Cross-abstraction Functional Verification and
Performance Analysis of
Chip Multiprocessor Designs

Gabor Madl, Student Member, IEEE, Sudeep Pasricha, Member, IEEE,
Nikil Dutt, Fellow, IEEE, and Sherif Abdelwahed, Senior Member, IEEE

Abstract—This paper introduces the Cross-abstraction
Real-time Analysis (CARTA) framework for the model-
based functional verification and performance estimation
of chip multiprocessors (CMP) utilizing bus matrix (cross-
bar switch) interconnection networks. We argue that the
inherent complexity in CMP designs requires the syner-
gistic use of various models of computation to efficiently
manage the trade-offs between accuracy and complexity.
Our approach builds on domain-specific modeling lan-
guages (DSMLs) driving an open-source tool-chain that
provides a cross-abstraction bridge between the finite state
machine (FSM), discrete event (DE) and timed automata
(TA) models of computation, and utilizes multiple model
checkers to analyze formal properties at the cycle-accurate
and transaction-level abstractions. The cross-abstraction
analysis exploits accuracy for functional verification, and
achieves significant speedups for performance estimation
with marginal accuracy loss. We demonstrate results on
an industrial strength networking CMP design utilizing a
bus matrix interconnection network. To the best of our
knowledge, the CARTA framework is the first model-based
tool-chain that utilizes multiple abstractions and model
checkers for the comprehensive and formal functional veri-
fication, performance estimation, and real-time verification
of bus matrix based CMP designs.

Index Terms—Real-time, performance analysis, model
checking, chip multiprocessor, bus matrix interconnect.

I. INTRODUCTION

Modern chip multiprocessors (CMPs) consist of
several heterogeneous components such as pro-
grammable processors, custom logic blocks, memo-
ries, and peripherals, all of which are connected to-
gether via an interconnection network. These CMP
designs must satisfy increasingly complex perfor-
mance constraints for emerging applications. This is

This work was partially supported by the NSF grants CCR-
0225610, ACI-0204028, CNS-0615438, CNS-0613971, NSF SOD
grant CNS-0804230, a CPCC Fellowship, and a grant by Fujitsu
Laboratories of America.

becoming more and more challenging for system de-
signers because of the large number of components
on a chip that have multifaceted dependencies and
interactions with each other. Model-based design
is an emerging paradigm that aims to manage this
complexity by systematically capturing key proper-
ties of CMPs, such as their structure, parameters of
individual components, and their interactions.

This paper introduces the model-based Cross-
abstraction Real-time Analysis (CARTA) framework
for the cross-abstraction analysis of CMP designs,
that combines the concepts of component-based
design, domain-specific modeling, simulations, and
model checking to provide a unified framework for
the functional and performance analysis of CMPs
with bus matrix interconnection networks. The de-
sign flow aims to address three major challenges in
the formal analysis of CMP designs: (1) functional
verification - to ensure that the system will not
be trapped in a deadlock or livelock state, (2)
performance estimation - in order to obtain tight
bounds on the worst case performance of the CMP
design, and (3) verification of real-time properties -
to prove whether individual deadlines for tasks and
performance estimates hold for the CMP design.

The proposed approach builds on several meth-
ods originally developed for the real-time veri-
fication and performance estimation of software-
intensive distributed real-time embedded (DRE) sys-
tems. While CMP designs themselves can be viewed
as DRE systems, the communication subsystem in
CMP designs has a major impact on both design and
analysis. Unlike software-intensive DRE systems
that communicate over packet-switched networks,
CMP designs often utilize complex bus matrix ar-
chitectures, where access to the bus is managed by
an arbiter (or several arbiters). Bus protocols and
arbitration policies have a major impact on key de-

sign parameters such as throughput and delays, and
present new challenges for functional verification. In
particular, deadlock-freedom and livelock-freedom
is not guaranteed by bus protocols, but is a key
requirement for designers. A key contribution of
this paper is to show how methods for the analysis
of DRE systems can be adapted to CMP designs
utilizing fully connected bus matrix interconnects,
and how point arbitration policies can be expressed
by the non-preemptive scheduling of task graphs.
The contributions of this paper are focused on the
following areas:

o We describe the CARTA framework for the
cross-abstraction analysis of CMP designs, and
define a model-based design flow for the anal-
ysis of CMP designs in Section

o We utilize the ALDERIS domain-specific mod-
eling language (DSML) introduced in [1]] for
the formal modeling of CMPs with bus ma-
trix interconnection networks. ALDERIS was
proposed as a DSML for the modeling of
software-intensive DRE systems. In this paper
we extend the use of ALDERIS to complex bus
matrix architectures commonly used in modern
CMPs. The novelty in this paper is to show
how complex bus designs can be abstracted
out as transaction-level models, and how we
translate resource allocation to the ALDERIS
task graph model. The ALDERIS DSML is
used as a high-level specification of the CMP,
and directly drives the functional verification,
performance estimation, and performance ver-
ification methods. This is described in more
detail in Section [Vl

o« We describe an approach for the functional
verification of CMPs using the ARM Ad-
vanced Microcontroller Bus Architecture Ad-
vanced High-speed Bus (AMBA AHB) bus ma-
trix interconnection networks (also referred to
as Multi-layer AHB and AHB-Lite). We extend
earlier work on the verification of simple bus
designs [2] to complex bus matrix structures.
We use FSM models of the AMBA AHB pro-
tocol with cycle-accurate timing information to
formally verify deadlock-freedom. We describe
this method in Section [V]

o We utilize a discrete event simulation (DES)-
based formal performance estimation method
described in [3]] to estimate the real-time per-

formance of a CMP design. By switching to
more abstract representation of the design, we
achieve significant speedups and scalability in-
crease with negligible accuracy loss. Section
describes results for this work.

o We build on our earlier work on the real-time
verification of distributed real-time embedded
(DRE) systems [4], [S], [6], [7] to propose a
method to verify estimates for real-time per-
formance using timed automata model check-
ers. By incorporating timed automata model
checkers in the design flow, we can prove
that the model satisfies the performance es-
timates achieved by the DES-based method.
Section [V1I| presents this timed automata-based
real-time verification method.

« Finally, the major contribution of this paper is
that it tightly integrates all of the above steps
in the CARTA model-driven design analysis
framework. This approach provides a way to
use time-accurate models for functional veri-
fication, and more abstract representations for
scalable performance estimation. By adopting
the right abstractions to different steps of the
analysis, we can significantly increase scalabil-
ity when needed, while also retaining accuracy
for steps where it is needed. We compare the
scalability of the proposed methods in Sec-

tion [VIIIL

II. THE CARTA FRAMEWORK

Fig. 2] shows our proposed cross-abstraction real-
time analysis framework that provides a way to
utilize the right level of abstraction for each analysis
method. The three challenges addressed by our pro-
posed analysis framework — functional verification,
performance estimation, real-time verification — re-
quire different approaches, models of computation,
abstractions, and tools for formal analysis. We pick
the model of computation and abstraction level
for each analysis method that provides the most
efficient analysis. Finding the right abstraction is a
key challenge for the model-based analysis of CMP
designs.

For functional verification, it is important to
accurately capture the signals in the bus matrix
interconnection network. If the analysis model is too
abstract, certain problems can remain undetected in
the design phase. In our framework, we make use

Specification

Meta-modeling Tool

Abstraction | Formal Analysis
Real-time Verification fo:ﬁf\i‘iﬁ” 53
Transaction-Level, | Timed Automataec——
Cycle Approximate []HP\ueﬂmag IF

UPPAAL
1

i GME
iform

-~ Automatic model

@nce T T
stimates Specification

Domain-spegific ML

Performance Estimét'@\ transformation

Transaction-Level,

Discrete Event MoC
Cycle Approximate

Open-source
DREAM Tool

Pe
-1
\ ‘
] h Parameters |
]ﬁ Y e

transformation '
|

Functional Verification

Cycle Accurate

Finite State Machine MloC =
NuSMV eri“[iicitio

feedback

Fig. 1. The CARTA Model-based Analysis Framework

of a cycle-accurate finite state machine (FSM) model
of computation (MoC) to capture the bus protocol,
and arbitration algorithms. Using this model, we can
efficiently check for all combinations of commu-
nication signals that satisfy the protocol to verify
that no deadlocks and starvations occur in the CMP
design.

The effectiveness of performance estimation and
real-time verification, on the other hand, is primarily
limited by scalability issues. Cycle-accurate FSM
models quickly lead to the state space explosion
problem, when used for performance estimation, or
real-time verification. Therefore, we need to raise
the abstraction to transaction-level formal models.
Transaction-level abstractions are well-established
in the domain of simulation-based design explo-
ration [8]]. Transaction-level formal models in our
context are event-driven, and communicate via asyn-
chronous message passing. Timing information in
the models is captured as time intervals associated
with events. We apply the transaction-level mod-
eling concept to increase the scalability of formal
methods in the CARTA framework.

The CARTA framework builds on various mod-
eling and analysis tools created by the research
community and the authors. We utilize the Generic
Modeling Environment (GME) [9] as a model-
ing tool for designing ALDERIS [1]] models (http:
/lalderis.ics.uci.edu), as described in Section
Domain-specific modeling languages (DSMLs) in
our approach are defined by the concept of model-
integrated computing [10], that promotes the use
of meta-modeling to create custom modeling lan-

guages which are a good fit for a specific problem
domain. ALDERIS captures key properties of a CMP
design, such as computation units, inter-component
dependencies, the mapping of tasks to HW or SW,
execution times and delays, and key constraints that
the design has to satisfy. CMP designs are specified
using the ALDERIS DSML, and drive the CARTA
model-based analysis framework.

