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Abstract

We study the problem of multi-target track-
ing and data association in video. We formu-
late this in terms of selecting a subset of high-
quality tracks subject to the constraint that
no pair of selected tracks is associated with a
common detection (of an object). This objec-
tive is equivalent to the classic NP-hard prob-
lem of finding a maximum-weight set packing
(MWSP) where tracks correspond to sets and
is made further difficult since the number of
candidate tracks grows exponentially in the
number of detections. We present a relax-
ation of this combinatorial problem that uses
a column generation formulation where the
pricing problem is solved via dynamic pro-
gramming to efficiently explore the space of
tracks. We employ row generation to tighten
the bound in such a way as to preserve ef-
ficient inference in the pricing problem. We
show the practical utility of this algorithm
for pedestrian and particle tracking.

1 Introduction

Multi-target tracking in video is often formulated from
the perspective of grouping disjoint sets of candidate
detections into “tracks” whose underlying trajectories
can be estimated using traditional single-target meth-
ods such as Kalman filtering. There is a well developed
literature on methods for exploring this combinatorial
space of possible data associations in order to find col-
lections of low-cost, disjoint tracks.

We first highlight three common approaches that are
closely related to our method. The first approach is
based on reduction to minimum-cost network flow [19]
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which maps tracks to unit flows in a network whose
edge costs encode track quality. This elegant con-
struction utilizes edge capacity constraints to enforce
disjoint tracks and allows for exact, polynomial-time
inference. However, this formulation is quite limited
in integrating joint statistics over multiple detections
assigned to a track. In particular, it is constrained to
first-order dynamics in which the cost of a detection
being associated with a given track depends only on
the immediately neighboring detections.

A second approach is the Multiple Hypothesis Track-
ing [6l, 14, T2](MHT) which attempts to model higher
order dynamics by grouping short sequences of detec-
tions into a set of hypothesis tracks that can be eval-
uated and pruned in an online manner. This trades
efficiency and global exactness of min-cost flow track-
ers for additional modeling power. For example, the
cost of a track may be computed using, e.g.spline-
based fitting or Bayesian estimation/Kalman filters
and instance specific appearance models. However,
such methods face a combinatorial problem of assem-
bling compatible sets of tracklets which is usually tack-
led using greedy approximations.

Our method is most closely related to the third ap-
proach: the Lagrangian relaxation method of [7],
which attempts to preserve the speed and guarantees
of min-cost flow tracking while also capturing higher
order dynamics of the objects. A large number of
short sequences of detections (subtracks) are gener-
ated, each of which is associated with a cost. The set
of subtracks form the basis from which tracks are con-
structed. The corresponding optimization is attacked
via sub-gradient optimization of the Lagrangian relax-
ation corresponding to the constrained objective.

Inspired by [16], we attack the problem of reason-
ing over subtrack assembly using column/row genera-
tion [9] [4] [18] to allow higher-order interactions within
a track while achieving faster inference with tighter
bounds than [7]. This paper is organized as follows. In
Section [2| we formulate tracking as optimization of an
Integer Linear Program (ILP). In Section [2.2| we relax
integrality constraints and demonstrate a simple case
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Figure 1: Left: A tracking graph with four tracks that conflict over a triplet of detections. Here we associate two
indices with a candidate detection so d;, indicates the a’th detection at time 1. The triplet d; da,ds, involved
in multiple colored tracks corresponds to the example described in Section [2:2 Right: The score for a track is
a sum of subtrack scores. Here we illustrate some possible tracks and subtracks (boxes) where directed arrows
indicate the valid successors of a given subtrack. We order the subtracks by the time of their final detection. Note
that a subtrack may skip some time steps, e.g., [dz2,d3,ds,] might correspond to occlusion where no detection is
observed at time 4. An optimal valid track can be found by dynamic programming over this graph of subtracks.

in which the LP relaxation is loose and demonstrate
how to tighten the bound. In Section [3| we formulate
optimization over the tighter bound and discuss infer-
ence using column and row generation. In Section []
we demonstrate the effectiveness of our approach on
pedestrian tracking and particle tracking benchmarks.
In Section [5| we study the mathematical properties of
our relaxation and bounds.

