPM 
 

c(x) bound x to [0-28] 



Closed-Loop Control 
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rk is the reference (to be controlled) value  
k is a discrete time variable 
t = k × ∆T is a continues time variable 
ek = rk – vk is plant error 

Controller 
uk = F(ek) 

 



Proportional Integral Derivative 
(PID) Controllers 

 Proportional control: A controller that multiplies the 
error by a constant 
 uk = ek × P 

 Integral control: A controller that considers the 
integral of error over time (using history) 
 uk = (e0 + e1 + … + ek) × I 

 Derivative control: A controller that considers the 
differential of error over time (predict future) 
  uk = (ek – ek–1) × D 
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Conclusion 
 Introduction to embedded systems 

 Hardware 
 Processors 
 Memories 
 Communication 
 Peripherals 

 Software 
 Real-time operating systems 
 Application domains (DSP, control) 
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