
Automatic Verification of Component-Based Real-Time CORBA
Applications∗

Gabor Madl Sherif Abdelwahed Gabor Karsai
{gabe,sherif,gabor}@isis.vanderbilt.edu

Institute for Software Integrated Systems
Vanderbilt University, Nashville, TN, 37205

Abstract

Distributed real-time embedded (DRE) systems of-
ten need to satisfy various time, resource and fault-
tolerance constraints. To manage the complexity of
scheduling these systems many methods use Rate Mono-
tonic Scheduling assuming a time-triggered architecture.
This paper presents a method that captures the reac-
tive behavior of complex time- and event-driven systems,
can provide simulation runs and can provide exact char-
acterization of timed properties of component-based
DRE applications that use the publisher/subscriber com-
munication pattern. We demonstrate our approach on
real-time CORBA avionics applications.

1. Introduction

Computing systems are increasingly distributed,
real-time and embedded (DRE) and must operate un-
der highly unpredictable conditions. Component-based
middleware provides a means to manage the complex-
ity of designing these systems. To deal with the com-
plexity of analyzing DRE systems we need to raise
the abstraction level from the implementation to sys-
tem models that capture crucial concepts of the system
such as structure, behavior, environment and the prop-
erties the system must satisfy.

In this paper we present a solution that captures the
reactive behavior of event-driven systems and can au-
tomatically verify quantitative dense time properties.
Our approach is not limited to periodic systems and
can be used with any component-based event-driven
system that uses the publisher/subscriber communica-
tion pattern.

∗ This work is sponsored in part by NSF ITR project ”Founda-
tions of Hybrid and Embedded Software Systems”

The Boeing Bold Stroke DRE architecture [30] is
used at Boeing to develop mission-critical avionics ap-
plications that control weapons systems on a common
platform. It is built on the real-time CORBA open mid-
dleware standard and has been successfully deployed
in several military systems. We chose this platform to
demonstrate that our approach is feasible for real-life
systems. We use the Uppaal verification tool [28] for
the analysis. We map the ESML application models to
the Uppaal timed automata [24] using graph transfor-
mations implemented by theGraphRewritingAndTrans-
formation (GReAT) language [1].

This paper is organized as follows: Section 2 ex-
plains the modeling language of the component-based
applications, Section 3 explains the Boeing Bold Stroke
architecture, Section 4 gives a brief overview of our
approach, Section 5 gives a formal description of the
timed automata and the scheduling problem, Section 6
illustrates the key concepts that we have used in mod-
eling the scheduling, Section 7 demonstrates the ver-
ification of an example application and Section 8 dis-
cusses the related work on the field. We end by draw-
ing conclusions and discussing future directions.

2. The Embedded Systems Model-
ing Language (ESML)

ESML [22] is a modeling language for embedded
systems that tries to overcome a few shortcomings of
UML [21], such as the lack of a component model, inter-
action modeling, component and system configuration,
etc. ESML models are automatically transformed into
the Analysis Interchange Format (AIF) that is used to
exchange models between tools of different vendors.

ESML is based on Real-Time Event Channel tech-
nology defined in the CORBA [26] specification, imple-
mented in TAO [17], and also related to the CORBA
Component Model [27]. In this model, components are



Figure 1. Periodic event-driven control push -
data pull processing

complex objects that encapsulate multiple instances of
different classes. The interaction between instances of
different components is modeled with ports. Ports are
interfaces for reaching classes inside the components.

The method invocations follow the traditional syn-
chronous blocking call-return semantics, where one
component executes a method invocation on another
component. The event propagation mechanism follows
a non-blocking asynchronous publisher/subscriber se-
mantics supported by event channels. When the pub-
lisher pushes an event to the event channel the sub-
scribed components will be notified.

To allow the modeling of time-driven tasks, compo-
nents can receive notifications from special predefined
components, called Timers. Timers publish events with
a constant period. These events periodically initiate the
processing of data read from physical devices, but the
processing of the data is usually not synchronized to
clocks but triggered by events.

