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Logs of User-Generated Event Data
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UClrvine

User Event Data

< ID, timestamp, action type, metadata >

\x Text content

Location
Web clicks List of recipients
Web searches
Emails sent
Social media posts
Files edited

We focus on ID, timestamp, and type of actions
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Problem Statement

o Consider a pair of user-generated event series M = (A, B)

e Each series fully characterized by event times
o Event types differ between series

@ Quantify the likelihood that the pair was generated by the same

source
A1 W
Source 1 B,
s , A2
ource B,

WLOG assume that ng < na.
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Methodology

(A", B)
Score Function A
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Population-based Approach Resampling Approach

e Sample from relevant population: e Single pair: (A*, B*)

M; = (A;,B;) fori=1,...,N e Estimate coincidental match

e Estimate score-based likelihood probability (CMP)

ratio (SLR)

~ ~

Degree of Association
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Score Functions

@ Need to determine suitable measures to quantify association between
two event series A and B.

o Nearest-neighbor indices (from marked point process literature)
o Distribution of inter-event times
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Population-based Approach

@ Two competing propositions:

Hs : (A*, B*) came from the same source

Hy : (A%, B*) came from different sources

@ Use sample M; = (A;, Bj) for i=1,..., N to estimate the score-based
likelihood ratio for the observed score A(A*, B*)

AN, B HY)
SR = (a(A B)Hy)

o Different interpretations of denominator lead to different SLRs
(Hepler et al., 2012)
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To estimate g(A(A, B)|Hy), repeat this process using all pairwise

combinations of event series (A, Bj) i # j.
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Resampling Approach

o Coincidental match probability: probability that a different-source pair
with observed score A(A*, B*) exhibits association by chance

CMPp = Pr{A(A, B) < A(A*, B")|Hy)
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Comparison of Approaches

SLR, CMP,

a(A(A", BY)| Ho)1

a(A(A", BY)| Hq) 1

A(A:, B")
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Simulation Study

A

Poisson Process with intensity A4

(A., Bind) / \ (A7 Basc)

Independent B Associated B
Independent Poisson Process w.p. p add N(0,02) noise
with intensity Ag = pAa,p € (0,1) to event time in A

@ Simulated the equivalent of one week of data for 20k pairs of
processes (10k independent & 10k associated)

@ Repeated for various combinations of (Aa, p, o)
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Signal-to-Noise Ratio

T AA mean |ET for process A
SNR = — =
Tga  mean IET from B events to nearest A event
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Simulation Results
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o Data from a 2013-2014 study at UCI that placed logging software on
124 students’ computers that recorded all browser activity for one

week (Wang et al., 2015)
@ Event series created by dichotomizing browsing events to Facebook
versus non-Facebook related urls

o Considered 55 students with at least 50 web browsing events of each
type
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Case Study Results

Method Score Function A TP Rate* | FP Rate* | AUC
Population-based Near-neighbor (mingling) 85.5 11.6 94.6
Population-based | Near-neighbor (segregation) 94.5 3.1 99.2
Population-based Inter-event Time (mean) 96.4 2.9 99.6

Resampling Inter-event Time (mean) 98.2 0.2 99.9

* Population-based methods use SLR with a threshold of 1
*Sampling-based method uses CMP with threshold of 0.1%
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Conclusions

@ The resampling approach shows promise in situations where no
reference data is available
@ The population-based SLR is still the preferred method, given

o Better performance for pairs exhibiting weak association
e Similar performance to the CMP for strongly associated pairs
o Well-established approach in forensic investigation

@ R implementation available on Github: assocr
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Future Directions

o Extend methodology

o Spatial data
o Other types of association (e.g., exclusion and ‘causal’ patterns)
o Incorporate more (> 2) types of events

@ Develop methods for identification

@ Develop theory of detectability
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Simulation Results
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Simulation Results
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Simulation Results
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