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Project Goals

Develop statistical methodologies to address questions of interest

Are two event streams from the same individual or not?
Are there unusual and significant changes in behavior?

Develop testbed data sets to evaluate these methodologies

Develop open-source software for use in the forensics community
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The Likelihood Ratio

Probabilistic framework for assessing if two samples came from the
same source or not

LR techniques have seen a great deal of attention in forensics as a
whole

DNA analysis (Foreman et al., 2003)
Glass fragment analysis (Aitken & Lucy, 2004)
Fingerprint analysis (Neumann et al., 2007)
Handwriting analysis (Schlapbach & Bunke, 2007)
Analysis of illicit drugs (Bolck et al., 2015)
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Likelihood Ratio
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Score-based Likelihood Ratios

Problem: LR can be difficult to estimate.
Solution: Estimate the probability density function f of a score function
∆ that measures the similarity of the samples X and Y , yielding the
score-based likelihood ratio

SLR∆ =
f (∆(X ,Y )|Hs)

f (∆(X ,Y )|Hd)
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Score Functions

We use techniques from the analysis of marked point processes

Data characterized by (a) time or location and (b) “marks”
Marks can be continuous (e.g., height of a tree) or categorical (e.g.,
species of tree)
Significant prior work in 2 dimensions (spatial data)
Typically found in forestry, sociology, ecology, astronomy, etc.
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User-Event Histories as Marked Point Processes

Event streams can be viewed as marked point processes with the
following properties

Temporal (i.e., time-stamped events)
Binary marks corresponding to the type of event

Referred to as bivariate point processes in the literature
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Coefficient of Segregation (Pielou, 1977)

Function of the ratio of observed probability that the reference point and
its nearest neighbor have different marks to the same probability for
independent marks

S(Xi ,Yi ) = 1− pxy + pyx
pxp·y + pyp·x

∈ [−1, 1]
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Case Study

Data from a 2013-2014 study at UCI that recorded students’ browser
activity for one week (Wang et al., 2015)

Marks from dichotomized browser activity (Facebook vs.
non-Facebook urls)

Considered 55 students with at least 50 events of each type

See our paper for more details:
Galbraith, C., and Smyth, P. (2017). “Analyzing user-event data
using score-based likelihood ratios with marked point processes.”
Digital Investigation, 22, S106-S114.
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Method

Compute bivariate process indices for all N2 pairwise combinations of
user event streams

For each pair {Xi ,Yj : i , j = 1, . . . ,N} evaluate SLRS with empirical
likelihoods estimated from all other data

Leave out all event streams from users i and j
Estimate the probability density of the score function S under each
hypothesis
Set SLRS as the ratio of these estimated densities evaluated at
S(Xi ,Yj)
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Results
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Results & Conclusions

SLRs based on marked point process indices have potential to
perform well in quantifying strength of evidence for user-event data

Segregation was discriminative for web browsing event streams

Results obtained only for a specific data set, may not generalize
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Ongoing & Future Work

Other score functions (inter-event times & multiple marks)

Randomization methods

Theoretical characterization of limits of detectability

Obtaining more real-world data

Currently planning additional data collection at UC Irvine
Order of 100 students, months of logged data
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Inter-Event Times

Measure the time to the nearest point in Xi for each point in Yi

Yields a distribution of inter-event times for each {Xi ,Yi} pair

Can look at a variety of statistics related to these distributions:

Probability or cumulative density functions
Descriptive statistics (e.g., mean or median)
Statistics related to the cdf (e.g., two-sample Kolmogorov-Smirnov
statistic)

KS = sup
x
|F1,n1 (x)− F2,n2 (x)|

In principle this contains more information than nearest neighbor
indices
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Randomization Methods

Problem: Given only one realization of a bivariate point process {X ,Y },
how can we determine how “unusual” it is assuming that the
sub-processes were generated by different individuals?

Focus on denominator of the SLR: f (∆(X ,Y )|Hd)

Solution: Simulate R realizations {X r ,Y r} for r = 1, . . . ,R, then
compare the observed statistic ∆(X ,Y ) with a “null” distribution
obtained from {∆(X r ,Y r ) : r = 1, . . . ,R}

Relabeling: sample marks without replacement keeping times fixed

Shifting: fix Y and shift entire sequence X or per event shifts in X

Simulation of X r from a point process (inhomogeneous, bursty) with
fixed Y
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Kernel Density Estimation

Kernel function K usually defined as any symmetric density function
that satisfies

1
∫
K (x)dx = 1

2
∫
xK (x)dx = 0

3 0 <
∫
x2K (x)dx <∞

Common kernels: Gaussian, Epanechnikov, point mass (histogram)

Let X = {X1, . . . ,Xn}. Then given K and a bandwidth h > 0, a
kernel density estimator is defined as

f̂n(x) ≡ 1

n

n∑
i=1

1

h
K

(
x − Xi

h

)
Intuition: estimated density at x is the average of the kernel centered
at the observation Xi and scaled by h across all n observations

Choice of kernel really not important, but bandwidth is
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The Likelihood Ratio

Following the notation of Bolck et al. (2015), define

Evidence E ≡ {X ,Y }
X : set of observations for a reference sample from a known source

Y : set of observations of the same features as X for a sample from
an unidentified source

Hs : same source hypothesis

Hd : different sources hypothesis

Pr(Hs |E )

Pr(Hd |E )︸ ︷︷ ︸
a posteriori odds

=

likelihood ratio︷ ︸︸ ︷
Pr(E |Hs)

Pr(E |Hd)

Pr(Hs)

Pr(Hd)︸ ︷︷ ︸
a priori odds

Chris Galbraith (UCI) Statistical Analysis of User-Event Data September 6, 2017 5 / 10



Mingling Index (Illian et al., 2008)

Mean fraction of points among the k nearest neighbors of the reference
point that have a mark different than the reference point

Mk(Xi ,Yi ) =
1

k

ni∑
j=1

k∑
`=1

1 [m(tij) 6= m(z`(tij))] ∈ [0, 1]

Bivariate, independent marks (stationary case) ⇒ Mk(Xi ,Yi ) = 2pxpy
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Results – Empirical Densities

(a) Segregation (b) Mingling

Same-source density Hs (dashed line)
Different-source density Hd (solid line)
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Case Study–Reference Data Set Composition

Compute bivariate process indices [S(Xi ,Yj) and M1(Xi ,Yj)] for all
N2 = 552 = 3025 pairwise combinations of user event streams

For each pairwise combination {Xi ,Yj} and ∆ ∈ {S ,M1}, compute a
“leave-one-out”–like estimate of the score-based likelihood ratio

Ds =
{
{Xk ,Yk} : k ∈ {1, . . . ,N}, k 6= i , k 6= j

}
Dd =

{
{Xk ,Y`} : k , ` ∈ {1, . . . ,N}, k 6= `, k 6= i , k 6= j , ` 6= i , ` 6= j

}
Estimate f̂ (∆|Hs ,Ds) and f̂ (∆|Hd ,Dd) via KDE with the “rule of
thumb” bandwidth (Scott, 1992)
Set SLR∆ as the ratio of these empirical densities evaluated at
∆(Xi ,Yj)
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Results – Evaluation of known same-source streams

SLRM1

- + Total
SLRS - 2 1 3

+ 6 46 52
Total 8 47 55
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Results – Evaluation of known different-source streams

SLRM1

- + Total
SLRS - 2666 240 2906

+ 61 3 64
Total 2727 243 2970
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