2 Multi-target Tracking Objective

We now describe our ILP formulation of multi-target
tracking problem. Given a set of candidate detections
D, each with a specified space-time location, our goal
is to identify a collection of tracks that describe the
trajectories of objects through a scene and the subset
of detections associated with each such trajectory.

We denote the (exponentially large) set of all possible
tracks by P and use X to denote the detection-track
incidence matrix X € {0, 1}P*IPl where X4, = 1 if
and only if track p visits detection d. A solution to
the multi-target tracking problem is denoted by the
indicator vector y € {0,1}/Pl where v, = 1 indicates
that track p is included in the solution and 7, = 0 oth-
erwise. A collection of tracks specified by 7 is a valid
solution if and only if each detection is associated with
at most one active track. We use © € R!P! to denote
the costs associated with tracks (full description of ©
is in Section . Here ©,, describes the cost of track
p. We now express our tracking problem as an ILP.

min Oy with T ={ye{0,1}/7: Xy <1} (1)
yerl

We note that this is equivalent to finding a maximum-
weight set packing which is NP-hard [I1].

2.1 Decomposable Track Scores

A classic approach to scoring an individual track is
to use a Markov model that incorporates unary scores
associated with individual detections along with pair-
wise compatibilities between subsequent detections as-
signed to a track. We consider a more general scoring
function corresponding to a model in which a track
is defined by an ordered sequence of subtracks whose
scores may depend arbitrarily on detections across sev-
eral frames. Let S denote a set of subtracks, each
of which contains K detections where K is a user
defined modeling parameter that trades off inference
complexity and modeling power. For a given subtrack
s € S, let si indicate the k’th detection in the sequence
s ={s1,...,5K} ordered by time from earliest to lat-
est. We describe the mapping of subtracks to tracks
using T € {0, 1}ISIXIPI where Ty, = 1 indicates that
track p contains subtrack s as a subsequence.

We decompose track costs © in terms of the subtrack
costs 6 € RIS where each subtrack s is associated with
cost 0, and use 0y to denote a constant birth cost as-
sociated with instancing a track. We define the cost
of a track p denoted ©,, as ©, = Oy + ) g Tspbs. We
illustrate the notion of subtracks in Fig right).

2.2 LP Relaxation and Triplets

We now attack optimization in Eq [l using the well
studied tools of LP relaxations. We use I' = {y €
[0,1]PI': X5 < 1} to denote a convex relaxation of
the constraint set T.

min©®'y > min Oy (2)
~er ~ver

The LP relaxation in Eq[2Jonly contains constraints for
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collections of tracks that share a common detection.
From the view point of maximum-weight set packing,
this includes some cliques of conflicting sets but misses
many others. As a concrete example, visualized in
Fig [I(left), consider four tracks P = {pi,p2,ps,pa}
over three detections D = {dy, ds,d3}, where the first
three tracks each contain two of the three detections
{d1,d2},{d1,d3},{d2,ds}, and the fourth track con-
tains all three {di,ds,ds}. Suppose the track costs
are given by ©,, = 6,, = 0,, = —4 and ©,, = —5.
The optimal integer solution sets 7,, = 1, and has a
cost of —5. However a lower cost fractional solution
sets Yp, = Yp, = ¥p; = 0.5 and y,, = 0 which has cost
—6. Hence the LP relaxation is loose in this case.

A tighter bound can be motivated by the following
observation. For any set of three unique detections
the number of tracks that pass through two or more
members can be no larger than one. We utilize this
tighter relaxation of T'. We denote the set of groups of
three unique detections (which we refer to as triplets)
by C and index it with ¢. We use [...] to denote the
indicator function.