Figure 1 illustrates the periodic event-driven model
used in ESML. The TimerDriven component is sub-
scribed to the Timer and receives notifications peri-
docially. This will trigger the execution of an action
encapsulated in the component. This action will pub-
lish events to the EventDriven component. When the
EventDriven component is notified about the avail-
ability of data it will issue a remote method call on
its receptacle to the facet of the TimerDriven com-
ponent to retrieve that data. This approach separates
the flow of control from the flow of data and allows
fine-grain scheduling and the incorporation of quality
of service (QoS) properties that allow fine-tuned con-
figuration of the system for optimal performance [17].

3. The Boeing Bold Stroke architecture

The Boeing Bold Stroke architecture is a
component-based execution framework built on
top of the ACE/TAO real-time CORBA imple-
mentation [29] and uses the publisher/subscriber
communication pattern. It uses a proprietary com-
ponent model called PRISM [30], which emulates
the CORBA Component Model (CCM) [27]. While
CCM allows components to be dynamically cre-

Figure 2. The Boeing Bold Stroke execution
framework

ated and connected, PRISM follows a typical prac-
tice in safety/mission-critical systems and employs a
static component allocation and configuration pol-
icy by creating and connecting components only
in the system initialization phase. Stateful com-
ponents can support dynamic reconfiguration by
changing behavior based on the system mode set-
tings.

Bold Stroke is event-driven, although driven by
Timers. Figure 2 shows the physical model of the Bold
Stroke execution framework. Components contain ac-
tions that are the smallest units of processing. Bold
Stroke uses priority-based scheduling, actions that have
the same priorities are scheduled non-preemptively in
a priority band (sometimes referred to as rate group)
based on their sub-priorities and preemptive schedul-
ing is used between priority bands. An action has an
assigned priority and sub-priority (importance) value
for every event channel it is subscribed to. If two ac-
tions have the same sub-priority they will be ordered or
scheduled non-deterministically according to the con-
figuration. Every action has a measured worst-case ex-
ecution time in the given scenario in which it is used.
Actions can be initiated by two ways; method invoca-
tions and event propagations. The scheduling strategy
is also configurable and uses Rate Monotonic Schedul-
ing by default.

A priority band is implemented by three threads;
the dispatcher (work) thread which executes all the ac-
tions initiated by event propagations, the interval time-
out thread which simply pushes timeout events at pre-
defined intervals, and the ORB thread which contin-
ually processes inputs from the Object Request Bro-
ker (ORB), executing actions initiated by method in-
vocations. This is the implementation of the Thread
Pool policy for multi-threading in which a fixed num-
ber of threads are generated in the server at the ini-
tialization phase to service all incoming requests. This
approach offers scalable applications with low latency



times for small duration requests [10].
Facet-initiated actions (that were initiated by a re-

mote method invocation) inherit the Quality of Service
execution semantics from the invoking component and
do not interact with the runtime scheduler therefore
we do not distinguish them from the invoking action in
the scheduling perspective. The smallest unit of schedul-
ing is an event-initiated action together with all the re-
mote method calls it can invoke. Since facet-initiated ac-
tions can also call other actions using remote method
calls the complete call chain is an acyclic graph with
the event-initated action as root element. We call this
smallest unit of scheduling an invocation unit.

An executing action may initiate actions on other
priority bands, otherwise known as cross rate actions.
All processing inside a priority band needs to finish
within the fixed execution period of the Timer assigned
to the band. This periodicity divides processing into
frames. A priority band failing to complete outputs
prior to the start of the next frame is said to be in
a frame overrun condition, meaning that the band did
not meet its completion deadline or frame time.

4. Approach

The presence of Timers in the Bold Stroke archi-
tecture is an attempt to increase the analyzability of
the system by turning it into a time-triggered archi-
tecture. This effort is also reflected in the terminology
(rate group, Rate Monotonic Scheduling). Many meth-
ods assume a time-triggered architecture and try to an-
alyze the scheduling of the Bold Stroke architecture by
performing Rate Monotonic Analysis. This approach is
widely accepted for fixed priority scheduling.

