Quantifying the Association Between Discrete Event Time Series

Christopher Galbraith
Advised by Padhraic Smyth & Hal S. Stern

University of California, Irvine

May 25, 2018

Project Goals

- Develop statistical methodologies to address questions of interest
 - Are two event streams from the same individual or not?
 - Are there unusual and significant changes in behavior?
- Develop testbed data sets to evaluate these methodologies
- Develop open-source software for use by forensics community

National Institute of Standards and Technology U.S. Department of Commerce

Project Goals

- Develop statistical methodologies to address questions of interest
 - Are two event streams from the same individual or not?
 - Are there unusual and significant changes in behavior?
- Develop testbed data sets to evaluate these methodologies
- Develop open-source software for use by forensics community

National Institute of Standards and Technology U.S. Department of Commerce

Problem Statement

• Consider a pair of user-generated event series M = (A, B) such that

$$M = \{(t_j, m(t_j)) : j = 1, ..., n\}$$

where $t_j \in \mathbb{R}^+$ is the time and $m(t_j) \in \{A, B\}$ is the type of the j^{th} event.

 We want to quantify the likelihood that the pair was generated by the same source.

Approach

- Determine suitable measures to quantify association between two event series A and B.
- ② Quantify the likelihood that a pair (A, B) was generated by the same source or by different sources, given a measure of association.
 - Assessing the strength or degree of association

C. Galbraith, P. Smyth & H. S. Stern (2018). "Statistical Methods for Quantifying the Association Between Discrete Event Time Series." Under review by *IEEE Transactions on Information Forensics and Security*.

Approach

- ① Determine suitable measures to quantify association between two event series A and B.
- ② Quantify the likelihood that a pair (A, B) was generated by the same source or by different sources, given a measure of association.
 - Assessing the strength or degree of association

C. Galbraith, P. Smyth & H. S. Stern (2018). "Statistical Methods for Quantifying the Association Between Discrete Event Time Series." Under review by *IEEE Transactions on Information Forensics and Security.*

Methods to Assess Degree of Association

 (A^*, B^*) Score Function Δ

Population-based Approach

- Sample from relevant population: $M_i = (A_i, B_i)$ for i = 1, ..., N
- Estimate score-based likelihood ratio (SLR)

Resampling Approach

- Single pair: (A^*, B^*)
- Estimate coincidental match probability (CMP)

Degree of Association

Population-based Approach

• Two competing hypotheses:

$$H_s: (A^*, B^*)$$
 came from the same source $H_d: (A^*, B^*)$ came from different sources

• Use sample $M_i = (A_i, B_i)$ for i = 1, ..., N to estimate the score-based likelihood ratio

$$SLR_{\Delta} = \frac{g(\Delta(A^*, B^*)|H_s)}{g(\Delta(A^*, B^*)|H_d)}$$

Different interpretations of the denominator (Hepler et al., 2012)

Resampling Approach

- Usually don't have sample from reference population
- Focus on the conditional likelihood given different sources
- Coincidental match probability: probability that a different-source pair with observed score $\Delta(A^*, B^*)$ exhibits association by chance

$$CMP_{\Delta} = Pr(\Delta(A, B) < \Delta(A^*, B^*)|H_d)$$

• Use resampling in time to simulate different-source pairs $(A^{(i)}, B^{(i)})$ and estimate

$$\widehat{CMP}_{\Delta} = \frac{1}{n_{sim}} \sum_{i=1}^{n_{sim}} \mathbb{I}[\Delta(A^{(i)}, B^{(i)}) < \Delta(A^*, B^*)]$$

SLR vs CMP

Case Study

- Data from a 2013-2014 study at UCI that placed logging software on 124 students' computers that recorded all browser activity for one week (Wang et al., 2015)
- Event series created by dichotomizing browsing events to Facebook versus non-Facebook related urls
- Only considered 55 students with at least 50 web browsing events of each type

Case Study Results

Table: Performance of a classifier based on SLR_{Δ}

Δ	TP@1	FP@1	Optimal Threshold	TP@opt	AUC
S	0.945	0.031	206	0.745	0.992
$\overline{\textit{M}}_1$	0.855	0.116	218	0.473	0.946
$\overline{\mathcal{T}}_{\mathit{BA}}$	0.964	0.029	49	0.873	0.996
$med(\mathcal{T}_{BA})$	0.964	0.085	115	0.818	0.992

Table: Performance of a classifier based on CMP_{Δ}

Δ	TP@5%	FP@5%	TP@0.1%	FP@0.1%	AUC
$\overline{\mathcal{T}}_{\mathit{BA}}$	1.000	0.036	0.982	0.002	0.999
$\mathit{med}(\mathcal{T}_{\mathit{BA}})$	1.000	0.176	1.000	0.015	0.992

Simulation

- Simulated the equivalent of one week of data for pairs of processes with varying degrees of association
 - A: Poisson process with intensity λ_A
 - B: independent Poisson process with intensity $\lambda_B = p\lambda_A$, $p \in (0,1)$ or with probability p add Gaussian noise to event in A
- 10,000 independent & 10,000 associated pairs for each combination of parameters
- Most important factor in detecting associated pairs is the signal-to-noise ratio

$$\gamma = \frac{\overline{\mathcal{T}}_{AA}}{\sigma}$$

Simulation Results

Simulation Results II

Simulation Results III

Conclusions

- The resampling approach shows promise in situations where no reference data is available
- The population-based SLR is still the preferred method, given
 - Better performance for pairs exhibiting weak association
 - Similar performance to the CMP for strongly associated pairs
 - Well-established approach in forensic investigation

