CS245 — Lecture 1

Embedded Systems Review
Tony Givargis

A Little History

® 1947 — Shockley, Brattain, and Bardeen invented the
transistor at Bell Labs

® 1961 — First commercial IC by Fairchild/T]
® 1963 — CMOS invented

® 1965 — Moore’s law

® 1968 — State of the art: 64 transistor chip

Moore's Law

® “Transistor capacity doubles every 18 months.”

® Driving force behind
® Research and industry
Embedded systems
EDA
PCs
Internet
PDASs
Aerospace, Automobiles, Defense, ...

10,000,000

Dual-Core It3 m /
1,000,000

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

100,000

10,000

1,000

100

10

@ Transistors (000)
#®Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

S 0 | [[
1970 1975 1980 1985 1990 1995 2000 2005 2010

Embedded Systems

Devices other than desktop PCs, servers, and
notebooks

® Electricity running through
® Perform something intelligent

Hardware/software which form a component of a
larger system, but are concealed from user

Computers camouflaged as non-computers

The future of computing!

Processors

® What is a processor?

® Artifact that computes (runs algorithms)
® Controller and data-path

® General-purpose (GP) processors:
® Variety of computation tasks
® Functional flexibility
® Slow and power hungry

® Single-purpose (SP) processors:
® One computation task
® Functional inflexibility
® Fast and power efficient

GP/SP Processor Architecture

Status

Control

GP:

GP vs. SP Processors

SP:
® Programmable controller ~ ® Hardwired controller
Control logic is stored in ® No need for program
memory memory and cache
Fetch/decode overhead ® No fetch/decode overhead

® Highly general data-path ¢ Highly tuned data-path

Typical bit-width (8, 16, 32, ® Custom bit-width
64) ® Custom arithmetic/logic units
Complete set of ® Custom set of registers

arithmetic/logic units
Large set of registers

Storage

What is a memory?
® Artifact that stores bits
® Storage fabric and access logic

Write-abllity
® Manner and speed a memory can be written

Storage-permanence
® ability of memory to hold stored bits after they are written

Many different types of memories
® Flash, SRAM, DRAM, etc.

Common to compose memories

Write-ability

® Ranges of write-ability

® High end
® Processor writes to memory simply and quickly
°* E.g., RAM

® Middle range
® Processor writes to memory, but slower
® E.g.,, FLASH, EEPROM

® | ower range
® Special equipment, “programmer”, must be used to write to memory
® E.g., EPROM, OTP ROM

® | owend
® Bits stored only during fabrication
®* E.g., Mask-programmed ROM

Storage-permanence

® Range of storage-permanence
® High end
® Essentially never loses bits
® E.g., mask-programmed ROM
® Middle range

® Holds bits days/months/years after memory’s power source turned
off

°* E.g., NVRAM
® | ower range
® Holds bits as long as power supplied to memory
°* E.g., SRAM
® | owend
® Begins to lose bits almost immediately after written
°* E.g., DRAM

Memory Types

A
. Mask-programmed ROM In-system programmable Ideal
O @
5 OTP ROM
C @
g EPROM | EEPROM Flash
= | @ @ @ NVRAM
IID_ I Nonvolatile (@)
5]
(@)
o
S SRAM/DRAM
) @

Write-ability

Communication

® \What is a bus?

® An artifact that transfers bits
® Wires, air, or fiber and interface logic

® Associated with a bus, we have:

® Connectivity scheme
® Serial Communication
® Parallel Communication
® Wireless Communication
® Protocol
® Ports
® Timing Diagrams
® Read and write cycles
® Arbitration scheme, error detection/correction, DMA, etc.

Serial Communication

® A single wire used for data transfer

® One or more additional wires used for control
(but, some protocols may not use additional
control wires)

® Higher throughput for long distance
communication

® Often across processing node

® Lower cost in terms of wires (cable)
® E.g., USB, Ethernet, PCle, RS232, 1°C, etc.

Parallel Communication

Multiple wires used for data transfer
One or more additional wires used for control

Higher throughput for short distance
communication

® Data misalignment problem
® Often used within a processing node

Higher cost in terms of wires (cable)

E.g., ISA, AMBA, PCI, etc.