The Boeing Bold Stroke architecture is driven by
Timers, however the system itself is event-driven. As-
suming a time-triggered architecture may introduce
anomalies in some cases. The main reason behind this
is the reactive behavior of the system; certain ac-
tions (e.g. identifying targets) will be invoked when
external events - coming from the environment non-
deterministically as sensor values - are triggered. Ac-
tions are not invoked by Timers but by other actions
if certain constraints are satisfied, and since the event
flow can change the invocations might be aperiodic.
Even if we assume that actions have constant execu-
tion times an action can publish an event anytime be-
tween the execution time and the deadline, since it can
wait for other executing processes and the initiation
of processes depends on external (non-deterministic)
events. The semantics for conditional event triggering
and the propagation of missed deadlines is also inex-
pressible by this approach. This makes it hard to iden-

tify vulnerable points in the system, because the im-
pact of a single component failure is undetectable.

In this paper we present a solution that captures the
event-driven nature of theBoeingBold Stroke systemand
can be used to verify timed properties of aperiodic sys-
tems. We show that timed automata [2] as a compu-
tational model can describe asynchronous event pass-
ing as well as time constraints. It has the necessary tool
support [7] [28] and does not need to be extended to
handle quantitative dense time features like SPIN [31].
Timed automata has a nice graphical representation
that makes the graph transformations suitable. Sev-
eral model-checking tools use automata theory - usu-
ally with some extensions - as a computational model.
A few examples are Hytech [19], Kronos [7] and Up-
paal [28]. We chose the Uppaal model-checker tool
which is widely used [13] [16] [12] for schedulability
analysis and model checking. We map the ESML appli-
cation models to the Uppaal timed automata [24] us-
ing graph transformations and prove system properties
by checking the generated timed automata. The graph
transformation has been implemented in the Graph
Rewriting and Transformation (GReAT) language [1].
The GReAT tool uses the Generic Modeling Environ-
ment (GME) [25] and allows users to specify graph
transformations in a graphical form.

5. Problem Description

The system under consideration in this paper con-
sists of a set of dynamics tasks (invocation units). Each
task is attributed with its worst case execution time
(WCET), deadline (DL), and priority (PID) specification.
With respect to timing analysis, computation tasks can
be represented by a generic timed automaton model.
The task mode is composed of four states: Idle, Ready,
Executing, and Timeout. Initially tasks start at an Idle
state and are triggered (Idle → Ready) by events which
may be received from other tasks or at regulars inter-
vals from a Timer. If the task is scheduled for execution
- according to the given scheduling policy - the transi-
tion (Ready → Executing) will be triggered. After exe-
cution, the task may also initiate other tasks by send-
ing the corresponding event1. The task will move to a
blocking Timeout state if the deadline is exceeded.

Tasks are executed based on a given scheduling pol-
icy which determines at a given time the eligibility of a
“ready” task to proceed for execution. In other words,
the scheduling policy is responsible for triggering the
transition (Ready → Executing). When this transition

1 In general, this may occur during the execution state. How-
ever, for non-preemptive scheduling the event would not have
any effect until the task terminates



Figure 3. Generic timed automata model for the
Task, Scheduler and Timer

is enabled, the automaton has to take this transition
with no time delay. For static scheduling, the policy
can be represented by a vector that indicates the eli-
gibility of tasks for execution. A task can move to Ex-
ecuting from Ready only if no higher priority task can
make a similar transition at the same time.

The above task model and scheduling policy can be
represented as timed automata. A timed automaton is
a state machine equipped with clock and data (inte-
ger) variables, with precise formal definition [2] [24],
tool support [7] [28] and is widely used [4] [11] [3] [13]
[16] [12] for schedulability analysis and model check-
ing. Since the focus of this paper is the application of
timed automata we refer the reader to these sources
for a more formal definition of the timed automata.
Transitions in a timed automaton can have guards and
reset operations on clock and data variables. Transi-
tions are enabled if the corresponding guard evaluates
to True. An enabled transition can execute instanta-
neously while resetting certain variables to new values
according to the underlying reset assignments. States
in timed automata can be associated with an invari-
ant that determines the validity of clock assignment in
the state. The system can be in a given state only if
the underlying invariant is True.

Figure 3 shows a generic timed automata model for
a set of time- and event-driven tasks and the under-
lying scheduler based on the above description. In this
figure a task can be initiated by another task or a timer
(or both).

