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PROBLEM STATEMENT
Consider a pair of user-generated event series

M = (A,B) = {(tj ,m(tj)) : j = 1, . . . , n}

where tj ∈ R+ is the time and m(tj) ∈ {A,B} is the
type of the jth event. We want to quantify the likeli-
hood that the pair was generated by the same source.

POPULATION-BASED APPROACH
Given
• Pair of interest: (A∗, B∗)

• Score function: ∆

• Sample of N pairs of event time series with known
sources: Mi = (Ai, Bi) for i = 1, . . . , N

Method

• Two competing hypotheses:

Hs : (A∗, B∗) came from the same source
Hd : (A∗, B∗) came from different sources

• Use sample Mi = (Ai, Bi) for i = 1, . . . , N to esti-
mate the score-based likelihood ratio

SLR∆ =
g(∆(A∗, B∗)|Hs)

g(∆(A∗, B∗)|Hd)

• Different interpretations of the denominator [1]

CASE STUDY
• Data from a 2013-2014 study at UCI that placed logging software on 124 students’ computers that recorded all

browser activity for one week [2]
• Event series created by dichotomizing browsing events to Facebook versus non-Facebook urls
• Only considered 55 students with at least 50 web browsing events of each type

Performance of a classifier based on SLR∆

∆ TP@1 FP@1 Optimal
Threshold

TP@opt AUC

S 0.945 0.031 206 0.745 0.992
M1 0.855 0.116 218 0.473 0.946
T BA 0.964 0.029 49 0.873 0.996

med(TBA) 0.964 0.085 115 0.818 0.992

Performance of a classifier based on CMP∆

∆ TP@5% FP@5% TP@0.1% FP@0.1% AUC
T BA 1.000 0.036 0.982 0.002 0.999

med(TBA) 1.000 0.176 1.000 0.015 0.992

∆ = S ∆ = M1 ∆ = T BA ∆ = med(TBA)

MEASURES OF ASSOCIATION
Score Functions using Nearest Neighbors
• Coefficient of Segregation [3]: function of the ra-

tio of the probability that a reference point (i.e., a
randomly selected event in (A,B)) and its nearest
neighbor have different marks to the same proba-
bility for independent marks.

S(A,B) = 1− pAB + pBA

pAp·B + pBp·A
∈ [−1, 1]

• Mingling Index [4]: mean fraction of points among
the k nearest neighbors whose type is different than
that of the reference point

Mk(A,B) =
1

nk

n∑
j=1

k∑
`=1

I [m(tj) 6= m(z`(tj))] ∈ [0, 1]

Score Functions using Inter-Event Times
Assume that nB < nA and fix series B. We then mea-
sure the time from each event in B to the closest event
in series A in either direction

TBA ≡
{
τBA,j : j = 1, . . . , nB

}
where τBA,j = min

k∈{1,...,nA}
|tb,j − ta,k|

• Mean inter-event time from B to A

T BA =
1

nB

nB∑
j=1

τBA,j ∈ (0,∞)

• Median inter-event time from B to A

med(TBA) ∈ (0,∞)

RESAMPLING APPROACH
Given
• Pair of interest: (A∗, B∗)

• Score function: ∆

Method

• Focus on the denominator of SLR∆

• Coincidental match probability: probability that a
different-source pair with observed score ∆(A∗, B∗)
exhibits association by chance

CMP∆ = Pr(∆(A,B) < ∆(A∗, B∗)|Hd)

• Use resampling in time to simulate different-source
pairs (A(i), B(i)) and estimate

ĈMP∆ =
1

nsim

nsim∑
i=1

I[∆(A(i), B(i)) < ∆(A∗, B∗)]

COMPARISON OF APPROACHES

SIMULATION

• Simulated equivalent of one week of data for pairs
of processes with varying degrees of association
– A: Poisson process with intensity λA
– B: independent Poisson process with intensity

λB = pλA with p ∈ (0, 1)

or w.p. p add Gaussian noise to event in A
• 10,000 independent & 10,000 associated pairs for

each combination of <p, σ,distribution of λA>
• Most important factors in detecting associated pairs:

– Number of events in series B: nB
– Signal-to-noise ratio: γ = T AA/σ
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CONCLUSIONS
• Resampling approach shows promise in situations

where no reference data is available
• Population-based SLR is preferred, given

– Better performance for weakly associated pairs
– Similar performance for strongly associated pairs
– Well-established in forensic investigation