ALDERIS models of CMP designs are exe-
cutable discrete event (DE) models with formal
semantics. These models can be transformed into
finite state machine (FSM) models with cycle-
accurate timing accuracy. We utilize the open-source
Distributed Real-time Embedded Analysis Method
(DREAM) tool (http://dre.sourceforge.net) for the
performance estimation of ALDERIS models, and
the NuSMV [11]] model checker for the functional
analysis of the FSM models. The DREAM tool also
generates a direct timed automata (TA) represen-
tation of ALDERIS models, that can be analyzed
by the UPPAAL [12] and Verimag IF [13] timed
automata model checkers.

A. Model-based Design Flow using CARTA

Fig. 2] shows the proposed model-based design
flow using CARTA. The proposed approach is a
multi-step process, in which the domain-specific
model continually evolves until all required proper-
ties are satisfied. This evolution is performed by the
designer based on feedback from the analysis tools.
The design flow starts with the domain-specific
model, capturing key properties of the design, such

http://alderis.ics.uci.edu
http://alderis.ics.uci.edu
http://dre.sourceforge.net

Start

Functional Verification Simulations Real-time Verification
Develop
= domain-specific &
model i
A Y B v N S
FSM Model CMP design Create 3 Generate Y Generate
model and interconnect SystemC/RTL discrete event i i model checking timed automata
correct? by FSM simulation model model i required model
Perform Obtain execution Performance Translate WCET Perform
model checking parameters on a estimation by : estimate into timed automata
by NuSMV set of test vectors DES in DREAM | | real-time property model checking
Y f_y i
Annotate ~Performance ™,
) domain-specific estimate 1+ e . |
Functlo_nal model i L|m_rted Real-tlr_ne ;
properties i horizon properties =
satisfied? | B analysis? satisfied? N
" Model Real-time
" i X Model
functionally g i properties
correct Performance | | N ™ satisfied?,” Y gtnedulably
Estimation

Fig. 2. Model-based Design-flow using CARTA

as its structure, behavior and environment. CARTA
utilizes the ALDERIS DSML to specify CMP de-
signs for real-time analysis. Analysis methods uti-
lized by CARTA include (/) functional verification,
(2) simulations, (3) performance estimation, and (4)
real-time verification. While functional correctness
and simulation results are required for performance
estimation and real-time verification, some of the
steps can be performed concurrently. This approach
reduces the overall design time compared to a
sequential design process.

The goal of functional verification is to prove
that the CMP design is safe and works according
to specification. CARTA proposes the use of cycle-
accurate FSM models for functional verification by
the NuSMV tool, and models masters and slaves
connected to the interconnect as “black boxes”,
that communicate non-deterministically. The model
checker explores the resulting state space to prove
required properties in the design. Interconnect pro-
tocols have to be captured by a formal specification
for model checking, therefore designers need to

create models manually whenever a new protocol is
considered for use in CMP designs. When working
with a new protocol, if a property is not satisfied,
designers need to check whether the problem is in
the design itself, or in the manually created FSM
models, and update models accordingly. A compo-
sitional approach for modeling is desirable, as it
allows to reuse the formal specification for various
CMP designs. In this paper we describe cycle-
accurate FSM models for CMP components built
on the AMBA AHB [14] protocol, and use these
models for compositional functional verification.

Simulations form an integral part of the proposed
design flow, and provide accurate task execution
times and delays to the ALDERIS models. For the
purposes of simulation, we capture CMP designs
in the SystemC [15] modeling language at the
Cycle Count Accurate At Transaction Boundaries
(CCATB) modeling abstraction [16]]. SystemC is a
C++ library that provides a rich set of primitives
for modeling communication and synchronization.
The CCATB modeling abstraction is a form of

transaction-based bus cycle accurate model that
enables fast and accurate performance estimation for
CMP designs. CCATB captures transactions in the
design using function calls which allow a significant
speedup in simulation. For instance, in the AMBA
AHB on-chip communication architecture, hundreds
of signals can transition during a data read or write
issued from a processor to a memory. In the CCATB
model, a read () or write () function call cap-
tures the functionality of the hundreds of signals,
while still maintaining cycle accuracy required for
meaningful exploration. This leads to a reduction
in modeling time, and improves simulation speed
by several orders of magnitude over signal-accurate
C++ or RTL models. CCATB also performs addi-
tional optimizations, such as effectively clustering
static CMP delays and incrementing simulation time
in chunks, to further improve simulation speed.

The CARTA framework facilitates a novel discrete
event simulation (DES)-based simulation-guided
performance estimation method introduced in [3].
Models in the DRE MoC capture dependencies
between timers, tasks, channels in a formal setting,
as well as timing information and the scheduling
algorithm. Therefore, the dependencies essentially
impose a partial ordering between events in the
model. It was shown in [3] that two execution traces
of the DRE MoC, that were obtained by DES are
equivalent, if the total (untimed) ordering of events
is the same. If the order of events is fixed, the
DE model is deterministic, and one simulation is
sufficient to verify real-time properties. When the
order of events can change due to non-deterministic
execution times, all the different traces need to be
enumerated in order to verify that no deadlines
are missed in the model. As long as the order
of events is preserved, one only has to consider
the largest possible timestamps of events. Thus,
the DES-based performance estimation method is
based on repeated simulations, that explore the non-
deterministic ordering of events in the CMP models.
We refer to this approach as “simulation-guided
model checking”.

The simulation-guided model checking method
is built on the assumption that discrete event sim-
ulations using limited horizon are sufficient, after
which the system returns to an initial idle state. This
is often the case if computation is driven by periodic
timers. If this assumption can be guaranteed, then
the analysis is exhaustive, and proves the schedu-

lability of the CMP design. If not, or the analysis
does not terminate due to scalability issues, then an
additional step is needed for real-time verification
by timed automata.

We use results of the performance estimation to
formalize properties on the end-to-end performance
of the design. Model checkers are traditionally op-
timized to answer yes/no type questions, and there-
fore require the performance estimation results as
input parameters (i.e., is the end-to-end computation
time less than the estimate?). This provides a way
to prove the schedulability and performance of the
CMP design.

B. Relationship between Functional and Real-time
Analysis

CARTA proposes the use of cycle-accurate FSM
models for functional verification, and transaction-
level DE/TA models for real-time analysis. While
the transaction-level models are more abstract, the
FSM models are not a direct refinement of either
the DE or TA models. Therefore, it is important to
clarify how the functional analysis relates to real-
time analysis in the proposed approach.

The DES-based performance estimation and the
timed automata-based real-time verification are
based on an event-driven communication paradigm,
where it is assumed that messages are passed
through the interconnect as atomic transactions. In
most CMP interconnect protocols — including the
AMBA AHB on-chip communication architecture
— hundreds of signals can transition during a data
read or write issued from a processor to a mem-
ory. The DE and timed automata models abstract
out this complexity to reduce modeling time and
improve simulation speed, while still maintaining
cycle accuracy required for meaningful exploration.
Communication on the bus is represented as simple
event passing between masters and slaves.

For functional verification, it is important to
accurately capture the signals in the bus matrix
interconnection network. If the analysis model is too
abstract, certain problems can remain undetected in
the design phase. Therefore, it is necessary to con-
sider the actual signals that pass on the interconnect
for functional verification.

Creating a cycle-accurate representation of the
whole CMP application, however, is not necessary
for practical analysis. The question that functional

verification aims to address is to show that there
cannot be a combination or sequence of signals on
the CMP interconnect that leads to a deadlock or
livelock. We also show that masters get access to
the interconnect whenever they request access, and
can safely perform read and write operations. Once
these conditions are shown, there is no need to con-
sider cycle-accurate simulations of the actual CMP
application for functional verification purposes.

The functional analysis has to capture the com-
munication architecture of the CMP design, ar-
bitration policies, masters/slaves connected to the
bus, and focus on the various combinations and
sequences of signals that are allowed by the pro-
tocol. This analysis does not consider the behavior
of individual components for the functional verifica-
tion, but rather focuses on problems that may arise
when designers integrate components by industry
standard interconnect protocols. If there cannot be
any sequence or combination of bus signals that
leads to deadlocks or livelocks, we show that the
CMP design is functionally correct, and can build
on this result to utilize transaction-level models for
real-time analysis.

The DES-based performance estimation method
and the timed automata-based analysis builds on
the results of functional verification, as we can
safely assume that masters and slaves can reliably
communicate over the interconnect, following an
event-based message passing paradigm. Thus we get
the best of both worlds; we can prove functional
correctness, and also benefit from improved analysis
performance in transaction-level models.

III. NETWORKING ROUTER CMP DESIGN

To demonstrate the effectiveness of our design
flow, we use CARTA to explore a networking router
case study. This design is a high-level abstraction
of a router design by Conexant Systems, that was
first described in [17]. This system is used for data
packet forwarding, processing and encoding. The
CMP design implementation for this case study
consists of multiple processors, memories and net-
work interfaces, and a bus matrix interconnection
network. The different application tasks are mapped
onto the CMP components shown in Fig. 3 Fig. 3|
shows a simplified version of the hardware platform,
without peripherals (e.g. timer, interrupt controller,
UART, etc.) and without the DMA engine, for

masters bus matrix arbiters slaves

Decode
= - Co>
-
lCn D
stage
D)
@
il el arn s D

Fig. 3. Networking Router CMP HW Design

clarity. The major components in the CMP are the
two embedded processors (CPU_1 and CPU_2),
a post processing dedicated HW (PostProc), an
encrypt engine dedicated HW (Enc), on-chip mem-
ories (MEM 1 and MEM 2), network interfaces to
communicate with external components(IF1 to
IF6), and an AMBA AHB bus matrix interconnec-
tion network (Multi-layer AHB) to facilitate inter-
component communication on the CMP.