The scheduler will move to a committed state if any
of the tasks will be eligible for execution. Time can-
not pass in this location: the scheduler must take an
enabled transition with no time delay. Transitions will
be enabled based on the scheduling policy. When tak-

Figure 4. Generic model of an invocation unit

ing the transition it will send out an event scheduling a
task for execution from a set of ready tasks. The sched-
uler moves to the wait (initial) state if no task is ready
for execution. The scheduling policy is encoded in three
functions: Add(w, i) which increases the current prior-
ity level when taski becomes ready, Sub(w, i) which de-
creases the current priority level when taski becomes
ready, and Enable(w, i) which evaluates to True if the
ith task is eligible for execution. For example, in a sim-
ple index based priority scheme, Add(w, i) = w + 2i−1,
Sub(w, i) = w − 2i−1, and Enable(w, i) = 2i−1 ≤ w <
2i. Other scheduling schemes can be established by
defining appropriate formulas for the above three func-
tions.

In this paper we consider the problem of deciding the
schedulability of a given set of tasks with both event-
and time-driven interactions. The timed automata for-
mulation of the problem in effect translates the schedu-
lability problem into a reachability problem in which
the set of tasks are schedulable if the Timeout state
is not reachable in any of the task timed automata, in
other words all tasks are completed before their respec-
tive deadlines.

6. Generic modeling of the event-flow

Figure 4 shows the generic model of an invocation
unit. This model is the extension of the generic timed
automaton model shown on Figure 3. Since the Up-
paal timed automata semantics is unambigous (the
automata executes on the Uppaal virtual machine)
we have formally defined our model by giving Figure 4



and using the Uppaal timed automata execution se-
mantics [24]. In the following we give an informal de-
scription of the model to explain how the key concepts,
such as concurrency, asynchronous thread invocation,
inter-process communication (IPC) and non-preemptive
scheduling are represented in the model.

The inactive location corresponds to the Idle loca-
tion of the generic automaton, the frameOverrun loca-
tion corresponds to the Timeout location. The Ready lo-
cation of the generic timed automaton model is repre-
sented by two states (schedule and waitForExecution) in
order to express that the enabled transition to the Ex-
ecuting location has to be taken when the transition
is enabled. To model the event passing we modeled
the Executing location by three locations (executing,
publish and dispatch). This timed automaton has two
clocks (clock 1 and clock 2) working at the same rate.
Attributes can be local (pid, deadline, wcet) and
global (execute).

Concurrency: This timed automaton type may
have multiple instances. These instances can communi-
cate with each other using synchronizations or shared
global variables. The execute variable is used to re-
strict that only one action can execute in the prior-
ity band at any given time. It acts as a global flag that
is set everytime an action starts executing and reset
when it finishes the execution.

Asynchronous thread invocation/IPC: When a
publisher pushes an event the subscribed components
will be eligible for execution. We model this by syn-
chronizing the publish → dispatch transition of the
publisher with the inactive → schedule transition of
the subscribed components.

Non-preemptive scheduling: The priority-based
scheduling is encoded in the guard condition of the
schedule → executing transition. Urgent locations
(schedule) are simple constructs in Uppaal to express
time constraints. When a location is urgent, time can-
not pass in that location. If no transitions are en-
abled at that time the system is deadlocked. This is
also true for committed locations (publish, dispatch,
frameOverrun), but their outgoing transitions have to
be taken first. In other words, transitions belonging
to committed locations have preference, while this is
not the case for urgent locations. In this particular
example we can use these constructs to describe the
fact that we want invocation units to publish before
any rescheduling happens. We can also formalize clock
constraints (invariance) for the locations. These are
shown next to the locations on Figure 4. When the con-
straint is violated a transition has to occur otherwise
the timed automaton is deadlocked. In the schedule
state every timed atomaton checks whether higher sub-

priority invocation units are eligible for execution, if
yes they move in to the waitForExecution state. If there
are multiple highest sub-priority invocation units one
will be chosen non-deterministically. Whenever an in-
vocation unit finishes the execution it broadcasts an
event (wakeup) to all the timed automata. This will
force them to check the guard conditions again.

7. Case study: Timed analysis of a Bold
Stroke application

In this section we show a case study on how we use
the modeling concepts desribed in Section 6 to verify
a Bold Stroke application shown on Figure 5. This ap-
plication is driven by a single Timer therefore it cor-
responds to a single rate group/priority band. Each
component contains exactly one event-initiated action
therefore when we refer to the scheduling of the compo-
nents we mean the scheduling of the invocation units
(the event-initiated action together with the recepta-
cle calls).