I‘C;{'yeR\P\:'yZO, Xy<1, Cy<1}
Cop =13 Xap =2 VeeCpeP Ce {01}
dec

3 Dual Optimization over I'“

We write tracking as optimization in the primal and
dual form below.

min Oy = max —1'A —11X¢ (3)
~yerc A>0
X¢>0
O+ X A4+CtAC>0

Given that P and C are exponential in the number
of detections, we work with a small subset active of
columns (tracks) and rows (triplets). The nascent sub-

sets of P,C are denoted P,é respectively. In Alg

we write column/row generation optimization given
subroutines COLUMN(X, X€), ROW(y) that identify
a group of violated constraints in primal and dual in-
cluding the most violated in each.

3.1 Row Generation

Finding the most violated row consists of the following
optimization: max.cc ZpeP CepYp-

We generate rows as needed by considering all
triplets over detections associated with fractional val-
ued tracks. We consider all triplets of detections, not
only those that are nearby in space/time. Hence our
work is analogous to the full cycle polytope studied in
[18, 15 [, 2, B] as opposed to the local cycle polytope
applied in [16].

3.2 Column generation without triplets
constraints

We first discuss how COLUMN(A, X¢) is computed ef-
ficiently for our track cost model using dynamic pro-
gramming when A° is zero valued. We later show how
to use this when A€ is not zero valued. We specify that
a subtrack s may be preceded by another subtrack 3
if and only if the least recent K — 1 detections in s
correspond to the most recent K — 1 detections in .
We denote the set of valid subtracks that may precede
a subtrack s as {= s}.

We use £ to denote the cost of the cheapest track that
terminates at subtrack s. Ordering subtracks by the
time of last detection allows efficient computation of ¢
using the following dynamic programming update:

ls < 05 + A5, + min{ min /g,
se{=s}

K—-1
o+ > A} (4)
k=1

We find it is useful to add not only the minimum
cost track (most violated constraint) to P but also the
(most violating) track terminating at each detection.
This set of tracks is easy to extract from the dynamic
program since it stores the minimum cost track termi-
nating at each subtrack. While this over-generation of
constraints substantially increases the number of con-
straints in the dual, we find that many of these con-
straints prove to be useful in the final optimization
problem . Additionally, in our implementation dy-
namic programming consumes the overwhelming ma-
jority of computation time so adding more columns
per iteration yielded faster overall run time.

3.3 Column Generation with triplet
constraints

We denote the value of the slack corresponding to
an arbitrary column/track p as V(©,X, X%, p) and the
most violated column/track as V*(©, X, X¢) which we
define below.

VO D) =0,+ Y MaXap+ D ACo  (5)
deD ceC
V*(©,A,X°) = min V(0,X, X, p)
peEP
Solving for V*(©,X,X€) can not be directly attacked
using dynamic programming as in Section [3.2] How-
ever dynamic programming can be applied if we ignore

the triplet term ) s )\SC’CP, providing a lower bound.

This invites a branch and bound (B&B) approach. We
find B&B is very practical because experimentally we
observe that the number of non-zero values in A¢ at
any given iteration is small (< 5) for real problems.
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Algorithm 1 Column/Row Generation

Pe{}, C+{}
repeat
max A>0 —1tA — 1tX€
X¢>0

o . t t c
Op+X{, 5 A+Cls A9 >0

Recover 7 from A

P + COLUMN(A, X°)

€< ROW(Y)

P« [P,P] C+[C,C]
until P =[] and C = ||

Algorithm 2 Upper Bound Rounding

while 3p e P s.t. v, ¢ {0,1} do
p* < argminpep OpYp — > sep  V5Op
7p>0
Vp 0 Vﬁ S ’PJ_p*
Ypr 1
end while
RETURN «

Figure 2: Left: Algorithm for dual-optimization of a lower bound on the optimal tracking by column generation
where the notation X P denotes selection of a subset of columns of X. We note that the primal solution vy
is provided during the solution to A by standard LP solvers like MATLAB or CPLEX. Right: We compute
upper-bounds on the optimal tracking using a rounding procedure which greedily selects primal variables v while
removing intersecting tracks. We use P, to indicate the set of tracks in P that intersect track p (excluding p

itself.