Several terms are used in the research community
when referring to interconnect architectures. Terms
such as bus matrix, crossbar switch, and multi-layer
all refer to interconnect designs where masters and
slaves are connected by more than one bus. Buses
in bus matrix interconnects are also referred to as
“layers”, and buses containing a single master and
slave are also referred to as “links”.

The AMBA AHB protocol allows the creation
of buses where only a single master and slave is
connected. In this paper we use the term “bus” in
this sense, to emphasize the fact that all masters
and slaves communicate through standard AMBA
AHB interfaces instead of being directly linked to
each other by wires. We use the term “bus matrix”
to refer to the terms Multi-layer AHB and AHB-
Lite by ARM. AHB-Lite specifically considers the
special case where only a single bus master is used
for each bus (layer).

There are several advantages to using an industry
standard bus between a single master and slave.
Most importantly, it allows the use of any compo-
nent in the design that supports the bus protocol
standard. In the case of AMBA AHB, designers

can pick any AMBA AHB master and slave from
third parties, and know that they can be reliably
connected by AMBA AHB. Other advantages are
that it provides a way to request retransmission of
data from the master in the case of errors (i.e.
RETRY response), it can be used to slow down
the master if the slave needs more time to process
requests (i.e. HREADY), and more importantly, it
is much easier to extend in the future (by adding
more masters/slaves) than a direct wire between a
master and slave. On the slave side, generally a
point arbiter (slave multiplexor) is used. This point
arbiter can control the HREADY signal on each
bus connected to the slave. Therefore, it can pick
which master gets access to the slave by setting
HREADY for that bus, and disabling for others.
AHB-Lite is marketed by ARM for bus matrix
interconnects where only a single bus masters are
used. AHB-Lite removes the request/grant protocol
and does not support RETRY/SPLIT from slaves.
However, it also does not support slaves that may
issue RETRY/SPLIT responses.

Fig. 4] shows a high level overview of the soft-
ware design modeled as a task graph, as well as
the mapping of the different tasks onto the CMP
components. Computation tasks (T) mapped to the
same processing unit communicate directly with
each other. The blocks marked as (B) represent
accesses to the bus matrix, either to read/write one
of the memory units (M), or to communicate with
the external environment through network interfaces
(IF). Processor CPU_1 is used to execute tasks
associated with the intrusion detection functionality,
while processor CPU_2 executes tasks associated
with the simple protocol translation and packet
forwarding functionalities. The encrypt engine dedi-
cated HW block is optimized for data encoding, and
executes tasks that perform different encodings on
packet data. A post-processing dedicated HW block
is used to speed up the back-end of the protocol
translation, as well as the encoding functionalities.

We now describe the networking router applica-
tion case study in more detail. The system receives
data packets from the network interface (IF) com-
ponents. The receiver (PktRx) tasks are responsi-
ble for data packet pre-processing and preliminary
decoding. Subsequently, the system performs multi-
ple functions - intrusion detection, simple protocol
translation, forwarding, and packet encoding. The
intrusion detection functionality consists of a Chk

Sy

IF1 -> Pkt RXZPKIRXZ

HdrCalHdrCal -= Mem1 Mem1 Mem_1

i [N : ; Slavé_IF4

"""" @ B} —

lem2 > Assm Assm fAssrn -=>IF4 A4

[(B]

Recilc_Recalc_1 -= IF4

Slave_IF1

2-> Pkt Rx3PKtRx3 | Proct Proc1 > Mem2 Mem2
i E |

IF2 > Pkt Rx4PkIRx4 --Blt_ fwd Pkt fwd ->IF5 IFS

Q '''''''''''''' b QF
ga® 5 8
. ‘Wilmlwill

IFS Ehc Enc->Mem3 Mem3Mem3 -> Recalc Recalc_2 Proc2 Proc2 >IF6 IR6

Slave_IF2 CPU_2

IF3 -> Pkt RXGPKIRXG

Iy - [3

Slave_IF3 Enc Mem_2 Slave_IF6

Fig. 4. Networking Router CMP SW Design

task that is used to check if the packets have not
been subjected to some suspicious activity, as would
be the case if there is an intrusion. The HdrCal task
is used to perform data packet processing to detect
intrusions, based on user-defined intrusion signa-
tures. If an intrusion is detected, then reports of sus-
picious activities are generated. Finally the packets
are stored in physical memory Mem_1 by the Mem1
task from where another subsystem either blocks the
flow, or passes the packets on to the next router.
In the simple protocol translation functionality, the
Procl task is used to strip the source protocol and
store the data packets into physical memory Mem__1
by task Mem2. The memory also consists of a set of
translational templates. These templates are used by
the Cnfg task to strip the source protocol header,
and then append the new protocol information to the
data. The Recalc_1 task finally reorders the data
payload and new header, and sends out the packets
to an outgoing network interface. The Assm task
is used instead of the Cnfg and Recalc_1 tasks
if the protocol translation is fairly lightweight (for
instance if the source and destination protocols are
similar). The forwarding functionality consists of a
task Pkt _ fwd which receives a packet and updates
the header data (e.g., updating time stamps and
stripping source routing fields), and then forwards
the data to the output interface. Enc implements
the packet data encoding functionality, and stores
the results into physical memory Mem_2 by task
Mem3. Subsequently, task Recalc_2 is responsi-

ble for reordering the data payload and creating a
header. Task Proc? is used to finally perform post-
processing the packet data headers before forward-
ing them to the output network interface.

IV. MODELING BUS MATRIX-BASED CMP
DESIGNS

A. The ALDERIS Domain-Specific Modeling Lan-
guage

There are three basic constructs in ALDERIS;
timers, tasks, and channels. Tasks represent compu-
tations or resource utilization in CMP systems, and
are characterized by an execution interval. Chan-
nels are simple FIFO buffers that can also express
communication delays. Timers are special tasks that
periodically broadcast events, triggering the execu-
tion of its dependents. These three constructs allow
modeling of CMP designs as a set of interconnected
task graphs.

The tasks and timers in ALDERIS are mapped to
threads. Threads represent non-preemptive sched-
ulers — tasks and timers mapped to a thread
are scheduled by a fixed-priority non-preemptive
scheduler. Threads are in turn mapped to CPUs.
ALDERIS makes use of components to express hier-
archy. Components may contain tasks and channels,
and communicate through input/output ports.The
ALDERIS DSML is freely available for download
at http://alderis.ics.uci.edu.

We refer to the semantic domain of the ALDERIS
DSML as the DRE model of computation (MoC).
The semantics of the DRE MoC were formally
specified as a discrete event system [3], and as
network of timed automata [4], [5], [1], [6], [7].

A major advantage of having both a discrete
event (DE) and timed automata (TA) representation
is that we can choose which one we prefer to
use depending on the problem that needs to be
addressed and the required abstraction level. In this
paper, we use the DE formalism for performance
estimation, and the TA representation for real-time
verification.

B. Modeling the Router CMP using ALDERIS

The networking router design shown in Fig. [3|
uses an AMBA AHB bus matrix interconnection
network. This architecture simplifies the arbitration
policy — simple point arbitration is used at the
slaves (either memories or network interfaces) to

determine which master gets access to the slave.
If the slave is not already busy serving a master,
any master can get access to it immediately, and
transmit data through its dedicated bus to the slave.
If the slave is already busy serving a request, then
the masters trying to access the slave are forced to
wait. When the slave is free again, the master with
the highest priority gets access to the slave. This
simple point arbitration policy provides a great fit
for simple task scheduling problems — the memory
is modeled as a task, and scheduling this task for
execution represents the access of the memory by
other tasks. This abstraction provides a simple, but
accurate model to capture the event flow between
tasks, as well as memory and interface accesses
through the bus matrix.

In the following we describe how we used
the ALDERIS domain-specific modeling language
(DSML) to model the case study described in
Section [IIl Tasks and interfaces are modeled as
ALDERIS tasks. We introduce FIFO buffers between
tasks in order to (1) capture communication delays
on the bus, and (2) buffer events, in case the task
is already executing, and not able to receive the
event yet. Dependencies in the ALDERIS task graph
follow the SW design dependencies. However, there
are some differences, as the ALDERIS models cap-
ture concurrency, real-time properties, and schedul-
ing as well. We add timers to the model that rep-
resent the sampling rates over the input interfaces.
Timers periodically push events, that represent data
received from the environment. The task graph is
event-driven and asynchronous, therefore further
event propagation is not synchronized, timers are
solely used as a triggering mechanism.

Fig. 4] shows the dependencies in the SW design.
It does not, however, capture the semantics of the
event flow. There are four branches in the model
(from IF1, IF2, IF3, and Mem2). The branches
from IF1, IF2, and IF 3 represent a choice where
only one path is taken. The branch from Mem?2
to Assm and Cnfg represent broadcast — both
dependents receive the event, and process it when
they are scheduled for execution.