The INS and GPS components are both subscribed
to the same event channel. When the Timer pushes
an event both components will be notified. These two
components correspond to two time-driven invocation
units. Since both components receive the same events,
they will be eligible for execution at the same time.
The scheduler will choose one component according to
the scheduling algorithm while the other must wait un-
til the first finishes execution.

The AIRFRAME component is subscribed to both
time-driven components. The semantics of handling the
events is configurable. If we assume AND semantics then
the component has to wait until all events have ar-

Figure 5. Bold Stroke application model



rived for which the component is subscribed. If we as-
sume OR semantics, any event can trigger the compo-
nent’s execution. In this particular example OR seman-
tics is assumed, because the AIRFRAME component up-
dates its state if any of the INS or GPS components
have new data. When the AIRFRAME component is ex-
ecuted, it calls back to the INS and GPS components
using a remote method call and publishes an event to
the DISPLAY component after it has made the neces-
sary computations. The DISPLAY component will call
back into the AIRFRAME component during its execu-
tion - in order to display the new data.

7.1. Decomposition rules for the execution
paths

We claim that the non-preemptive scheduling of Bold-
Stroke applications can be verified without explicitlymod-
eling the buffering of the event channel. In order to show
this, we have to check the properties of the call chains.
We already defined the call chains for remote method
calls when we introduced the concept of the invocation
unit. In that context, the call chain is an acyclic graph
with the event-initated action as root element. We can
define call chains for the event-flow as well. In a single
priority band, the Timer will publish events to the sub-
scribed components. These components will also pub-
lish events etc. There are no cycles in the event flow,
otherwise we would end up in a loop that can possi-
bly execute forever. The call chain of the event flow in
a priority band can be represented as a directed graph
forest with the Timers as roots of the trees. The ver-
tices correspond to invocation units, the edges corre-
spond to the published events. The trees can be con-
nected to each other, but the whole graph is acyclic.
The event flow graph for this example is shown on Fig-
ure 6.

Figure 6. The event flow represented as a Di-
rected Acyclic Graph (DAG)

The AIRFRAME component can receive events from
both the INS and GPS components, therefore it is more
complex than the other components. Since the num-
ber of vertices and the number of edges is finite, we

can define a finite number of execution paths on this
event flow, that is a path from the root element to
a leaf. We need to decompose the AIRFRAME compo-
nent to get the execution paths. If we assume OR se-
mantics for receiving the events the event flow can be
decomposed into the execution paths depicted on Fig-
ure 7.

Figure 7. The execution paths assuming OR se-
mantics

The main idea used in the decomposition is that
we keep track of the event channel buffer in the state
of the timed automata. For every event received the
component publishes at most one event in any of its
PublishPorts. We keep track of the events received in
the state of the timed automata. This allows us to ex-
press AND semantics for receiving the events as well.
Figure 8 shows this scenario. This rule is shown only
to demonstrate that different semantics can also be ex-
pressed.

Figure 8. The execution paths assuming AND se-
mantics

The dotted line denotes synchronization between the
corresponding timed automata. We force the automata
to start executing at the same time. This constraint -
together with the guards on the transitions that con-
trol when the automaton is scheduled for execution -
will enable the set of timed automata for execution if
all of them are eligible. Since the component executes
only once - unlike with the OR semantics - we allow
sending out only one event.



7.2. Analysis using timed automata

We model each invocation unit on these call chains
by a timed automaton. In this example - assuming OR
semantics for receiving the events - we will have a net-
work of 6 timed automata representing the 4 compo-
nents. The event-flow corresponds to Figure 7. The
time-driven invocation units will be represented as a
single timed automaton while the event-driven invoca-
tion units will be represented by two concurrently ex-
ecuting timed automata.

Figure 9 shows the Uppaal models for the example
application shown on Figure 5. These models extend
the generic model of the invocation unit introduced in
section 6.