The set of branches in our B&B tree is denoted B.
Each branch b € B is defined by two sets Dy and Dy,
corresponding to detections that must be included in
the track and those that must excluded from the track
respectively. We write the set of all tracks that are
consistent with a given D;_, Dy or consistent with
both Dy_ and D4 as P,—, Pp+ and Ppa respectively.
We specify the bounding, branching, and termination

operators in Sections[3.9.1][3.3.2] and [3.3.9] respectively.
The initial branch b is defined by Dy = Dy = {}.

3.3.1 Bounding Operation

Let V°(©,\,X¢) denote the value of the most violat-
ing slack over tracks in P,.. We can compute a lower-
bound for this value, denoted V}g by independently op-
timizing the dynamic program and the triplet penalty.

VP(©,X,X°) = min V(0,X, X, p)

PEPy+
= min 0, + > XXy + ) AC.
PEPys P dEZD d<Xdp % P
> min O, + A X4y + min )\SCC
> min O, + D XaXap+ Y XD [de D] > 2]
PEP deD ceC¢  dec

= ‘/2117)(97’\)‘0)

Observe that dynamic programming can be used to
efficiently search over P,_ to minimize the first term.
For efficiency, subtracks whose inclusion conflicts with
any detection in the required set Dy, can easily be
removed before running the dynamic program.

3.3.2 Branch Operation

We now consider the branch operation. We describe
an upper bound on V?(0, X, X¢) as V% (©, X, X°). This
is constructed by adding in the active A€ terms ig-
nored when constructing V;2(6,A\,X¢). Let p, =
arg minpep, O, + > cp AdXgp. Then we have:

Vi (©,2,2°)
= Vvllli(@v)‘vAc) + ZASCCI% [Z[d € Db-‘r] < 2} (6)

ceC dec
=0, + > AaXap, + > A [d € Dpy] > 2]
deD cel dec
+D ACe, > [d € Dyy] < 2]
cel dec
=V(O,XXp) + Y _AS> [d € Dypy] > 2]
ceé dec
- Z’\gccm [Z[d € Dyy| > 2]
cel dec
= V(O,AX%,pp) + Y AS(1 = Cop, )Y _[d € Dpy] > 2
cel dec

> V(0,X,X%,py) > VP(©,X,X°)

Now consider the largest triplet constraint term

X¢ that is included in V2% (©,X, A py) but not
VE (O, X6).

¢* « argmaxASC,,, [Z[d € Dpy] < 2] (7)

ceC

dec

We create eight new branches for each of the eight dif-
ferent ways of allocating the three detections in the
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triplet corresponding to ¢* to the include (+) and ex-
clude (—) sets. We establish below that if b is the
lowest cost branch and AS. = 0 then py, is the track cor-
responding to the most violated column in P. Hence
a branch operator is not applied if A% = 0. We refer

to a branch b such that A% = 0 as terminating.

c*

3.3.3 Establishing Optimality at Termination

We now establish that B&B produces the most vio-
lated column at termination. We do this by proving
that the cost of the track corresponding to the low-
est cost branch is both an upper and lower bound on
V*(©, X, X°) if that branch is terminating.

Consider branch b* with corresponding track py« such
that the following conditions are true: (1) b* is the low-
est cost branch in the B&B tree; (2) b* is terminating.
We write criteria (1),(2) formally below.

(1) VE(OXX) <VEONXY) YbeB  (8)

(2) 0=maxXC [SldeDps] <2 (9)
ceC dec

We now establish that V (0, X, XC, pp) = V*(0, A, XC).
Recall that by definition of B&B that the lowest value
bound in any B&B tree is a lower bound on the true
solution. Therefore Eq [§ implies the following.

VF(O,A,X%) > V2 (©,X,X9) (10)
We now plug Eq[9]into Eq[6} and deduce the following:
Vi (0,009 > V(0,0 ppe) > VF(O,X,X°) (11)

Observe that Eq establishes that V*(©,X,X¢) >
V2 (0, XC). Therefore all inequalities in Eq |11 are
equalities and hence pp« is the lowest cost track.