One physical HW unit may be represented as not
just one, but several CPU constructs in ALDERIS.
When a choice is made, a simulation trace will
choose either one of the paths depending on certain
conditions. However, to calculate the worst-case
performance, the formal analysis has to capture both

http://alderis.ics.uci.edu

O @ W

Timer1 IF1 IF1 = Pkt Rx1/2 Pkt
+ Coe

0

IF_Thread 1 Slave IF1 Thread_1

CPU 1

Timer2

| 2> PR P
4 P 4

@@ @m-

Chk = HdrCal HdrCal HdrCal -=Mem1 Mem1

E """"" 3::::::::: 2 ’LJ

RE

IF_Thread_4

em2-»Assm Assm Assm-=IF4 IH4

+

e

00808

IF_Thread 2 Slave IF2 Thread_2_a CPU_2_a Thread_2_b CPU_2_b IF_Thread 5 Slave_IF5

T [¢ @ ¢ m @

IF3 IF3-» Pkt RS/ KL RXS®py RyFis > Enc ERc Enc-»Mem3 Mem3Mem3 -» Recale_22C@C ecaic 2 > Proc2 Proc2 Proc2-»IF6 IF6

()

Ti mr3

i P4

i1 0@ 0

IF_Thread 3 Slave IF3 Enc_Thread Enc

Fig. 5. ALDERIS Model of the Router CMP in the GME Tool

options, so we build a model where both paths are
simultaneously taken. The CPU_2 HW component
shown in Fig. [] is modeled as two independent
(logical) CPUs in the ALDERIS model shown in
Fig. 5] (CPU_2_a and CPU_2_b). When running
a simulation, only one path is active, and this
path is running on the physical CPU_2 HW. When
we perform the formal exploration, we duplicate
the CPU_2 physical processor to the CPU_2_a
and CPU_2_b logical processors, and execute both
paths simultaneously on these independent CPU
models. This approach is feasible as the execution
of a task on one path does not interfere with
the execution of another task from the other path.
Therefore, the formal model concurrently explores
both possible traces simultaneously.

IF2 is the interface for the protocol translation
functionality. Depending on whether the data is
forwarded or stored in the memory for further
processing, one of two distinct event paths is taken
from IF2. Although both paths execute on the same
processing unit CPU_2, these two paths cannot be
active at the same time; either the Pkt Rx3, Procl
path is taken (and then Mem2 and so on), or the
PktRx4, Pkt_fwd, IF5 path. Even though these
paths are mapped to the same processing unit, they
are not concurrent. Therefore, we execute both paths

§ 'LJ e §

PostPro&_Threa@ostProc

o @ @@=

i i

f] [gk

Mem_Thread 2 Mem_2

Slave_IF6 IF_Thread_6

in parallel for performance estimation. By introduc-
ing a new logical processing unit, CPU_2_b, we
can simultaneously explore both paths at the same
time.

We encounter the same situation at the branch
from IF1; either PktRx1, or PktRx2 is chosen to
process the packages arriving through the interface.
Therefore, we have the option to introduce a new
logical processing unit, to capture the fact that
PktRx1 and PktRx2 do not execute at the same
time. Multiple logical masters are generally required
anytime a choice is made. However, if the choice is
performed within a single thread, and both paths
merge before any task communicates with tasks
mapped to remote threads, the different paths may
be grouped into a single task. This is a manual
optimization technique that may improve analysis
performance.

We utilize the manual optimization in this
case, as both PktRx1 and PktRx2 are mapped
to the same thread, and both paths merge be-
fore the bus access is made. We substitute a
new logical task (PktRx1/2), with a best
case execution time (bcet) of min[bcet(PktRx1),
bcet(PktRx2)], and a worst case execution time
(wcet) of max|wcet(PktRx1), wcet(PktRx2)].
Regardless of which execution path is taken

HGRANT &

(HGRANT & HRESP = SPLIT) | HRESP = OK

!HREADY | MASK _MASTER

HRESP = ERROR |
HGRANT & MASK MASTER

!HREADY | MASK MASTER

HRESP = OK ‘

Fig. 6. Finite State Machine Model of an AMBA AHB Master

(PktRx1 or PktRx2), task PktRx1/2 captures
the execution intervals of both tasks, and therefore
can be used for worst case performance estimation.
This method increases scalability with minimal loss
of accuracy, and is therefore preferable in the early
stages of the design flow. We apply the same idea for
the branch from IF 3, and substitute tasks Pkt Rx5
and PktRx6 with the PktRx5/6 logical task.
Finally, the branch from Mem?2 follows broadcast
semantics to dependents, and therefore requires no
changes in the ALDERIS representation. The result-
ing ALDERIS model shown in Fig. [5|captures depen-
dencies between tasks, the mapping of tasks to the
target platform, as well as timing information of the
networking router CMP design, and allows formal
analysis as described in the following sections.

V. FUNCTIONAL VERIFICATION OF BUS MATRIX
CMP DESIGNS

Functional verification is a key challenge in the
design of complex CMP systems. Modern bus proto-
cols are increasingly complex, and do not guarantee
the correctness of the overall CMP design. More-
over, they are often specified by natural languages,
and therefore there may remain ambiguities in the
specification. In [2]], we presented a method for
the modeling and functional verification of CMP
designs utilizing an AMBA AHB bus. In this paper,
we apply this work to CMP designs using fully-
connected AMBA AHB bus matrix interconnects.

(HGRANT & HRESP = SPLIT) |
!'HREADY | MASK MASTER

,
*. HRESP = OK
HGRANT &
P~=RETRY
(HGRANT & HRES
HGRANT & ‘
= (HGRANT & HRESP = SPLIT) |

!HREADY | MASK MASTER

HRESP = NONSEQ |
HRESP = RETRY |
HRESP = SPLIT

HRESP # SPLIT &
ARESP # RETRY &
HTRANS # NONSEQ |
—HADDR)

ANS = NONSEQ & HWDATA

HTRANS # NONSEQ |
—HADDR

RANS = NONSEQ & HADDR

HRESP # SPLIT &
HRESP # RETRY &
HTRANS # NONSEQ

HRESP = NONSEQ |
HRESP = RETRY |
HRESP = SPLIT

Fig. 7. Finite State Machine Model of an AMBA AHB Slave

We have considered two key problems in our
formal analysis. A deadlock can be observed in
the finite state machine model as a state where no
transitions are enabled. A livelock can be observed
as a state from which only a subset of states is
reachable. A livelock can express situations like
starvation, where a master is not granted access to
the requested slave.

In a fully connected bus matrix, there is a ded-
icated AMBA AHB bus between each master and
slave. Point arbitration is used to manage access to
slaves (such as memories). The bus matrix design
increases throughput and concurrency, as multiple
transactions can take place simultaneously between
different masters/slaves.

In bus matrix designs, the functional verification
is simplified. Each bus in the bus matrix con-
nects a single master to a single slave. Therefore,
congestions on the bus are greatly reduced, and
can only appear when the slave is busy serving
another master. There are altogether 11 buses in the
networking router case study, as shown in Fig.
Point arbitration is managed by a simple fixed-
priority arbiter. Priorities for masters are defined
as follows (in decreasing order): CPU 1, CPU 2,
PostProc, Enc.

We have created a cycle-accurate model of the
AMBA AHB bus protocol in order to model trans-
actions over the bus accurately. We capture multiple

signals over the bus, such as BUSREQ, HREADY,
HGRANT, HADDR, HTRANS, and HRESP. We con-
sider RETRY responses from the slave (HRESP =
RETRY), as well as split transfers, as we analyze
Multi-layer AHB. AHB-Lite does not support split
transfers, RETRY responses, or the request/grant
protocol, and is therefore even simpler to analyze
than Multi-layer AHB.

We did not model HLOCK signals for the analysis.
HLOCK signals are set by a master that needs unin-
terrupted access to the bus during a transaction. If
the master asserts HLOCK, the arbiter simply holds
its state. A master that does not deassert HLOCK
could cause a livelock by disallowing the slave to
serve other masters. However, it is the responsibility
of the master to manage the HLOCK signal, and a
master that does not deassert HLOCK would be con-
sidered faulty. When the master deasserts HLOCK,
the arbiter is free to continue where it left off, so
no livelocks can occur.

AMBA AHB masters and slaves are modeled
as abstract state machines as shown in Fig. [6] and
Fig. [/l The models were manually created in ac-
cordance with the AMBA AHB specification. Mas-
ters are modeled using 6 states (idle, busreq,
haddr, read, write, error), and slaves are
modeled using 4 states (idle, write, read,
error). We have modeled arbitration delays, busy
slaves, and two-cycle response times for RETRY
and SPLIT responses as defined in the AMBA
AHB specification. SPLIT responses are initiated
by the slave in the proposed FSM models non-
deterministically.

We have used the NuSMYV [11]] model checker to
verify CTL [18] properties on the networking router
CMP design. We specified AMBA AHB masters,
slaves, and the arbiter in NuSMV code. Algorithm m
shows the NuSMYV specification for an AMBA AHB
arbiter managing a single master and slave. This
model is sufficient to verify the correctness of the
arbiter, as in a fully connected bus matrix each bus
connects a single master to a single slave. Point
arbitration is managed at the slave side; whenever
the slave is busy serving a transaction, it signals
this fact by setting the HREADY signal to low
(other implementations are also possible). NuSMV
models for AMBA AHB buses containing multiple
masters using a round-robin arbiter are available
at http://alderis.ics.uci.edu/amba2.html.