Wireless Communication

® Infrared (IR)
® Electronic wave frequencies just below visible light spectrum
® Diode emits infrared light to generate signal

® |nfrared transistor detects signal, conducts when exposed to
infrared light

® Cheap to build
® Need line of sight, limited range

® Radio frequency (RF)
® Electromagnetic wave frequencies in radio spectrum
® Analog circuitry and antenna needed on both sides of transmission
® |ine of sight not needed, transmitter power determines range

Peripherals

® Perform specific computation task

® Custom single-purpose processors
® Designed by us for a unique task

® Standard single-purpose processors
* “Off-the-shelf”
® pre-designed for a common task

Timers/Counters

® Timers: measure ® Counters: like a timer,

time intervals but count pulses on a

® To generate timed general input signal
output events rather than clock

® To measure input ® e.g., count cars
events passing over a sensor

® Top: max count e Can often configure
reached

physical device as
either a timer or

® Range and e

resolution

Watchdog Timers

® Must reset timer every X time units, else timer
generates a signal

® Common use: detect failure, self-reset

Pulse Width Modulators

® Generate pulses with specific high/low times

® Duty cycle: % time high
® Sqguare wave: 50% duty cycle

® Common use: control average voltage to
electric device

e Simpler than DC-DC converter or digital-analog
converter

® DC motor speed, dimmer lights

Displays & Keypads

N rows by M columns

Controller may be build
Into the LCD module or
managed in software

Display: challenge is to
reverse polarity and
scan the pixels at a high
rate

Keypad: challenge is to
scan at a high rate

Stepper Motor Controller

® Stepper motor: rotates fixed number of degrees when
given a “step” signal

® |n contrast, DC motor just rotates when power applied,
coasts to stop

® Rotation achieved by applying specific voltage
sequence to colls

® Controller greatly simplifies this

Analog-to-Digital Converter

Vo= 7.5V
7.0V
6.5V
6.0V
5.5V

5.0V
4.5V
4.0V
3.5V

3.0V
2.5V
2.0V
1.5V
1.0v
0.5V

ov

— 11111
—++— 1110
—1 1101
—+— 1100
—+—1011
—— 1010
—— 1001
—— 1000
—— 0111
—— 0110
— 1 0101
— 1 0100
— 7 0011
— 10010
— 0001

— 0000

roportionality

analog input (V)

analog output (V)
N

7 F T 71 tie N ™
Lyt t3‘,.;"': ta P tL; t2 ._.,.tB t4

(N : ; :
0100 1000 0110 0101 0100 1000 0110 0101

Digital output Digital input

analog to digital digital to analog

Real-time Systems

® Areal-time system has to produce correct result at the
right time (deadline driven)

® Areal-time system imposes stringent timing
requirements in addition to correctness

® Hard real-time
® Firm real-time

® Soft real-time

Hard Real-time

® System designed to meet all deadlines
® A missed deadline is a design flaw

® Examples:
® Shuttle navigation system
® Nuclear reactor monitoring system

e System hardware (over) designed for worst-case
performance

® System software vigorously tested

® Formal proofs used to guaranty timing correctness

Firm Real-time

® System designed to meet all deadlines, but

® “Occasional” missed deadline is allowed
® Sometimes statistically quantified (e.g., 5% misses)

® No need to compute further once a deadline is
missed

® Examples:
® Multimedia systems

® System hardware designed for average case
performance

® System software tested under average (ideal)
conditions

Soft Real-Time

® System designed to meet as many deadlines
as possible

® Best effort to complete within specified time, but may
be late

® Examples:
® Network switch or router

® System hardware designed for average case
performance

® System software tested under average (ideal)
conditions

Embedded Operating
Systems

® Must provide means for dynamic task creation
® Create, join, and cancel

® Must provide means for task synchronization
and communication

® Shared memory vs. message passing
® Semaphore and condition variables vs. monitors

® Posix threads a common standard provides
thread creation and synchronization

Fixed Point Arithmetic

® Using integer math to emulate floating point numbers
and operations

® Determine range and precision (i.e., m.n)
® Define +, -, x, and /

® Analyze for overflow

® Use tables for common math functions, e.g., sine,
cosine, etc.

