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Project Goals

Develop statistical methodologies to address questions of interest
Are two event streams from the same individual or not?
Are there unusual and significant changes in behavior?

Develop testbed data sets to evaluate these methodologies
Develop open-source software for use by forensics community
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Problem Statement

Consider a pair of user-generated event series M = (A,B) such that

M = {(tj,m(tj)) : j = 1, . . . , n}

where tj ∈ R+ is the time and m(tj) ∈ {A,B} is the type of the jth
event.
We want to quantify the likelihood that the pair was generated by the
same source.
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Approach

1 Determine suitable measures to quantify association between two
event series A and B.

2 Quantify the likelihood that a pair (A,B) was generated by the same
source or by different sources, given a measure of association.

Assessing the strength or degree of association

C. Galbraith, P. Smyth & H. S. Stern (2018). “Statistical Methods for
Quantifying the Association Between Discrete Event Time Series.” Under
review by IEEE Transactions on Information Forensics and Security.
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Methods to Assess Degree of Association
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Population-based Approach

Two competing hypotheses:

Hs : (A∗,B∗) came from the same source
Hd : (A∗,B∗) came from different sources

Use sample Mi = (Ai,Bi) for i = 1, . . . ,N to estimate the score-based
likelihood ratio

SLR∆ =
g(∆(A∗,B∗)|Hs)

g(∆(A∗,B∗)|Hd)

Different interpretations of the denominator (Hepler et al., 2012)
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Resampling Approach

Usually don’t have sample from reference population
Focus on the conditional likelihood given different sources
Coincidental match probability: probability that a different-source pair
with observed score ∆(A∗,B∗) exhibits association by chance

CMP∆ = Pr(∆(A,B) < ∆(A∗,B∗)|Hd)

Use resampling in time to simulate different-source pairs (A(i),B(i))
and estimate

ĈMP∆ =
1

nsim

nsim∑
i=1

I[∆(A(i),B(i)) < ∆(A∗,B∗)]
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SLR vs CMP
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Case Study

Data from a 2013-2014 study at UCI that placed logging software on
124 students’ computers that recorded all browser activity for one
week (Wang et al., 2015)
Event series created by dichotomizing browsing events to Facebook
versus non-Facebook related urls
Only considered 55 students with at least 50 web browsing events of
each type
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Case Study Results

Table: Performance of a classifier based on SLR∆

∆ TP@1 FP@1 Optimal
Threshold

TP@opt AUC

S 0.945 0.031 206 0.745 0.992
M1 0.855 0.116 218 0.473 0.946
T BA 0.964 0.029 49 0.873 0.996

med(TBA) 0.964 0.085 115 0.818 0.992

Table: Performance of a classifier based on CMP∆

∆ TP@5% FP@5% TP@0.1% FP@0.1% AUC
T BA 1.000 0.036 0.982 0.002 0.999

med(TBA) 1.000 0.176 1.000 0.015 0.992
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Simulation

Simulated the equivalent of one week of data for pairs of processes
with varying degrees of association

A: Poisson process with intensity λA
B: independent Poisson process with intensity λB = pλA, p ∈ (0, 1)
or with probability p add Gaussian noise to event in A

10,000 independent & 10,000 associated pairs for each combination
of parameters
Most important factor in detecting associated pairs is the
signal-to-noise ratio

γ =
T AA
σ
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Simulation Results
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Simulation Results II
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Simulation Results III
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Conclusions

The resampling approach shows promise in situations where no
reference data is available
The population-based SLR is still the preferred method, given

Better performance for pairs exhibiting weak association
Similar performance to the CMP for strongly associated pairs
Well-established approach in forensic investigation
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Future Directions

Preparing R package assocr for release
Potential collaboration with Los Alamos National Laboratory
Extend methodology (spatial data, exclusion patterns, etc)
Develop theory of detectability
Develop methods for identification
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Figure: Segregation

Figure: Mean IET

Figure: Mingling

Figure: Median IET
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Simulation Results IV

Figure: γ = 14.6 Figure: γ = 7.3
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Algorithm 1 Sessionized Resampling
Input: Pair of event series (A∗,B∗)
Output: Set of resampled pairs D

1: Fix B∗

2: for ℓ = 1 to nsim do
3: for k = 1 to n−A∗ do
4: Draw tnew ∼ p(t−)
5: Set S(ℓ)

a,k = Sa,k − t−k + tnew
6: end for
7: Set A(ℓ) = {S(ℓ)

a,k : k = 1, . . . , n−A∗}
8: end for
9: return D = {(A(ℓ),B∗) : ℓ = 1, . . . , nsim}
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Algorithm 2 Simulation of associated marked point processes
Input: λA, p, σ
Output: Simulated pair of processes (A,B)

1: Simulate A = {tj : j = 1, . . . , nA} from a Poisson point process with
rate λA

2: Set k = 0
3: for j = 1 to nA do
4: Draw dj ∼ Bernoulli(p)
5: if dj = 1 then
6: Increment k = k + 1
7: Draw tk ∼ Normal(µ = tj, σ2) where tj ∈ A
8: end if
9: end for

10: return B = {tk : k = 1, . . . , nB =
∑nA

j=1 dj}
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Signal-to-Noise Ratio, I

Recall that the numerator of the signal-to-noise ratio γ is the reciprocal of
the mean intensity of the simulated realizations of process A, i.e.,

λ
−1
A =

[
n−1

n∑
i=1

λ
(i)
A

]−1

. (1)

where n is the number of simulated processes and λ
(i)
A is the intensity of

the ith realization of process A. Since each realization of A is a Poisson
process, the inter-event times τ

(i,j)
AA for j = 1, . . . , n(i)A are distributed i.i.d.

Exponential(λ(i)
A ), and their expectation is

Eτ

(
τ
(i,j)
AA

)
=
(
λ
(i)
A

)−1
∀j. (2)
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Signal-to-Noise Ratio, II

Note that each realization of A is independent of the other n − 1
realizations. Thus the expected inter-event time across the realizations of
A is

Eτ

(
τ
(·,·)
AA

)
= Eτ

(
n−1

n∑
i=1

τ
(i,·)
AA

)
(3)

= n−1
n∑

i=1
Eτ

(
τ
(i,j)
AA

)
(4)

= n−1
n∑

i=1

(
λ
(i)
A

)−1
(5)

→ Eλ

(
1
λA

)
as n → ∞. (6)
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Signal-to-Noise Ratio, III

Since λ−1
A is a convex function, we can apply Jensen’s inequality to (6) to

obtain
1
λA

→ 1
Eλ(λA)

≤ Eλ

(
1
λA

)
. (7)

Therefore, λ−1
A is a lower bound on the expected inter-event time across

the simulated realizations of process A. It is more conservative to use than
(5) for calculating γ since it results in an under-estimate of the amount of
noise present in the processes.
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