In [2] we have described an ambiguity in the final

11

Algorithm 1 NuSMV Specification of an AMBA
AHB Arbiter Managing a Single Master and Slave

MODULE bus_matrix_arbiter (HTRANS, HREADY, HRESP,
BUSREQ, HGRANT, HMASTER, HSPLIT)
VAR

master_state : idle, mask, grant, transmit;

master_prev_state : idle, mask, grant, transmit;
lasterror : boolean;
preferred : master, default;
ASSIGN
init (master_state) := idle;
init (master_prev_state) := master_state;
init (lasterror) := 0;
init (preferred) := default;
next (master_prev_state) := master_state;
next (preferred) :=

case
—-— Master starts the transmission
!HGRANT & master_state != mask & HREADY &

HRESP = OK & BUSREQ : master;

-- Split master

HGRANT & HRESP = SPLIT : default;

—— Master finishes the transaction

HGRANT & master_state = transmit & HTRANS =
IDLE & HREADY & HRESP = OK & !BUSREQ :

default;
—— Master gives up its BUSREQ
HGRANT & master_state = idle & HTRANS =
& HREADY & HRESP = OK & !BUSREQ :
-— Unmasking masters
'HGRANT & master_state = mask & HSPLIT =
master : master;
1 : preferred;
esac;
next (master_state) :=
case
—— Roll back for retrys
HRESP = RETRY & !lasterror :
master_prev_state;
master_state =

IDLE
default;

idle & HREADY & HRESP = OK &

HGRANT : grant;
master_state grant & HTRANS != IDLE &
HREADY & HRESP = OK HGRANT : transmit;
master_state transmit & HTRANS = IDLE &

HGRANT : idle;

&
HREADY & HRESP = OK &
P = SPLIT & HGRANT & !lasterror

HREADY & HRES
: mask;
master_state = mask & HSPLIT = master :
lasterror : master_state;
'HREADY : master_state;
1 : master_state;
esac;
next (lasterror) :=
case

idle;

HRESP = RETRY : 1;
HRESP = SPLIT : 1;
1 : 0;
esac;
HMASTER :=
case
preferred = master : master;
preferred = default : default;
esac;
HGRANT :=
case
preferred = master : 1;
1 : ;
esac;

version of the AMBA AHB specification, that may
arise when a slave splits a a master, and requests
retransmission by setting the HRESP = RETRY
response in the same bus cycle.

In a fully connected bus matrix, each AMBA
AHB bus connects a single master and slave.
Therefore, the slave has little reason to split the
master. AHB-Lite does not support split transfers
and RETRY responses, therefore the problem does
not occur in AHB-Lite. The ambiguity, however, it
applicable to Multi-layer AHB, as it supports both
split transfers and RETRY responses. Therefore, the
ambiguity is applicable to the networking router

http://alderis.ics.uci.edu/amba2.html

case study as well. We use the simple fix of disal-
lowing the slave to split a master and set the HRESP
signal to RETRY in the same cycle.

To show that no deadlocks can occur in the
model, we have shown that the error state is
unreachable in masters and slaves by checking the
following CTL formulas (where x refers to the index
of masters, y is the index of slaves):

AG
AG

(MASTERx .state =
(SLAVEy.state !=

error),
error).

We have specified rules to enforce that whenever a
master is split, it will be eventually unsplit in order
to avoid livelocks. We have verified this property
using the following CTL formulas:

AG
AF

((MASK_MASTERX) ->
(!'MASK_MASTERX)).

Finally, we checked whether starvations are possible
by checking the following formulas:

AG (MASTERx.state = busreq -—>
AF HGRANTX),
AG (MASTERx.state = Dbusreq ->
AF MASTERx.state = write).

A. Experiments

We have run experiments using the NuSMV tool
on an Intel Core i7 processor running at 4GHz with
6GB triple-channel DDR3 RAM. For the arbiter
connecting a single master and slave, the verification
time took less than a second, with 6700KB memory
consumption. For 2 masters, the analysis took less
than a second with 11700K memory consumption.
For 3 masters the analysis took 28 seconds with
92080KB memory consumption. Since in this paper
we consider fully connected bus matrices only,
scalability issues do not arise, as each master is
connected to each slave by a dedicated AMBA AHB
bus.

We have found that starvations are possible in
general when high-priority masters continually re-
quest access to slaves, and therefore lower-priority
masters do not get served. Therefore, we need
to consider the actual dependencies in the model,
and perform real-time analysis to ensure that this
condition does not occur. We need to consider the
actual communication between tasks in the CMP
design, and consider whether the starvation may
occur in the actual CMP design.

This problem, however, cannot be adequately
addressed at the cycle accurate abstraction due to
the long computation times, that would lead to state
space explosion. There is no theoretical limitation
on performing real-time verification at the cycle ac-
curate abstraction; the limitiation is present simply
due to the state space explosion present at low-level
abstractions.

In the next section we describe how we obtained
worst case performance estimates on the networking
router case study, and how we used the results in
the final stage for real-time verification using timed
automata in Section We address the problem
of starvation in Section [VIIl

VI. FORMAL PERFORMANCE ESTIMATION BY
DISCRETE EVENT SIMULATIONS

This section describes how we utilized the open-
source DREAM tool — that implements the DES-
based simulation-guided performance estimation
method — for the performance estimation of the
networking router CMP design. We build on the
fact that the design is based on a fully connected
AMBA AHB bus matrix. When applying the pro-
posed method to bus matrix designs that are not
fully connected, accuracy loss is expected, as the
DES-based performance estimation does not capture
congestions on the buses due to arbitration policies.
The CMP design shown in Fig. [5] however, utilizes
a fully connected bus matrix as shown in Fig. 3]
therefore arbitration policies can be captured as
point arbitration at the slave side.

Table |I| shows the parameters used for the model
shown in Fig. [5] We have obtained the deadlines
from application requirements, and the execution
time estimates by using fast and accurate system-
level simulation at the Cycle Count Accurate At
Transaction Boundaries (CCATB) abstraction [[16].

Fig. [§ illustrates the DES-based performance es-
timation method. The dependencies imply a partial
ordering on the execution order of tasks, as well as
the events during the discrete event simulation. We
distinguish three major types of events in Fig. [
input events, denoted as “i”, output events denoted
as “o” and start events denoted as “s”. Each event
is followed by a number to indicate which task is
responsible for the event. This is simply a syntactic
short-hand to keep the nodes in the tree small.
Numberings for tasks are given in the last column
of Table

00
~ath®

o4i8

@99@ g
0 9§

0
~aathO0

@

00
{1
B

0

Fig. 8.

Task Priority | WCET | BCET | DL | No |
IF1 1 200 - 201 1
IF2 2 100 - 101 2
IF3 3 400 - 401 3
IF4 4 200 - 201 22
IF5 5 200 - 201 14
IF6 6 400 - 401 23
Meml 7 100 - 201 16
Mem?2 38 100 - 201 13
Mem3 9 100 - 101 15
PktRx1/2 10 1442 770 1443 | 4
Chk 11 450 220 451 8
HdrCal 12 2400 1340 | 2401 | 12
PktRx3 13 1530 1400 | 1531 | 5
PktRx4 14 670 590 671 6
Pkt_fwd 15 600 200 601 10
Procl 16 2800 2400 | 2801 9
Cnfg 17 1600 1300 1601 | 18
Assm 18 800 600 2401 | 17
Recalc_1 19 3000 2000 | 3801 | 20
PktRx5/6 20 2100 1100 | 2101 7
Enc 21 4900 3800 | 4901 | 11
Recalc_2 22 1750 1500 | 6381 | 19
Proc2 23 5600 4800 | 5601 | 21

TABLE 1

PARAMETERS FOR THE NETWORKING ROUTER CMP DESIGN

SHOWN IN F1G.[3

A Partial View of the Event Order Tree for the Example Shown in Fig. [5] using the Parameters in Table [

As seen from Fig. |8 the application starts with
tasks IF1, IF2, and IF3 receiving input events.
The second node shows that the three tasks are
scheduled (started) by the scheduler for execution.
Since IF2 has the smallest execution time between
IF1, IF2, and IF3, therefore IF2 will be the
first to finish its execution. When IF2 finishes
its execution, it generates an output event, that is
broadcasted to both PktRx3 and Pkt Rx4.

The first non-deterministic branch occurs after
Pkt_fwd (numbered 10) is scheduled for execu-
tion. The earliest time when Pkt_fwd may finish
its execution is at time 890, as can be computed
by adding the best case execution times of itself
and its sources IF2, PktRx4 (100+590+200=890).
We can also compute that Pkt_fwd will finish
its execution by time 1370 (100+670+600=1370).
For task PktRx1/2 we can similarly obtain that
it will finish its execution between 970 and 1642.
Therefore, the execution intervals of Pkt_ fwd and
PktRx1/2 overlap, and we need to consider two
cases; when Pkt fwd finishes first, and when
PktRx1/2 finishes first. It is also possible that
the two tasks finish simultaneously, in which case
race conditions may be considered, resulting in the
same two options. Total orderings become important
when multiple tasks are mapped to the same thread

14

Algorithm 2 Obtaining and Enumerating the Event
Order Tree by Discrete Event Simulations
1: create the (empty) superset of race conditions R
2: set the execution time for all tasks ¢ € T to their wcet;,
time, and the next execution time for all tasks to their
bcet;, time, respectively (Vi € T exec_time, = wcety,
next_time, = bcety)
3. // enumerate all branching intervals
4: for all permutations of exec_time;, assignments, obtained
using the next_time;, variables do
5: clear the superset R
6: call discrete_event_simulation () described in Algo-
rithm
7./ enumerate all race conditions with the current
exec_timey, assignments
8: for all permutations of events in superset R do

9: call discrete_event_simulation () described in Algo-
rithm

10: end for

11: end for

or CPU. For example, both Mem1 and Mem?2 denote
memory accesses in the same memory module.
Likewise, tasks Cnfg, Recalc_1,Recalc_2 and
Proc2 are all mapped to the same thread, and
therefore it is important to consider the order in
which they may be scheduled for execution. Fig. [§]
only illustrates the top of the tree, and the grey
rectangles refer to subtrees of the corresponding
nodes.