Future Directions

- Preparing R package assocr for release
- Potential collaboration with Los Alamos National Laboratory
- Extend methodology (spatial data, exclusion patterns, etc)
- Develop theory of detectability
- Develop methods for identification

References

- Hepler, A. B., Saunders, C. P., Davis, L. J., & Buscaglia, J. (2012). Score-based likelihood ratios for handwriting evidence. Forensic Science International, 219(1), 129 140. doi: https://doi.org/10.1016/j.forsciint.2011.12.009
- Wang, Y., Niiya, M., Mark, G., Reich, S., & Warschauer, M. (2015). Coming of age (digitally): an ecological view of social media use among college students. In *Proceedings of the 18th ACM conference on computer supported cooperative work & social computing* (pp. 571–582).

Figure: Segregation

Figure: Mean IET

Figure: Mingling

Figure: Median IET

Simulation Results IV

Figure: $\gamma = 14.6$

Figure: $\gamma = 7.3$

Algorithm 1 Sessionized Resampling

Input: Pair of event series (A^*, B^*)

Output: Set of resampled pairs $\mathcal D$

- 1: Fix *B**
- 2: **for** $\ell = 1$ to n_{sim} **do**

3: **for**
$$k = 1$$
 to $n_{A^*}^-$ **do**

4: Draw
$$t_{new} \sim p(t^-)$$

5: Set
$$S_{a,k}^{(\ell)} = S_{a,k} - t_k^- + t_{new}$$

7: Set
$$A^{(\ell)} = \{S_{a,k}^{(\ell)} : k = 1, \dots, n_{A^*}^-\}$$

9: **return**
$$\mathcal{D} = \{ (A^{(\ell)}, B^*) : \ell = 1, \dots, n_{sim} \}$$

Algorithm 2 Simulation of associated marked point processes

Input: λ_A , p, σ

Output: Simulated pair of processes (A, B)

- 1: Simulate $A = \{t_j : j = 1, ..., n_A\}$ from a Poisson point process with rate λ_A
- 2: Set k = 0
- 3: **for** j = 1 to n_A **do**
- 4: Draw $d_i \sim Bernoulli(p)$
- 5: **if** $d_i = 1$ **then**
- 6: Increment k = k + 1
- 7: Draw $t_k \sim Normal(\mu = t_i, \sigma^2)$ where $t_i \in A$
- 8: end if
- 9: end for
- 10: **return** $B = \{t_k : k = 1, \dots, n_B = \sum_{j=1}^{n_A} d_j\}$

Signal-to-Noise Ratio, I

Recall that the numerator of the signal-to-noise ratio γ is the reciprocal of the mean intensity of the simulated realizations of process A, i.e.,

$$\overline{\lambda}_{A}^{-1} = \left[n^{-1} \sum_{i=1}^{n} \lambda_{A}^{(i)} \right]^{-1}. \tag{1}$$

where n is the number of simulated processes and $\lambda_A^{(i)}$ is the intensity of the i^{th} realization of process A. Since each realization of A is a Poisson process, the inter-event times $\tau_{AA}^{(i,j)}$ for $j=1,\ldots,n_A^{(i)}$ are distributed i.i.d. Exponential($\lambda_A^{(i)}$), and their expectation is

$$\mathbb{E}_{\tau}\left(\tau_{AA}^{(i,j)}\right) = \left(\lambda_{A}^{(i)}\right)^{-1} \quad \forall j. \tag{2}$$

Signal-to-Noise Ratio, II

Note that each realization of A is independent of the other n-1 realizations. Thus the expected inter-event time across the realizations of A is

$$\mathbb{E}_{\tau}\left(\overline{\tau}_{AA}^{(\cdot,\cdot)}\right) = \mathbb{E}_{\tau}\left(n^{-1}\sum_{i=1}^{n}\overline{\tau}_{AA}^{(i,\cdot)}\right) \tag{3}$$

$$= n^{-1} \sum_{i=1}^{n} \mathbb{E}_{\tau} \left(\tau_{AA}^{(i,j)} \right) \tag{4}$$

$$= n^{-1} \sum_{i=1}^{n} \left(\lambda_A^{(i)} \right)^{-1} \tag{5}$$

$$ightarrow \mathbb{E}_{\lambda}\left(rac{1}{\lambda_{A}}
ight) \quad ext{as } n
ightarrow \infty.$$
 (6)

Signal-to-Noise Ratio, III

Since λ_A^{-1} is a convex function, we can apply Jensen's inequality to (6) to obtain

$$\frac{1}{\overline{\lambda}_{A}} \to \frac{1}{\mathbb{E}_{\lambda}(\lambda_{A})} \le \mathbb{E}_{\lambda}\left(\frac{1}{\lambda_{A}}\right). \tag{7}$$

Therefore, $\overline{\lambda}_A^{-1}$ is a lower bound on the expected inter-event time across the simulated realizations of process A. It is more conservative to use than (5) for calculating γ since it results in an under-estimate of the amount of noise present in the processes.