7.3. Verification

In the previous sections we have shown how to
model the non-preemptive scheduling of component-
based real-time CORBA applications. The timed prop-
erties of the model can be checked by the Uppaal ver-
ification tool. Uppaal uses a subset of the Computa-
tional Tree Logic (CTL) [5] temporal logic to formalize
statements about the system models. Note that model
checking is a formal proof that the model satisfies the
desired properties.

To show that the system is correct we checked that
the system is deadlock-free by using the following Up-
paal macro:

A[] not deadlock

We also need to show that all invocation units
meet their deadlines. We claim that this requires
no additional checking of properties. We have set
the frameOverrun location to be committed to re-
duce the state space. However, we also introduced
a nice side-effect in the system using this con-
straint. Whenever a timed automaton reaches the
frameOverrun location time cannot pass in that au-
tomaton. Since we cannot leave that location, this
will deadlock the system. If the above reachabil-
ity macro evaluates to true, we have proved that there
are no deadlocks in the system and every action al-
ways finishes the execution before the deadline. We also
prove that every published event is properly con-
sumed in the system and the event channels operate
with limited buffer size.

In the previous section we have described a system
with correct deadlines. Figure 10 shows a slightly dif-
ferent scenario in which we set the deadline of the
AIRFRAME component to 32 ms. The deadlock is de-

tected and a short trace is produced automatically by
Uppaal. The simulation runs help us finding the cause
of the frame overrun by simulating the execution trace
that lead to the fault.

Figure 10. Detected deadlock with the shortest
trace

Additional timed properties can also be checked be-
cause all the time and dependencies are captured in
the models. We claim that our verification can be used
to verify the correctness of non-preemptive scheduling
and pinpoint components that have frame overrun con-
ditions. Our results show that the deadline is not the
function of the period and using slower Timers may
produce the same properties in the system allowing
better resource allocation and performance gain.

7.4. Performance

The example used in the case study turned out to be
analyzable and correct. In order to find the limitations
on the size of analyzable systems we have carried out a
series of performance tests on a hyperthreaded machine
with a 3.4GHz Pentium 4 processor and 1GB RAM. We
used the generic timed automata model shown on Fig-
ure 4. We have assigned 1 unit of time as WCET to all
automata and we allowed non-deterministic schedul-
ing between the automata to increase the state space.
This simple system was introduced solely to measure
the performance. We checked the system for deadlock
using the methods shown in section 7.3.

In the first series of tests we verified applications in
which the event flow can be represented as a balanced
tree. This case turned out to be exponential propor-



Figure 9. The network of timed automata for the Bold Stroke apllication shown on Figure 5



tional to the number of components. Then we have
built a simple path of components consisiting of a sin-
gle action that publishes to only one component. This
system was easily analyzable (it took less than one sec-
ond) even for 63 components. Our results show that if
we limit non-determinism and the branching of event
paths the system will be simpler to analyze. As part of
out future work we would like to conduct research on
how to speed up the verification process.

8. Related work

The DARPA MoBIES (Model-Based Integration of
Embedded Systems) program - started in 2000 - fo-
cuses on integrating physical application domains with
model-based design, composition and analysis of em-
bedded software. The key objectives are to increase
dependability, productivity while reducing the costs of
development and analysis of automatically generated
embedded system software. These objectives drive the
development of domain-specific embedded software de-
sign tools to the target environment that allow the evo-
lution of correct-by-construction code generation tech-
nologies. Within the context of the MoBIES program,
researchers from multiple institutions have been work-
ing together to produce an end-to-end tool-chain with
the Boeing Bold Stroke DRE architecture as the main
application domain. Results of the research on Bold
Stroke scheduling and verification are the AIRES, Ca-
dena and Time Weaver - TimeWiz R© tools.

The AIRES tool extracts system-level depen-
dency information from the application models, in-
cluding event- and invocation-dependencies, and con-
structs port- and component-level dependency graphs.
Various polynomial-time analysis tasks are sup-
ported such as checking for dependency cycles as well
as forward/backward slicing to isolate relevant com-
ponents [14]. It performs real-time analysis [15] using
Rate Monotonic Analysis techniques [23].