3.4 Rounding Fractional Solutions

We compute upper bounds using a fast principled
method that avoids resolving the LP [7]. Observe that
each solution of the LP during the column generation
process (Alg corresponds to a (fractional) primal so-
lution in addition to the dual solution (computed “for
free” by many LP solvers when solving the dual). We
round a fractional 7 via a greedy iterative approach
that, at each iteration, selects the track p with mini-
mum value ©,7, discounted by the fractional cost of
any tracks that share a detection with p (and hence
can no longer be added to the tracking if p is added).
We write the rounding procedure in Alg [2| using the
notation P, to indicate the set of tracks in P that
intersect track p (excluding p itself).

4 Experiments

4.1 Tracking Pedestrians in Video

We use a part of MOT 2015 training set [I3] to
train and evaluate real-world tracking models. MOT
dataset consists of popular pedestrian benchmark
datasets such as TUD, ETH and PETS. Specifically
we use the learning framework of [17] with Kalman Fil-
ters to train models using ETH-Sunnyday and TUD-
Stadtmitte, and test the models on TUD-Campus se-
quence. For detections we use the raw detector output
provided by the MOT dataset. We train the models
with varying subtrack length (K = 2,3,4) and allow
for occlusion up to three frames. There are altogether
71 frames and 322 detections in the video, numbers of
subtracks are 1,068, 3,633 and 13,090 for K = 2,3,4.
For K = 2 we observe 48.5% Multiple Object Tracking
Accuracy [B], 11 identity switches and 9 track frag-
ments or for short hand (48.5,11,9). However when
setting K = 3,4 the performance is (49,10,7), and
(49.9,9,7) which constitutes noticeable improvements
over all three metrics. In Fig[3| we compared the tim-
ing/cost performance of our algorithm with the base-
line algorithm of [7] on problem instances with a loose
lower bound.

4.2 Relationship to Lagrangian Relaxation

We now review the work of Butt and Collins [7] which
we compare against. [7] can be understood as opti-
mizing over only the Lagrange multipliers A leaving
all terms A° zero valued. Thus [7] relaxes the con-
straint that no detection is associated with more than
one track and enforces it softly with Lagrange mul-
tipliers A. However [7] adds in an extra constraint
that no subtrack is used more than once. This is re-
dundant, though its inclusion allows for solving the
relaxed problem via network flow. Using our notation
we write the optimization in [7] as:

: ta t
min O'y = min O'y (12)
X~v<1 X~v<1
T~<1

= min D o+ 3 The) = ax=3_ M

X~<1PEP sES deD

Tv<1

+ glzlg Z ’Yp(90 + Z Tspes + Z )\dXdp)

T~<1PEP seS deD

Solving Eq |12] is done using sub-gradient ascent in A
instead of linear programming. Given A, the mini-
mization problem in Eq corresponds exactly to a
min-cost flow problem. In the min-cost flow problem,
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Figure 3: Top: left: For K = 3 on Particle Tracking Challenge data, we show the convergence of the bounds
as a function of time in seconds on the test data set. We display the value of the upper, and lower bounds.
middle and right: when training on a subset of motion features on MOT dataset we get instances with loose
bound. For the two examples we plot the gap (absolute value of the difference) between the bounds and the
final lower bound as a function of time. We indicate each time that a triplet is added with a black dot on the
lower bound plot. In all examples the bound of [7] is loose and at least one triplet is needed to produce a tight
bound which results in visually compelling tracks. In both comparisons against [7] our upper- and lower- bounds
are tight at termination. Bottom: We illustrate a qualitative example of improvement as a result of increasing
subtrack length. Top row is detector output and associated confidence provided by [I3]. Second row and third
row correspond to trackers of subtrack length K = 2 and K = 4 respectively. Notice that for K = 2 track 1
changes identity to 5, while with K = 4 the identity of track 1 does not change. Missing detections in tracking
results are interpolated linearly and tracks.
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nodes indicate subtracks and edges indicate valid tran-
sitions between subtracks. Each time the network flow
is solved, a set of tracks is produced that may share
detections. A greedy approach is used to select a good
subset of the tracks produced. Hence our inference
algorithm can be understood as optimizing a tighter
relaxation that uses dynamic programming in place of
network flow inference. The tighter bound is a conse-
quence of the addition of the triplets.

