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Problem Statement

Consider a pair of user-generated event series M = (A,B)
Each series fully characterized by event times
Event types differ between series

Quantify the likelihood that the pair was generated by the same
source

WLOG assume that nB < nA.
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Methodology
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Score Functions

Need to determine suitable measures to quantify association between
two event series A and B.

Nearest-neighbor indices (from marked point process literature)
Distribution of inter-event times
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Population-based Approach

Two competing propositions:

Hs : (A∗,B∗) came from the same source
Hd : (A∗,B∗) came from different sources

Use sample Mi = (Ai,Bi) for i = 1, . . . ,N to estimate the score-based
likelihood ratio for the observed score ∆(A∗,B∗)

SLR∆ =
g(∆(A∗,B∗)|Hs)

g(∆(A∗,B∗)|Hd)

Different interpretations of denominator lead to different SLRs
(Hepler et al., 2012)
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Estimation of g

To estimate g(∆(A,B)|Hd), repeat this process using all pairwise
combinations of event series (Ai,Bj) ∋ i ̸= j.
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Resampling Approach

Coincidental match probability: probability that a different-source pair
with observed score ∆(A∗,B∗) exhibits association by chance

CMP∆ = Pr(∆(A,B) < ∆(A∗,B∗)|Hd)
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Comparison of Approaches
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Simulation Study

Simulated the equivalent of one week of data for 20k pairs of
processes (10k independent & 10k associated)
Repeated for various combinations of (λA, p, σ)
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Signal-to-Noise Ratio

SNR =
τAA
τBA

=
mean IET for process A

mean IET from B events to nearest A event
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Simulation Results

∗p = 0.20
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Case Study

Data from a 2013-2014 study at UCI that placed logging software on
124 students’ computers that recorded all browser activity for one
week (Wang et al., 2015)
Event series created by dichotomizing browsing events to Facebook
versus non-Facebook related urls
Considered 55 students with at least 50 web browsing events of each
type
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Case Study Results

Method Score Function ∆ TP Rate∗ FP Rate∗ AUC
Population-based Near-neighbor (mingling) 85.5 11.6 94.6
Population-based Near-neighbor (segregation) 94.5 3.1 99.2
Population-based Inter-event Time (mean) 96.4 2.9 99.6

Resampling Inter-event Time (mean) 98.2 0.2 99.9

∗Population-based methods use SLR with a threshold of 1
∗Sampling-based method uses CMP with threshold of 0.1%
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Conclusions

The resampling approach shows promise in situations where no
reference data is available
The population-based SLR is still the preferred method, given

Better performance for pairs exhibiting weak association
Similar performance to the CMP for strongly associated pairs
Well-established approach in forensic investigation

R implementation available on Github: assocr
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Future Directions

Extend methodology
Spatial data
Other types of association (e.g., exclusion and ‘causal’ patterns)
Incorporate more (> 2) types of events

Develop methods for identification
Develop theory of detectability
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Figure: Segregation

Figure: Mean IET

Figure: Mingling

Figure: Median IET
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Simulation Results
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Simulation Results
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Simulation Results

Figure: γ = 14.6 Figure: γ = 7.3
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