The Cadena [18] framework is an integrated envi-
ronment for building and analyzing CORBA Compo-
nent Model (CCM) based systems. Its main function-
alities include CCM code generation in Java, depen-
dency analysis and model-checking with dSPIN [9], an
extension of the SPIN model-checker [20]. The empha-
sis of verification in Cadena is on software logical prop-
erties. The generated transition system does not repre-
sent time explicitly and requires the modeling of logi-
cal time that does not allow quantitative reasoning.

Time Weaver (Geodesic) [8] is a component-based
framework that supports the reusability of components
across systems with different para-functional require-
ments. It supports code generation as well as auto-

mated analysis. It builds a response chain model [23]
of the system to verify timing properties. This model is
used by real-time analysis tools such as the TimeWiz R©
model-checker to build a task set that can be analyzed
with Rate-Monotonic Analysis techniques.

Several authors [4] [11] [3] [13] [16] [12] have pro-
posed the use of model checking techniques and tools
for dynamics analysis of real-time computation sys-
tems. The underlying models are variants of the timed
automata model. Early work on this approach has been
reported in [6] which uses the HyTech tool to ana-
lyze multi-tasking programs. A generic form to ana-
lyze scheduling behavior based on the timed automata
model was proposed in [13] for single processor schedul-
ing using the Immediate Ceiling Priority protocol and
the Earliest Deadline First algorithm.

9. Conclusion and future directions

This paper presents a solution that captures
the event-driven nature of component-based real-time
CORBA applications that use the publisher/subscriber
communication pattern. This approach captures the re-
active behavior as well as the non-determinism present
in these systems and demonstrates that timed au-
tomata can represent component interactions and
asynchronous event passing allowing the verification
of quantitative dense time properties. The verifica-
tion process can provide simulation runs and pinpoint
components that fail to meet deadlines and cap-
tures the propagation of failures in the system. This
approach allows finding the “bottlenecks” in the sys-
tem that limit the performance of the verified sys-
tem.

Our solution has been implemented using the
GReAT graph transformation tool that allows auto-
matic verification of the system models by providing a
tool-chain to the Uppaal model checker. As the per-
formance tests show the state space explosion prob-
lem can be managed by restricting the branching of
the event flow between components. As part of our fu-
ture work we would like to include the modeling of
preemptive scheduling in the models as well as the ver-
ification of dynamic scheduling algorithms. In order
to keep the models analyzable we want to exam-
ine how to decrease the complexity of the verifica-
tion.

References

[1] A. Agrawal, G. Karsai, and A. Ledeczi. An End-to-
End Domain-Driven Development Framework. In Pro-
ceedings of the 18th Annual ACM SIGPLAN Conference



on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Oct 2003.

[2] R.Alur andD.L.Dill. A theory of timedautomata. The-
oretical Computer Science, 126(2):183–235, 1994.

[3] V. A. Braberman and M. Felder. Verification of Real-
Time Designs: Combining Scheduling Theory with Au-
tomatic Formal Verification. In Software Engineering-
ESEC/FSE 99, pages 494–510, 1999.

[4] S.Bradley,W.Henderson, andD.Kendall. UsingTimed
Automata for Response Time Analysis of Distributed
Real-Time Systems . In 24th IFAC/IFIP Workshop
on Real-Time Programming WRTP 99, pages 143–148,
1999.

[5] E. Clarke and E. Emerson. Design and synthesis of syn-
chronisation skeletons using branching time temporal
logic. Logic of Programs, LectureNotes inComputer Sci-
ence, 131:52–71, 1981.

[6] J. Corbett. Timing Analysis of Ada Tasking Programs.
IEEE Transactions on Software Engineering, 22:1–23,
1996.

[7] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
tool KRONOS. InProceedings of the DIMACS/SYCON
workshop on Hybrid systems III : verification and con-
trol, pages 208–219. Springer-Verlag New York, Inc.,
1996.

[8] D. de Niz and R. Rajkumar. Time Weaver: A Software-
Through-Models Framework for Real-Time Systems. In
Proceedings of LCTES, 2003.

[9] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A Dynamic
Extension of SPIN. In Proceedings of the 5th and 6th In-
ternational SPIN Workshops on Theoretical and Prac-
tical Aspects of SPIN Model Checking, pages 261–276.
Springer-Verlag, 1999.