4.3 Synthetic Data: Experiments on the
Particle Tracking Challenge Data

We applied our algorithm to the data from the Parti-
cle Tracking Challenge (PTC) simulated data set for
high density microtubules (SNR7),which consists of
two videos (train,test) of 99 images of 512 x 512 pixels
over time where the test data set contains 6733 tracks
that cover 71035 detections. We take the set of ground
truth detections as the set of detections and apply our
tracking algorithm. From the set of detections we gen-
erate subtracks of K detections as follows. Consider a
directed graph where the nodes are the set of all de-
tections. For each detection d we draw a line from d
to each of its three spatial nearest neighbors in the fol-
lowing frame. The set of all paths containing K nodes
in this graph is the set of subtracks. In total we find
1,873,341 subtracks. We are provided with costs for
each subtrack via logistic regression based on motion
features consisting of autocorrelation, and autocovari-
ance, and other distance features.

With K = 3 and optimized hyper-parameters we reach
a Jaccard score of 0.924 as compared to a baseline of
0.754 . We identified 6329 tracks that are in the ground
truth, missed 404 tracks that are in the ground truth
and identified 118 tracks that are not in the ground
truth. These results are produced via providing our
output to the benchmarking code associated with [8].
In Fig 3] we apply Alg [I] and study tracking perfor-
mance in terms of accuracy and cost.

The purpose of the synthetic experiments is to demon-
strate that the generation of massive numbers of
columns at once is an efficient mechanism to solve
problems where the number of tracks is enormous and
repeated calls to dynamic programming is computa-
tionally difficult. The value of the model and of the
triplets is explored in the real data experiments on
pedestrian tracking.

5 Study of the bounds

We now consider computing an anytime lower bound
on the optimal tracking. We use P? to refer to the set
of tracks terminating at detection d. We rely on the

redundant constraint that no two tracks terminate at
the same detection.

min max Oy + XXy — 1) + A°Y(Cy — 1)
7€{0,1}/71 A°>0
Zpepd 'YpSl AZO

(13)

We now relax the optimization and consider any non-
negative A\, A€

Eq[13]> —A*1 — X1

+  min O+ XXy + A0y > —AT1 - AC
v€{0,1}”!
Zpepd 'ngl
+ Z min{0, min O, + Z AaXap + Z)\SC’CP}
deD pEP deD el

For short hand we define the following quantity
Va(©,,X°) as the lowest cost over tracks terminat-
ing at detection d. V*(©,AA°) = min,cpa O, +
> aep AaXap + Zceé xS Cep

We bound V¥*(0,\,A¢) from below in two different
ways. First, we ignore the A® terms and optimize via
dynamic programming producing the following bound.
VA& (O,X,X°) > min ses £s.
sk=d

However we also bound V4 (0, A, X°) by the minimizer
over all d hence V¥*(0,\, X¢) > V*(0,A, X¢). Com-
bining the two bounds on V¢ (©,X,X¢) we produce
the following bound.

V& (0,1, X¢) > max{V*(6,\,X°), min (.} (14)
IS

SK:d

At termination of column/row generation no violated
constraints exist so V*(0,A,A¢) = 0 and thus the
lower bound has value identical to the LP relaxation
over I'® in Eq

5.1 Further Tightening the Bound

Triplets are not the only mechanism by which the
bound can be tightened. In practice we find that
only these are needed for our application but we now
explore related constraints which are known as gen-
eralized odd set inequalities [10]. Like the triplets
these constraints can also be used inside of branch and
bound dynamic programming. We consider inequali-
ties specified by a pair of integers mj, ms which are
both greater than or equal to two. Observe that for
any group of (mimg — 1) detections the number of
disjoint tracks containing mi or more detections is no
greater than mo-1. We write this constraint as:

K(mi,mims — 1) & Z[Z Xap > maly, <mg —1
PEP deD
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where D is some set of cardinality mymso — 1. This
generalizes our triplet constraints which were of type
K(2,3). Observe that any m; > 2,mo and integer k
such that 2 < k < m; the constraint C(my, myms —
k) is dominated by K(mq,mimg — 1). For example,
K(4,7) dominates K(4,6) and K(4,5).