The size of the event order tree grows very
fast even for moderate-size examples, and pre-
computing the tree is not possible due to resource
constraints. Rather, the proposed method builds the
event order tree on-the-fly, that captures all the
possible total orderings of events. Branches are
discovered during simulation-time, and then subse-
quently enumerated. Algorithm [2| describes how the
event order tree is constructed on-the-fly.

There may be potentially exponential numbers of
paths in the analysis. This is not the characteristic
of the analysis method, rather that of the analyzed
model. When non-determinism is present in the
models, all possible paths have to be considered
to guarantee that all scenarios that were considered
for the performance analysis. CARTA can express
deterministic models, or time-triggered models as
well, in which case the analysis is polynomial.
A key advantage of the proposed DES-based per-
formance estimation approach is that it does not
restrict designers’ hands, the bound on analysis

Algorithm 3 function discrete_event_simulation ()

1: run directed discrete event simulation, during which each
task stores its start time as starty
2: during the simulation all tasks ; observe events e; that
are raised in the [start, + bcet,, start, + exec_time,]
interval
3: if start, + next_time; < time(e;) then
4: //we have encountered a branching point in the (bcety,
wcety) interval
5: store the value of time(e;) - start, in the next_time,
variable
6: else
7: do nothing, event will be considered in subsequent
simulations
8: end if
9: // find all race conditions with the current exec_timey,
assignments

10: for all race conditions detected between events
€;,€j,...¢e during the simulation do

11: search for the set containing events e;, e;,...e; in

superset R (from Algorithm

12: if the set is found then

13: do nothing

14: else

15: add the set S = {e;,e;,...e;} to the superset R

16: end if

17: end for

performance strictly depends on computation power,
not arbitrary restrictions on the models.

By enumerating the event order tree, one can
obtain the worst case bound on the overall perfor-
mance of the model. To enumerate the tree, the
discrete event simulation step described in 3| are
performed repeatedly, where the execution time of
tasks is continuously updated to capture all possible
permutations of execution times. Since the analysis
is based on repeated simulations, we refer to this ap-
proach as “simulation-guided model checking”. The
event order tree captures all permutations of events,
and is therefore exhaustive; it does not produce false
positives. On the other hand, the method is built
on the assumption that discrete event simulations
using limited horizon are sufficient, after which the
system returns to an initial idle state, which may
not be the case for all types of real-time systems.
For a description of the formal performance esti-
mation method and proofs on the validity of the
performance estimation method please see [3]].

The DES-based method is more accurate for per-
formance estimation than static analysis methods, as

it captures dynamic effects such as congestions on
the bus, and race conditions. The advantage of the
DES-based method compared to ad-hoc simulations
is the increased state space coverage. Compared to
pure model checking methods, the main advantage
is that it does not run out of memory on large-scale
examples, as it is based on fast iterative simulations,
and is therefore CPU-bound. Moreover, most model
checkers are tailored to answer yes/no questions, but
the DES-based method can directly obtain the worst
case bound on the end-to-end computations.

A. Experiments

The open-source DREAM tool computed the
worst case end-to-end performance of the network-
ing CMP design modeled as shown in Fig. [5]in 590
seconds on an Intel Core 17 920 processor running at
4GHz using 6GB triple channel memory, with only
776KB memory consumption. The implementation
of the DES-based method was not optimized to
take advantage of the multi-core architecture, and
therefore executed on a single thread. The DES-
based performance estimation method is easy to
parallelize as it consists of repetitive simulations,
and we are considering a multi-core implementation
in the future.

The overall end-to-end performance estimate is
17780 cycles. We use this information as a bound
on the end-to-end performance of the network-
ing router CMP design. Each cycle in the model
represents Sns. The lowest period of the timers
that still does not violate the end-to-end bound
is therefore %02“ = 88.9us. This means that
the highest possible frequency for the sampling is
~11.248KHz. Note that with each sampling the
networking router CMP processes several packets,
and therefore provides reasonable performance. The
analysis is exhaustive, and therefore the bound is
tight. In the next section we perform real-time veri-
fication on the model to prove that the performance
estimates hold, and that no starvation occurs in the
CMP design.

VII. REAL-TIME VERIFICATION USING TIMED
AUTOMATA

This section describes the proposed approach
for real-time verification by timed automata. This
method also assumes a fully connected bus ma-
trix for the analysis, as arbitration policies are not

captured in the formal models. When applying the
proposed method to bus matrix designs that are
not fully connected, accuracy loss is expected. The
CMP design shown in Fig. [5] however, utilizes a
fully connected bus matrix as shown in Fig. [3]
therefore arbitration policies can be captured as
point arbitration at the slave side.

Real-time verification is optional in some cases,
as the performance estimation method is based on
an exhaustive state space search, and is therefore a
model checking method itself. There are three cases
when the use of the extra verification step is justi-
fied. First, the discrete event simulation (DES)-based
performance estimation method does not capture
timed states to improve scalability, but rather utilizes
a limited horizon for the simulations. Although
this approach is sufficient in most cases where the
simulation periodically returns to the initial state,
it cannot be applied to all models in general. For
example, obtaining the required time horizon for
simulating a pipeline architecture may be error-
prone. In other words, while the DES-based method
does not produce false positives, it relies on the
assumption that a limited horizon is sufficient for
the analysis. In cases where this condition cannot
be proven, the use of the additional verification step
is required.

Second, for some complex CMP designs the
performance estimation method might not terminate
due to the state space explosion problem. TA-based
model checkers in some cases (but not always)
achieve better scalability. In this case, the use of the
real-time verification method is justified, as it might
prove the validity of the worst case performance
estimate.

Third, the TA-based model checker can be uti-
lized to prove properties on the design that could
not be carried out at the cycle-accurate level due
to the state space explosion problem. Our finite
state machine (FSM)-based analysis described in
Section [V|has shown that starvations may be present
in the design due to the fixed-priority point arbitra-
tion algorithm utilized in the slaves. By capturing
the CMP design shown in Fig. [5] as TA, we can
prove that no livelocks and starvations are present
in the model. Note that real-time properties such
as execution times may influence starvations, and
therefore have to be considered for the analysis.

In this paper we utilize the timed automata model
checking due to the third condition; it is hard to

prove that no deadlocks and livelocks are present
using the DES-based method. During DES, we can
easily identify situations where a task did not exe-
cute at all, but it is hard to identify whether a block-
ing occurs simply due to waiting for resources, or
an actual deadlock or livelock. The timed automata-
based method removes any doubt, and there is no
reason not to use it given that the models can be
automatically generated from DREAM.

Fig. [0 shows the partial TA representation in
the UPPAAL tool for the networking router CMP
design shown in Fig. [5] The locations denoted with
U are urgent locations, and C denotes committed
locations [12], both of which imply that time cannot
pass in that location, and the outgoing transitions
needs to be taken immediately upon entering the
location. Tasks have two clocks, ¢, and c¢,. Tasks,
channels, timers, and schedulers compose together
as a network of timed automata, providing an ab-
stract model for scheduling. The translation from
ALDERIS models to the TA representation is de-
scribed in detail in [4]], [S], [6], [7]. The translation
process itself is based on refinement, DREAM gen-
erates a timed automata model for each task, FIFO
buffer, and timer in the ALDERIS models using a
template. Scheduling policies are specified as au-
tomata, where transitions may trigger the execution
of tasks.

The translation is implemented in the open-source
DREAM tool and is fully automated. DREAM gener-
ates timed automata representations for the UPPAAL
and Verimag IF model checkers. In this section
we arbitrarily focus on UPPAAL, as both tools are
timed automata model checkers. We have verified
that no task can violate its deadline by checking the
following UPPAAL macro:

A[] not deadlock (1)

Since the timed automata are created in such a
way to deadlock when a deadline is violated, this
analysis proves the real-time schedulability of the
system. Note that this result does not contradict
the FSM-based analysis. The FSM-based analysis
shows that deadlocks may be present in general
in CMP designs utilizing AMBA AHB with fixed-
priority point arbitration. When we consider the
actual communication in the CMP design by consid-
ering dependencies and when components request
access to resources in the timed automata model, we

can prove that no deadlock are present in the actual
CMP design. In short, deadlocks may be present in
general, but are not present in the router case study
used in this paper.

A. Experiments

We have run experiments using the UPPAAL
model checker on an Intel Core i7 920 processor
running at 4GHz using 6GB triple channel memory.
The verification time took less than a second for the
design illustrated in Fig. 9] with 9140KB memory
consumption.

We have rounded up the period of the timer
to 18000 cycles for simplicity, and we were able
to prove the end-to-end execution time of 17780
cycles. The real-time verification shows that any
frequency that is lower than the corresponding
11.1KHz is guaranteed not to violate the end-to-end
deadline, or the individual deadlines of tasks.

VIII. COMPARING THE RESULTS OF THE
ANALYSIS METHODS

Fig. [I0] illustrates the analysis time and memory
consumption used for the analysis of the networking
router case study. During the functional verification
phase, we considered a cycle-accurate model of
the AMBA AHB bus, and found that deadlocks
may be present due to the fixed-priority arbitration.
The analysis time took less than one second for
buses containing a single master and slave, however
we observed increased analysis time and memory
consumption as more and more masters were added
to the bus. This was mainly the result of the more
complex arbitration policy needed. Since in fully
connected bus matrices each master is connected to
each slave, analysis scalability was not an issue.