[10] M. Deshpande, D. C. Schmidt, C. O’Ryan, and D. Brun-
sch. Design and Performance of Asynchronous Method
Handling for CORBA. In Proceedings of Distributed
Objects and Applications (DOA), October/November
2002.

[11] C. Ericsson, A. Wall, and W. Yi. Timed Automata as
Task Models for Event-Driven Systems. In Proceedings
of RTSCA ’99, 1999.

[12] A. Fehnker. Scheduling a Steel Plant with Timed Au-
tomata. InSixth InternationalConference onReal-Time
Computing Systems and Applications (RTCSA’99).
IEEE Computer Society Press, 1999.

[13] T. Gerdsmeier and R. Cardell-Oliver. Analysis of
Scheduling Behaviour using Generic Timed Automata.
42, 2001.

[14] Z. Gu, S. Kodase, S. Wang, and K. G. Shin. A Model-
BasedApproach toSystem-LevelDependencyandReal-
Time Analysis of Embedded Software. In Proceedings of
Real-Time Applications Synopsium, 2003.

[15] Z. Gu, S. Wang, S. Kodase, and K. G. Shin. An End-to-
End Tool Chain for Multi-View Modeling and Analysis
of Avionics Mission Computing Software. In Proceed-
ings of Real-Time Systems Synopsium, 2003.

[16] L. Halkjaer, K. Haervig, and A. Ingolfsdottir. Verifica-
tion of the legOS Scheduler using Uppaal. In F. Corra-
dini and P. Inverardi, editors, Electronic Notes in Theo-
retical Computer Science, volume 39. Elsevier, 2000.

[17] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The
Design and Performance of a Real-Time CORBA Event
Service. In Proceedings of the 12th ACM SIGPLAN con-
ference on Object-oriented programming, systems, lan-
guages, and applications, pages 184–200. ACM Press,
1997.

[18] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P.
Ranganath. Cadena:AnIntegratedDevelopment,Anal-
ysis, and Verification Environment for Component-
based Systems. In Proceedings of International Confer-
ence on Software Engineering, 2003.

[19] T.A.Henzinger,P.-H.Ho, andH.Wong-Toi. HYTECH:
A Model Checker for Hybrid Systems. International
Journal on Software Tools for Technology Transfer, 1(1–
2):110–122, 1997.

[20] G. J. Holzmann. The SPIN model checker: Primer and
reference manual. Addison Wesley, 2004. HOL g 03:1
1.Ex.

[21] J.Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. 1998.

[22] G. Karsai, S. Neema, A. Bakay, A. Ledeczi, F. Shi, and
A. Gokhale. A Model-based Front-end to TAO/ACE.
In Proceedings of the 2nd Workshop on TAO, 2002.

[23] M. H. Klein, T. Ralya, B. Pollak, and R. Obenza. A
Practitioners’ Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[24] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, Oct. 1997.

[25] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nord-
strom, and J. Sprinkle. ComposingDomain-SpecificDe-
sign Environments. Computer, pages 44–51, Nov 2001.

[26] Object Management Group. Common Object Request
Broker Architecture (CORBA/IIOP). 2002.

[27] Object Management Group. CORBA Component
Model. 2002.

[28] P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of
the European Association for Theoretical Computer Sci-
ence, 70:40–44, feb 2000.

[29] D. C. Schmidt, A. Gokhale, T. H. Harrison, and
G. Parulkar. A High-Performance Endsystem Archi-
tecture for Real-Time CORBA. IEEE Communications
Magazine, 14(2), 1997.

[30] D. C. Sharp and W. C. Roll. Model-Based Integration
of Reusable Component-Based Avionics Systems. In
Proceedings of the Workshop on Model-Driven Embed-
ded Systems in RTAS 2003, May 2003.

[31] S.Tripakis andC.Courcoubetis. ExtendingPROMELA
and SPIN for Real Time. In Proceedings of TACAS ’96,
LNCS 1055, 1996.


	Introduction
	The Embedded Systems Modeling Language (ESML)
	The Boeing Bold Stroke architecture
	Approach
	Problem Description
	Generic modeling of the event-flow
	Case study: Timed analysis of a Bold Stroke application
	Decomposition rules for the execution paths
	Analysis using timed automata
	Verification
	Performance

	Related work
	Conclusion and future directions