To see that adding such inequalities tightens the
bound, consider a set of mymsy — 1 detections D and a
fractional solution vy where the total weight of tracks
passing through each group of m; detections is equal
to W so that >° pvpXap = 1 for all d € D.

We now establish that this solution satisfies inequali-
ties KC(m1, m1k—1) for 2 < k < mg but not for k = ma,
thus showing the theoretical need for constraints be-
yond triplets. Let DF be any subset of mi1k — 1 mem-
bers of D. Constraint K(my, mik — 1) is satisfied by 7y

if
k=123 1> Xgp > maly, (15)
pEP deDF
1

1> (mlmz () S Xap =ma] (16)

mi—1 J peP deD*

1
_ k1 (km1 - 1)
— (mimo—2
( m1—1 ) ml
kmq,—2

— kml - ]' Hi:k’ml—ml Z
(k— Dy [ 2

1=MoMm1 —mi v

- kml—l nﬁZ kml—ml—i—i
7(]6—1)’/711 o momi — mq + ¢

Observe that each term under the product is a positive
real number less than or equal to one. Thus we have
the following upper bound on the r.h.s. of Eqn[If]

m—2

km;—1 kmi—mq+1
17
(k—l)ml g) moMmy — M +1 ( )
km;—1 kmi—mi\  kmip—1
~ (k—1)my \mom —m1 /)  momi —my

When k < msy, we observe that % < 1 so the

constraints C(mq, m1k — 1) with k < mqy are satisfied.
However, the constraint C(mq, myms — 1) is violated
since

m—2

momiy — 1 momi 7m1+l.
, 18
(mg — 1)my g mamy —my + 14 (18)
-1
Z M Ty

meoMmy — M
5.2 Are higher-order inequalities needed?

Empirically we observe that triplets are sufficient to
ensure integral solutions on the problems that we

study. We now explain this by arguing that when
the lower-order inequalities are satisfied it (generically)
becomes increasingly difficult to conceive of violated
higher order inequalities (over large sets of detections).
For a fixed value of m; consider varying values of
ms and denote a corresponding set of detections as
pmime—l - Ag suggested by Eq finding violated
constraints requires an increasingly large portion of
the available tracks to be active. Recall that the ac-
tive tracks participating in the constraint must have
at least m; detections in D™ ™21 It might appear
that activating tracks with more than m; detections
in D™1™2~1 would contribute to a violated constraint.
However, a uniform weighting over tracks with exactly
my detections maximizes the value on the right side of
the inequality in Eq [15| while still satisfying the basic
constraint X+ < 1. The maximum total violation is
thus bounded by n;”?mil:l — 1 which shrinks as mso
2M1—m1
grows.

In our application, having a great proportion of tracks
active with exactly m; detections in some set D™z ~1
is rather unlikely (especially for large mq). This is a
consequence of utilizing sub-tracks containing multiple
individual detection for which the scoring is reason-
ably discriminative. This severely restricts the space
of low-cost tracks making it unlikely to find a large set
of detections that also participate in many low-cost
tracks.

6 Conclusions

We have introduced a new method for multi-target
tracking built on an LP relaxation of the maximum-
weight set packing problem. Our core contribution is
a column generation approach that exploits dynamic
programming to generate a large number of candidate
tracks concurrently. This yields an efficient algorithm
and provides rigorous bounds that can be tightened
via row generation. We empirically observe that our
algorithm rapidly produces compelling tracking results
along with strong anytime performance relative the
baseline Lagrangian relaxation[7].
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