For the performance estimation, we relied on
the DES-based simulation-guided model checking
method. Analysis time was higher, while memory
consumption was lower. Generally, we find that
memory-bound model checkers have much better
performance than the CPU-bound method if the
example is actually small enough to fit in the main
memory. Once the model size increases beyond the
main memory size, memory-bound model checkers
are not useful in practice, as performance degrades
significantly, and no partial results are given. For
this example, we find that the model is small enough
to fit in memory, and the various optimizations

o

Assm Chk Assm_to_IF4
? ? | i ?
run startAssme ernrar Ln statChik? emrar pUb|iSh|F4? beurgz]miubllshﬁ.ssm.
i hufferc == 0
cela="8 f ce ler(8] startlF4l

cd == 45
startChk?

publishlF47?
hufferc = 0

en[d] publishAssm?
publishAssm! publishChi! bufferc++
en[0] := 0 en[1]:=0
" Chk_to_HdrCal
) o _
©/ startAssm? @/ starChk? publisthrc' #4] ﬂubhsh(}hk?
idle cd:=0en0 =1 wai idle cd:=0en1]:=1 wai bufferc == g P1eC
len4] startHdrCall
CPU_1
en[1] && len[14] -
startChk? runGChid publishHdrCal?

hufferc = 0

en[14]
runP kiR x

SNen[1] && len[14]

en@d] publishChic?

scheduleChlk bufferc++
Timer1 Timer2
ce == 18000 ce == 18000
publishTimer1! publishTimer2!
scheduleHdrCal ce =0 ce:=0
timer timer

scheculePkdRx1 2 ce <= 18000 ce == 18000

Fig. 9.

result in much improved performance compared to
the DES-based method. That said, 590 seconds is
completely acceptable to obtain the worst case end-
to-end bound on the networking router design.

For real-time verification, the UPPAAL tool shows
impressive performance by proving deadlock-
freedom, as well as proving the real-time schedula-
bility of the router design. Results are similar to the
NuSMYV results, even though the problem analyzed
is different: UPPAAL considers the interactions be-
tween tasks — similarly to the DES-based method
— on a transaction-level abstraction. Here we see
the advantage of using multiple abstractions for the
analysis; performing the same analysis using the
NuSMYV tool at the cycle-accurate level would result
in serious performance penalty, and possibly even
state space explosion. Our results show the practical
applicability of the CARTA framework for the cross-

Partial Timed Automata Model of the Networking Router CMP Design Shown in Fig. [5]in UPPAAL

abstraction analysis of CMP designs.

IX. RELATED WORK

Model-based Design: Ptolemy II [[19] is a mod-
eling framework that composes heterogeneous mod-
els of computation, and performs simulation for
symbolic performance estimation. Platform-based
design was proposed for the system-level design of
embedded systems [20], including wireless sensor
networks [21]. A model-driven design framework
for the development of embedded systems on GME
is described in [10]]. CARTA also utilizes the GME
tool, but the focus is on formal analysis rather
than development. CARTA also integrates multiple
model checkers, and CCATB simulations for the
comprehensive functional verification, performance
estimation, and real-time verification of bus matrix
CMP designs.

[Real-time
Verification

H Performance
Estimation

H Functional
Verification

10000
8000

8000
4000 /
2000 /

0

Memory Consumption

(KiloBytes)

[Real-time
Verification

B Performance
Estimation

B Functional
Verification

600
500
400

300
200
100

0

Analysis Time

(seconds)

Fig. 10. Analysis Time and Memory Consumption for the Networking Router Case Study

We have introduced the ALDERIS DSML in [1].
ALDERIS models embedded systems as task graphs
mapped to logical threads and processing units, and
captures key execution times, delays, and deadlines
of the design for formal analysis. We utilize the
ALDERIS DSML in this paper as the high-level
specification of the design, that drives the overall
model-based design flow. The novelty in this paper
is to show how the ALDERIS DSML can be applied
for the analysis of CMPs utilizing complex bus
matrix interconnects.

Functional verification of bus architectures:
An early work on applying model checking methods
to the AMBA protocol was presented in [22]. A
verification platform for AMBA-ARMY7 is presented
in [23]. A verification platform for AMBA using a
combination of model checking and theorem prov-
ing is described in [24].

All the works described above utilize formal
methods to prove the functional correctness of bus
protocols. In contrast, CARTA focuses on the analy-
sis of CMP designs and aims to prove that no dead-
locks and livelocks can occur in in a CMP design
— a property not guaranteed by the AMBA AHB
protocol itself. The novelty in this paper is to extend
our earlier work on the functional verification and
performance analysis of AMBA-based CMP designs
described in [2] to complex AMBA AHB bus matrix
architectures.

Performance analysis: The SymTA/S [25] ap-
proach proposed methods from scheduling theory
for the performance analysis of embedded systems.
A component-based framework for schedulability
analysis and performance evaluation was proposed
in [26]. Modular Performance Analysis [27] is an
approach based on real-time calculus, that models
dependencies as arrival curves.

Simulations are widely used methods for perfor-
mance estimation by the industry. Disadvantages of
these approaches include immeasurable state space
coverage, and long development times resulting
in performance issues being detected too late in
the design cycle, implying higher costs to address
changes. A semi-formal simulation-based perfor-
mance estimation technique was proposed in [28]].

We have presented a method for the formal per-
formance estimation of distributed real-time embed-
ded (DRE) systems using discrete event simulations
in [3]]. This approach is a model checking method
based on iterative simulations, and is more accurate
than static performance estimation methods, and
improves on the coverage of ad-hoc simulation-
based methods. Moreover, it is able to provide
counter-examples when real-time properties are vi-
olated. In this paper we extend this method for the
performance estimation of CMP designs, and show
a novel method to abstract out bus matrices into the
DES model used by the estimation algorithm.

Real-time verification: Model checking is an
alternative approach for symbolic performance ver-
ification. Timed automata were proposed as model
of computation for real-time verification of task
graphs [29]]. A timed automata-based approach for
the thread-level analysis of DRE systems is pre-
sented in [30]. CADENA [31]] is an analysis frame-
work for building and analyzing CORBA Com-
ponent Model (CCM)-based systems. This paper
extends our earlier work on the real-time verification
of DRE systems based on timed automata described
in [4], [5], [6], [7]. We extend these works for
the real-time verification of CMP designs utilizing
bus matrices. Moreover, we show how the timed
automata model checkers are integrated into our
model-based CARTA design flow.

X. CONCLUSION

We have presented the Cross-abstraction Real-
time Analysis (CARTA) framework for the model-
based functional verification and performance esti-
mation of chip multiprocessors (CMP) utilizing bus
matrix (crossbar switch) interconnection networks.
The CARTA design flow aims to address three
major challenges in the formal analysis of CMP
designs: (1) functional verification, (2) performance
estimation, and (3) real-time verification, and pro-
vides a cross-abstraction bridge between the finite
state machine (FSM), discrete event (DE) and timed
automata (TA) models of computation. CARTA uti-
lizes multiple model checkers to analyze formal
properties at the cycle-accurate and transaction-level
abstractions. We have demonstrated the applica-
bility, as well as the scalability of the prototype
analysis methods implemented in the CARTA frame-
work on a networking router CMP design. The
ALDERIS modeling language (http://alderis.ics.uci.
edu) and the open-source DREAM tool (http://dre.
sourceforge.net) are free to use for any purpose.

REFERENCES

[1] G. Madl and N. Dutt, “Domain-specific Modeling of Power
Aware Distributed Real-time Embedded Systems,” in Proceed-
ings of the 6th Workshop on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), 2006.

[2] G. Madl, S. Pasricha, Q. Zhu, L. A. D. Bathen, and N. Dutt,
“Formal Performance Evaluation of AMBA-based System-on-
Chip Designs,” in Proceedings of EMSOFT, 2006, pp. 311-320.

[3] G.Madl, N. Dutt, and S. Abdelwahed, “Performance Estimation
of Distributed Real-time Embedded Systems by Discrete Event
Simulations,” in Proceedings of EMSOFT, 2007.

[4] ——, “A Conservative Approximation Method for the Ver-
ification of Preemptive Scheduling using Timed Automata,”
in Proceedings of the 15th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2009, pp.
255-264.

[5S] G. Madl, S. Abdelwahed, and D. C. Schmidt, “Verifying Dis-
tributed Real-time Properties of Embedded Systems via Graph
Transformations and Model Checking,” Real-Time Systems,
vol. 33, pp. 77-100, Jul 2006.

[6] G. Madl and S. Abdelwahed, “Model-based Analysis of Dis-
tributed Real-time Embedded System Composition,” in Pro-
ceedings of EMSOFT, 2005.

[71 G. Madl, S. Abdelwahed, and G. Karsai, “Automatic Verifica-
tion of Component-Based Real-Time CORBA Applications,” in
Proceedings of the 25th IEEE International Real-Time Systems
Symposium (RTSS), 2004, pp. 231-240.

[8] S. Pasricha, “Transaction Level Modeling of SoC with SystemC
2.0,” in Synopsys User Group Conference (SNUG), May 2002.

[9] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom,
and J. Sprinkle, “Composing Domain-Specific Design Environ-
ments,” IEEE Computer, pp. 44-51, Nov 2001.

(10]

(11]

[12]

[13]

(14]
[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits,
and S. Neema, “Developing Applications using Model-driven
Design Environments,” IEEE Computer, vol. 39, pp. 33-40,
2006.