Digital Signal Processing

® Any interesting embedded system has to process some
Input signals and generate some output signals

® \We use the term signal in a general way

® Digital devices process signals in digital form

® A uniformly sampled stream of data spread in time (e.g.,
audio) or space (e.g., image)

General DSP Architecture

® Sensors:

® Actuators

Sensors and Actriatnre

T,

-

Speaker

Capture physical stimulus
(e.g., heat, light, sound,
pressure, magnetism, or other
mechanical motion)

Typical generate a
proportional electrical current

May require analog interface

solenoid

laser diode/transistor compass

Convert a command to a
physical stimulus (e.g., heat,
light, sound, pressure,
magnetism, or other
mechanical motion)

May require analog interface

Analog / Digital Domain
Conversion

e Sampling: how often is the signal converted?
® Twice as high as the highest frequency signal present in the input
® As much as 10 to 20 times for even better results

® Quantization: how many bits used to represent a sample?
e Sufficient to provide required dynamic range (measured as dB)
* E.g., 16-bit A/D = 20xlog,,(2'%) = 96 dB (human ear limit)
® Under-loading: dynamic range not used properly
® AC coupling: a DC offset renders some of dynamic range unusable
® Clipping: input signal beyond the dynamic range

® Aliasing: erroneous signals, not present in analog domain, but
present in digital domain

® Use anti-aliasing filters
® Sample at higher than necessary rate
® Remember the spinning bicycle wheel

Signhal Processing
® Digital signal Sy, S, S, ... S, 1

® What can we do with it?

Transpose: e.g., Z, = S; + K

Amplify: e.g., Z =S x «

Compose: e.g., Z; = (St x ot + K1) + (S2 x o? + K?)
Filter: e.g, Z, = (S;+ S;,1) / 2

Compress: e.g., using Huffman codes

Archive, match against database, etc.

® Or, process after converting to frequency domain
® Spectral analysis

Frequency Domain

® Any continues time

varying signal can be

represented as the sum @

cosine functions of

different amplitude and

frequency

® E.g., input signal captured
as the sum of 4 cosine
functions

.

AMPLITUDE

® Once Iin frequency
domain, certain
manipulations become
trivial (e.qg., filtering)

Control Systems

® Control systems are a common class of
embedded systems

® Goal is to make a system’s output track a
desired reference value

® Cruise control, thermostat, VCR tape speed, etc.

* \We’'ll take a look at open-loop and closed-loop
control systems

® \We’'ll take a look at PID control

Open-Loop Control Example

c(x) bound x to [0-28]

v(t)

u(t)

AT = .01 sec
[0..1000]

laced on the motor?

Closed-Loop Control

Uy

Vk .

r, 1s the reference (to be controlled) value

K 1s a discrete time variable

= k x AT IS a continues time variable
' nt error

u(t)

Proportional Integral Derivative
(PID) Controllers

® Proportional control: A controller that multiplies the
error by a constant

® u=¢xP

® Integral control: A controller that considers the
Integral of error over time (using history)

® U =(e,te, +..+e)xl

® Derivative control: A controller that considers the
differential of error over time (predict future)

® u.=(ex—¢€q) xD

Conclusion

® Introduction to embedded systems

® Hardware
® Processors
® Memories
¢ Communication
® Peripherals

® Software
® Real-time operating systems
® Application domains (DSP, control)

	CS245 – Lecture 1
	A Little History
	Moore’s Law
	Slide Number 4
	Embedded Systems
	Processors
	GP/SP Processor Architecture
	GP vs. SP Processors
	Storage
	Write-ability
	Storage-permanence
	Memory Types
	Communication
	Serial Communication
	Parallel Communication
	Wireless Communication
	Peripherals
	Slide Number 18
	Watchdog Timers
	Pulse Width Modulators
	Displays & Keypads
	Stepper Motor Controller
	Analog-to-Digital Converter
	Real-time Systems
	Hard Real-time
	Firm Real-time
	Soft Real-Time
	Embedded Operating Systems
	Fixed Point Arithmetic
	Digital Signal Processing
	General DSP Architecture
	Sensors and Actuators
	Analog / Digital Domain Conversion
	Signal Processing
	Frequency Domain
	Control Systems
	Open-Loop Control Example
	Closed-Loop Control
	Proportional Integral Derivative (PID) Controllers
	Conclusion