A. Cimatti and E. Clarke and E. Giunchiglia and F. Giunchiglia
and M. Pistore and M. Roveri and R. Sebastiani and A.
Tacchella, “NuSMV 2: An OpenSource Tool for Symbolic
Model Checking,” in Proceedings of the 14th International
Conference on Computer-Aided Verification (CAV), 2002.

P. Pettersson and K. G. Larsen., “UPPAAL2k,” Bulletin of
the European Association for Theoretical Computer Science,
vol. 70, pp. 4044, feb 2000.

M. Bozga, S. Graf, 1. Ober, 1. Ober, and J. Sifakis, “The IF
Toolset,” Formal Methods for the Design of Real-Time Systems,
LNCS 3185, pp. 237-267, 2004.

ARM, “AMBA Specification rev 2.0, IHI-0011A,” 1999.

J. R. W. Muller and W. Rosenstiel, SystemC Methodologies and
Applications. Kluwer Academic Publishers, 2003.

S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast Exploration
of Bus-based Communication Architectures at the CCATB Ab-
straction,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 7, no. 2, pp. 1-32, 2008.

——, “BMSYN: Bus Matrix Communication Architecture Syn-
thesis for MPSoC,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, (TCAD), vol. 26,
no. 8, pp. 1454-1464, 2007.

E. Clarke and E. Emerson, “Design and synthesis of synchro-
nisation skeletons using branching time temporal logic,” Logic
of Programs, Lecture Notes in Computer Science, vol. 131, pp.
52-71, 1981.

E. A. Lee, C. Hylands, J. Janneck, J. D. II, J. Liu, X. Liu,
S. Neuendorffer, S. S. M. Stewart, K. Vissers, and P. Whitaker,
“Overview of the Ptolemy Project,” EECS Department, Uni-
versity of California, Berkeley, Tech. Rep. UCB/ERL MO01/11,
2001.

Alberto Sangiovanni-Vincentelli, “Defining Platform-based De-
sign,” EEDesign of EETimes, February 2002.

A. Bonivento, C. Fischione, L. Necchi, F. Pianegiani, and
A. Sangiovanni-Vincentelli, “System Level Design for Clus-
tered Wireless Sensor Networks,” IEEE Transactions on Indus-
trial Informatics, vol. 3, no. 3, pp. 202-214, August 2007.

A. Roychoudhury, T. Mitra, and S. R. Karri, “Using Formal
Techniques to Debug the AMBA System-on-Chip Bus Proto-
col,” in Design, Automation and Test in Europe (DATE), 2003,
pp- 828-833.

K. W. Susanto and T. F. Melham, “An AMBA-ARM7 Formal
Verification Platform,” in International Conference of Formal
Engineering Methods (ICFEM), 2003, pp. 48—-67.

H. Amjad, “Verification of AMBA Using a Combination of
Model Checking and Theorem Proving,” Electronic Notes in
Theoretical Computer Science, Proceedings of the 5th Interna-
tional Workshop on Automated Verification of Critical Systems
(AVoCS 2005), vol. 145, pp. 45-61, 2006.

Rafik Henia and Arne Hamann and Marek Jersak and Razvan
Racu and Kai Richter and Rolf Ernst, “System Level Perfor-
mance Analysis - the SymTA/S Approach,” IEE Proceedings
on Computers and Digital Techniques, vol. 152, pp. 148-166,
2005.

K. Richter, M. Jersak, and R. Ernst, “A Formal Approach to
MpSoC Performance Verification,” IEEE Computer, vol. 36, pp.
60-67, April 2003.

Ernesto Wandeler and Lothar Thiele and Marcel Verhoef and
Paul Lieverse, “System architecture evaluation using modular
performance analysis - a case study,” Software Tools for Tech-
nology Transfer (STTT), vol. 8, no. 6, pp. 649-667, Oct. 2006.

http://alderis.ics.uci.edu
http://alderis.ics.uci.edu
http://dre.sourceforge.net
http://dre.sourceforge.net

[28] K. Lahiri, A. Raghunathan, and S. Dey, “System-Level Per-
formance Analysis for Designing On-Chip Communication
Architectures,” IEEE Transactions on Computer Aided-Design
of Integrated Circuits and Systems, vol. 20, pp. 768-783, 2001.
C. Ericsson, A. Wall, and W. Yi, “Timed Automata as Task
Models for Event-Driven Systems,” in Proceedings of Real-
Time Computing Systems and Applications (RTSCA), 1999, pp.
182-189.

Venkita Subramonian and Christopher Gill and César Sanchez
and Henny B. Sipma, “Reusable Models for Timing and
Liveness Analysis of Middleware for Distributed Real-Time
Embedded Systems,” in Proceedings of EMSOFT, 2006, pp.
252-261.

J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ran-
ganath, “Cadena: An Integrated Development, Analysis, and
Verification Environment for Component-based Systems,” in
Proceedings of International Conference on Software Engineer-
ing, 2003.

[29]

(30]

(31]

Gabor Madl received his Ph.D. degree in
Computer Science from the University of Cal-
ifornia, Irvine in 2009. His research is focused
on the combination of formal methods and
simulations for the model-based analysis of
distributed real-time embedded systems. His
research was recognized by the 2007 Frank
Anger Memorial Award, which he received
for promoting the crossover of ideas between
the embedded software and software engineering communities. Ga-
bor has worked as an engineer for Google, Fujitsu Laborato-
ries of America, ARM, and has created the open-source DREAM
(http://dre.sourceforge.net) and ALDERIS (http://alderis.ics.uci.edu)
projects.

Sudeep Pasricha (M’02) received the B.E.
degree in electronics and communication en-
gineering from Delhi Institute of Technology,
Delhi, India, in 2000, and the M.S. and Ph.D.
degrees in computer science from the Univer-
sity of California, Irvine, in 2005 and 2008,
respectively.
He has several years of work experience in
\ semiconductor companies, including STMicro-
electronics and Conexant. He is currently an Assistant Professor with
the Department of Electrical and Computer Engineering, Colorado
State University, Fort Collins. He has published more than 40 research
articles in peer-reviewed conferences and journals and presented sev-
eral tutorials in the area of on-chip communication architecture design
at leading conferences. He recently coauthored a book titled On-chip
Communication Architectures (Morgan Kauffman/Elsevier 2008). His
research interests are in the areas of multiprocessor embedded system
design, networks-on-chip and emerging interconnect technologies,
system-level modeling languages and design methodologies, and
computer architecture. Dr. Pasricha has received a Best Paper Award
at ASPDAC 2006, a Best Paper Award nomination at DAC 2005, and
several fellowships and awards for excellence in research.

20

Nikil D. Dutt (F) received a Ph.D. in Com-
puter Science from the University of Illinois at
Urbana-Champaign in 1989, and is currently
a Chancellor’s Professor at the University of
California, Irvine, with academic appointments
in the CS and EECS departments. His research
interests are in embedded systems, electronic
design automation, computer architecture, op-
timizing compilers, system specification tech-
mques distributed embedded systems, and formal methods. He
received best paper awards at CHDL89, CHDL91, VLSIDesign2003,
CODES+ISSS 2003, CNCC 2006, ASPDAC-2006, and IICNN 2009.
Professor Dutt currently serves as Associate Editor of ACM Trans-
actions on Embedded Computer Systems (TECS), and of IEEE
Transactions on VLSI Systems (IEEE TVLSI). He served as Editor-
in-Chief of ACM Transactions on Design Automation of Electronic
Systems (TODAES) between 2004-2008. He was an ACM SIGDA
Distinguished Lecturer during 2001-2002, and an IEEE Computer
Society Distinguished Visitor for 2003-2005. He has served on the
steering, organizing, and program committees of several premier
CAD and Embedded System Design conferences and workshops,
including ASPDAC, DATE, ESWEEK, CASES, CODES+ISSS, IC-
CAD, ISLPED and LCTES. He serves or has served on the advisory
boards of ACM SIGBED and ACM SIGDA, the ACM Publications
Board, and previously served as Vice-Chair of ACM SIGDA and of
IFIP WG 10.5. Professor Dutt is a Fellow of the IEEE, an ACM
Distinguished Scientist, and an IFIP Silver Core Awardee.

Sherif Abdelwahed is an Assistant Profes-
sor with Electrical and Computer Engineering
Department at Mississippi State University.
He received his Ph.D. degree in Electrical
and Computer Engineering from the University
of Toronto, Canada, in 2002. From 2000 to
2001, he was a research scientist at Rockwell
Scientific Company. From 2002 to 2007 he

22 worked as a research assistant professor with
the Institute for Software Integrated Systems at Vanderbilt University.
His main research interests include model-based design and analysis
of self-managing computation systems, modeling and analysis of
distributed real-time systems, automated verification, fault diagnosis
techniques, and model-integrated computing. He has published over
70 publications. He is a senior member of the IEEE and member of
Sigma Xi.

	Introduction
	The Carta Framework
	Model-based Design Flow using Carta
	Relationship between Functional and Real-time Analysis

	Networking Router CMP Design
	Modeling Bus Matrix-based CMP Designs
	The Alderis Domain-Specific Modeling Language
	Modeling the Router CMP using Alderis

	Functional Verification of Bus Matrix CMP Designs
	Experiments

	Formal Performance Estimation by Discrete Event Simulations
	Experiments

	Real-time Verification using Timed Automata
	Experiments

	Comparing the Results of the Analysis Methods
	Related Work
	Conclusion
	References
	Biographies
	Gabor Madl
	Sudeep Pasricha
	Nikil D. Dutt
	Sherif Abdelwahed

